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Abstract. For integers 1 ≤ M ≤ n, let R(n,M) denote the uniform probability space which consists
of all the M -element subsets of [n] = {0, 1, . . . , n − 1}. It is shown that for every α > 0 there exists a

constant C such that if M = M(n) ≥ C
√
n then, with probability tending to 1 as n → ∞, the random

set R ∈ R(n,M) has the property that any subset of R with at least α|R| elements contains a 3-term
arithmetic progression. In particular, this result implies that for every α > 0 there exist ‘sparse’ sets S ⊆ [n]

with the property that every subset of S with at least α|S| elements contains an arithmetic progression of
length three.
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§0. Introduction

In 1936 Erdős and Turán [ET 36] asked whether for every natural number k and every
positive constant α, every subset A of [n] = {0, 1, . . . , n − 1} with at least αn elements
contains a k-term arithmetic progression provided n is sufficiently large with respect to α
and k. This conjecture was resolved by Roth [Ro 53] for k = 3, whereas for general k
it was settled in the affirmative by the outstanding theorem of Szemerédi [Sz 75]. A few
years after Szemerédi’s paper was published, an entirely different proof of this result, based
on ergodic theory, was given by Furstenberg [Fu 77]. Since then, the main open problem
concerning the original question of Erdős and Turán has been to find better lower bounds
for the size of A that guarantee the existence of arithmetic progressions of length k in A.
Unfortunately, not much has been accomplished for k ≥ 4. The explicit estimates that
follow from Szemerédi’s original proof are very poor and Furstenberg’s approach does not
provide such bounds at all. The case when k = 3 is much better understood. Roth’s
original argument implies that it is enough to assume that |A| ≥ n/ log log n and the
best lower bound to date has been given independently by Heath-Brown and Szemerédi
(see [H-B 87]), who showed that for some absolute constant c > 0 every subset of [n] with
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at least n/(log n)c elements contains an arithmetic progression of length three, provided n
is sufficiently large.

In this paper we approach a related problem. Namely, here we are interested in the
existence of a ‘small’ and ‘sparse’ set R ⊆ [n] with the property that every subset A ⊆ R

that contains a fixed positive fraction of the elements of R contains also a 3-term arithmetic
progression. The measure of sparseness here should be so that it reflects the fact that R
is locally poor in 3-term arithmetic progressions. Clearly, a natural candidate for such a
set R is an M -element set RM uniformly selected from all the M -element subsets of [n],
where 1 ≤ M = M(n) ≤ n is to be chosen suitably. Our main result here confirms this
appealing, intuitive idea.

For integers 1 ≤ M ≤ n, let R(n,M) be the probability space of all the M -element
subsets of [n] equipped with the uniform measure. In the sequel, given 0 < α ≤ 1 and a
set R ⊆ [n], let us write R→α 3 if any A ⊆ R with |A| ≥ α|R| contains a 3-term arithmetic
progression. Our main result may then be stated as follows.

Theorem 1. For every constant 0 < α ≤ 1, there exists a constant C = C(α) such

that if C
√
n ≤M = M(n) ≤ n then the probability that RM ∈ R(n,M) satisfies RM →α 3

tends to 1 as n→∞.

From Theorem 1, it is easy to deduce the following analogous result for the random
sets Rp ⊆ [n] (0 ≤ p = p(n) ≤ 1) whose elements are chosen from [n] independently with
probability p. Thus, if we write R(n, p) for the probability space of such Rp, then for a
given set R ⊆ [n] the probability that Rp = R is p|R|(1− p)n−|R|.

Theorem 2. For every constant 0 < α ≤ 1, there exists a constant C = C(α) such

that if C/
√
n ≤ p = p(n) ≤ 1 then the probability that Rp ∈ R(n,M) satisfies Rp →α 3

tends to 1 as n→∞.

Note that Theorems 1 and 2 are, in a way, close to being best possible: if M =
M(n) = bε

√
nc for some fixed ε > 0 then the number of 3-term arithmetic progressions

in RM ∈ R(n,M) is, with large probability, smaller than 2ε2|RM |, and hence all of them
may be destroyed by deleting at most 2ε2|RM | elements from RM ; in other words, with
large probability the relation RM →α 3 does not hold for α = 1 − 2ε2. Clearly, a similar
phenomenon happens for Rp with p = p(n) = ε/

√
n.

Our results above immediately imply the existence of ‘sparse’ sets S = Sα such
that S →α 3 for any fixed 0 < α ≤ 1. The following result makes this assertion pre-
cise.

Corollary 3. Suppose that s = s(n) = o(n1/8) and g = g(n) = o(log n) as n → ∞.

Then, for every fixed α > 0, there are constants C and N such that for every n ≥ N there

exists S ⊆ [n] satisfying S →α 3 for which the following three conditions hold.

(i) For every k ≥ 0 and ` ≥ 1 the set {k, k + `, . . . , k + s`} contains at most three
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elements of S, and therefore, in particular, S contains no 4-term arithmetic

progression.

(ii) Every set {k, k + `, . . . , k +m`} with k ≥ 0, ` ≥ 1, and m ≥
√
n log n contains

at most Cm/
√
n elements of S.

(iii) If F = F(S) is the 3-uniform hypergraph on the vertex set S whose hyperedges

are the 3-term arithmetic progressions contained in S, then F has no cycle of

length smaller than g.

In words, conditions (i) and (ii) above say that the set S intersects any arithmetic
progression in a small number of elements. In particular, S contains no 4-term arithmetic
progressions. Condition (iii) is more combinatorial in nature, and says that the 3-term
arithmetic progressions contained in S locally form a tree-like structure, which makes the
property S →α 3 somewhat surprising.

Let us remark that the following extension of Szemerédi’s theorem related to Corol-
lary 3 was proved in [Rö 90], thereby settling a problem raised by Spencer [Sp 75]. Let k,
g ≥ 3 be fixed integers and 0 < α ≤ 1 be a fixed real. Theorem 4.3 in [Rö 90] asserts that
then, for any large enough n, there exists a k-uniform hypergraph F on [n], all of whose
hyperedges are k-term arithmetic progressions, such that F contains no cycle of length
smaller than g but each subset A ⊆ [n] with |A| ≥ αn contains a hyperedge of F . For
other problems and results in this direction, see Graham and Nešetřil [GN 86], Nešetřil
and Rödl [NR 87] and Prömel and Voigt [PV 88]. Note that Corollary 3 strengthens the
above result of [Rö 90] in the case in which k = 3.

The proof of Theorem 1 is unfortunately quite long. In the next section we describe our
general approach, stressing the main ideas involved and ignoring several quite technical
parts. We hope that the outline of our method presented there will be of some use in
following the actual proof. The organisation of the paper is also discussed in the next
section.

§1. Outline of the Method of Proof

The main lemma in the proof of Theorem 1 is Lemma 19. In essence, what this
lemma says is quite simple. Assume C

√
n ≤ M ′ = M ′(n) ≤ n for some large C > 0.

Disregarding some technicalities, Lemma 19 states the following: if we condition on our
set RM ′ ∈ R(n,M ′) satisfying a certain ‘sparseness’ condition, the probability that RM ′
fails to contain an arithmetic progression of length three is at most exp{−cM ′}, where we
may make c arbitrarily large by picking C appropriately large.

Theorem 1 is shown to follow from Lemma 19 in two steps. Suppose C is a large
constant with respect to a given fixed α > 0 and M = M(n) ≤ α−1M ′. We aim at
showing that RM →α 3 with probability approaching 1. Our first step consists of a quick
calculation based on Lemma 19 to deduce that a typical random set RM ∈ R(n,M) will
not contain a ‘sparse’ M ′-element subset R′ that is free of 3-term arithmetic progressions.
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Our second step is then to show that our ‘sparseness’ condition is weak enough for every
M ′-element subset R′ of a typical RM ∈ R(n,M) to be sparse. Hence Theorem 1 follows.

Thus, all our efforts go into proving Lemma 19. An important tool in the proof
will be a version of Szemerédi’s regularity lemma [Sz 78]. As is well known, this is an
important graph theoretical component of Szemerédi’s proof of his theorem on arithmetic
progressions. It turns out that it is most convenient to phrase our arguments below in
terms of graphs as well. Following an idea of Ruzsa and Szemerédi [RSz 78] (see also
Erdős, Frankl and Rödl [EFR 86] or Graham and Rödl [GR 87]), for every subset R′ of [n]
we construct a graph G(n,R′) that, roughly speaking, has the property that it contains
a triangle (more precisely, a ‘spontaneous’ triangle) if and only if R′ contains a 3-term
arithmetic progression (more precisely, an ‘arithmetic triple’). Lemma 19 is in fact stated
in terms of sparse graphs and spontaneous triangles, and it asserts that sparse graphs free
of such triangles are extremely rare.

Unfortunately, the proof of Lemma 19 is quite complex, and we shall not attempt to
give a non-technical outline of it here. Probably any such sketch would fail to be of much
help. Nonetheless, we remark that the argument below is divided into several steps, which
are, to a large extent, independent from one another, and perhaps of some interest in their
own right.

The organization of our paper is as follows. In §2 we introduce the notions of regularity,
uniformity and sparseness of graphs, and state a version of Szemerédi’s regularity lemma for
suitably sparse graphs together with a few related results. We start §3 with an analogue
of a theorem of Ruzsa and Szemerédi [RSz 78] for sparse graphs (cf. Theorem 8 and
Lemma 9), and then give an important but rather technical lemma, Lemma 10, concerning
the existence of certain structures we call ‘flowers’ in edge-coloured sparse graphs. It is
in proving Lemma 10 that we shall make use of Szemerédi’s regularity lemma in the form
given in §2.

One of the main probabilistic ingredients in the proof of Lemma 19 is given in §4.
Roughly speaking, we show in Lemma 11 that a random induced subgraph of a bipartite
uniform graph contains with very large probability a fair number of edges. In §5 we give a
simple sufficient condition for a regular bipartite graph to be uniform. In §6 we relate our
graph theoretical results of the previous sections to subsets of [n]: we define the ‘difference
graph’ GR = GR(n) for any given subset R of [n] and, using a result from §5, show that if R
is a random set of suitably large expected size, then its difference graph GR is uniform with
large probability. Finally, the statement and proof of our main lemma, Lemma 19, and
the proof of Theorem 1 are given in §7, together with a sketch of the proof of Corollary 3.

§2. Uniform Graphs and Szemerédi’s Lemma

LetG be a graph with vertex set V = V (G) and edge set E(G). Write |G| = |V (G)| = n

for the order of G, and e(G) = |E(G)| for its size |E(G)|. Furthermore, let U , W ⊆ V be
a pair of disjoint, non-empty subsets of G, let EG(U,W ) denote the set of edges of G that
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have one end-vertex in U and the other in W , and set e(U,W ) = eG(U,W ) = |EG(U,W )|.
The density dG(U,W ) of the pair (U,W ) is defined by

dG(U,W ) =
eG(U,W )
|U ||W |

/e(G)
n2

.

For 0 < ε ≤ 1, we say that the pair (U,W ) is (ε,G)-regular , or simply ε-regular , if for
all U ′ ⊆ U , W ′ ⊆W with |U ′| ≥ ε|U | and |W ′| ≥ ε|W | we have∣∣dG(U,W )− dG(U ′,W ′)

∣∣ ≤ ε .
We say that an `-partite graph G is (`, ε)-uniform, or just ε-uniform, if all the

(
`
2

)
pairs of

distinct vertex classes of the `-partition of G are ε-regular.

We say that a partition Π = (V i)k0 of the vertex set V = V (G) of G is (ε, k)-equitable
if |V 0| ≤ εn and |V 1| = . . . = |V k|. We refer to V 0 as the exceptional class of Π. We
say that the (ε, k)-equitable partition Π is a subpartition of a partition Π′ = (W j)s0 of V
if each V i with 1 ≤ i ≤ k, that is every non-exceptional class of Π, is contained in some
member of the partition Π′. For Π to be a subpartition of Π′ in the case in which Π′ is an
equitable partition as well, we require every non-exceptional class of Π to be contained in
some non-exceptional class of Π′. We say that an (ε, k)-equitable partition Π = (V i)k0 is
(ε, k;G)-regular , or simply (ε,G)-regular , if at most ε

(
k
2

)
pairs (V i, V j) with 1 ≤ i < j ≤ k

are not (ε,G)-regular.

Finally, for a given b > 2 and 0 < η ≤ 1, we say that G is (b, η)-sparse if, for every
disjoint pair of sets U , W ⊆ V such that |U |, |W | ≥ ηn, we have dG(U,W ) ≤ b. Thus,
roughly speaking, a graph is (b, η)-sparse if all of its large induced subgraphs are not much
denser that the graph itself. We can now state our extension of Szemerédi’s lemma for
(b, η)-sparse graphs.

Lemma 4. For any given ε > 0, b > 2, k0 ≥ 1 and s ≥ 1, there are constants η =
η(ε, b, k0, s) > 0 and K0 = K0(ε, b, k0, s) ≥ k0 that depend only on ε, b, k0, and s for

which the following holds. For every (b, η)-sparse graph G and every partition (W j)s0 of

the vertex set of G, there exists an (ε,G)-regular (ε, k)-equitable subpartition of (W j)s0
with k0 ≤ k ≤ K0.

The proof of Lemma 4 goes along the same lines as the proof of Szemerédi’s orig-
inal result [Sz 78], and hence we omit it here. As a matter of fact, in order to prove
Lemma 4, one may just rewrite the argument from [Sz 78] putting the ‘scaled’ den-
sity dG(U,W ) (or, more precisely, dG(U,W )/b) in place of Szemerédi’s original density
d(U,W ) = eG(U,W )/|U ||W |.

From Lemma 4 it immediately follows that one can uniformly partition any fixed num-
ber of graphs at the same time. Let G1, . . . , Gm be a sequence of graphs defined on the
same vertex set V , and let G =

⋃m
i=1Gi be their union, i.e., the graph on V with the edge
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set
⋃m
i=1E(Gi). We say that G1, . . . , Gm is (b, η)-sparse if G is (b, η)-sparse. Furthermore,

an (ε, k)-equitable partition Π = (V i)k0 is (ε, k;G1, . . . , Gm)-regular if it is (ε, k;Gi)-regular
for all 1 ≤ i ≤ m.

One can easily deduce from Lemma 4 that every (b, η)-sparse sequence of graphs
G1, . . . , Gm admits an (ε, k;G1, . . . , Gm)-regular partition, provided η is small enough
with respect to ε, b and 1/k. Roughly speaking, we first choose a rapidly decreasing se-
quence ε = εm ≥ εm−1 ≥ · · · ≥ ε1 > 0 of constants, and then invoke Lemma 4 in turn
to define a sequence Π1, . . . ,Πm of finer and finer partitions of V . To be precise, Πi is
required to be a subpartition of Πi−1 for all 1 < i ≤ m, and Πi (1 ≤ i ≤ m) is required to
be an (εi, Gi)-regular partition of V with a ‘small’ number of classes (as small as Lemma 4
can guarantee). Choosing the εi (1 ≤ i ≤ m) carefully enough, the final partition Πm of
our sequence Π1, . . . ,Πm will be the (ε, k;G1, . . . , Gm)-regular partition we seek.

It will be important later that, for any 1 < i ≤ m, the partition Πi above may be
determined solely from Πi−1 and Gi. In other words, the graphs Gi+1, . . . , Gm play no
rôle in the definition of Πi.

We now make the above informal discussion precise. Thus, let k0 and m ≥ 3 be natural
numbers, let ε be a sequence of numbers ε1, . . . , εm such that 0 < ε1 ≤ · · · ≤ εm < 1 and
let G1, . . . , Gm be graphs with the same vertex set V , where |V | ≥ k0. In the definition
below, we shall assume that the set of all equitable partitions of V have been given a fixed
ordering, say ≺. The (ε, k0)-canonical sequence of partitions Π̃1, . . . , Π̃m for G1, . . . , Gm
is defined recursively in the following way:

(i) Among all the (ε1, k;G1)-regular partitions which minimize k ≥ k0, let Π̃1 be
the first one according to ≺.

(ii) Assume that 2 ≤ i ≤ m and that the partition Π̃i−1 has already been defined.
Then we let Π̃i be the ≺-first (εi, k;G1, . . . , Gi)-regular subpartition of Π̃i−1

which minimizes k.

Note that any partition of the vertices of G into singletons is (ε, k;G)-regular for k = |V |
and every ε > 0. Thus, for each sequence G1, . . . , Gm as above, an (ε, k0)-canonical
sequence of partitions does exist and is of course unique by definition.

Now we can use Lemma 4 to deduce that for (b, η)-sparse sequences of graphs the
sizes of the partitions in the associated canonical partition can be uniformly bounded from
above.

Lemma 5. For every ε > 0, b > 2, k0 ≥ 1 and m ≥ 1, there are constants η =
η(ε, b, k0,m) > 0 and K0 = K0(ε, b, k0,m) ≥ k0 and a sequence ε = ε(m, b, ε, k0) =
(ε1, . . . , εm) with 0 < ε1 ≤ · · · ≤ εm = ε such that η, K0 and ε depend only on ε, b, k0

and m and the following holds. For every (b, η)-sparse sequence of graphs G1, . . . , Gm, the

(ε, k0)-canonical sequence of partitions Π̃1, . . . , Π̃m associated to G1, . . . , Gm only contains

partitions of sizes bounded by K0 + 1. In fact, we have

k0 + 1 ≤ |Π̃1| ≤ · · · ≤ |Π̃m| ≤ K0 + 1.
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Note that ε in the lemma above depends only on m, b, ε, and k0. In fact, throughout
the paper we shall assume that, for any given m, b, ε, and k0 as in Lemma 5, we have
a fixed vector ε = ε(m, b, ε, k0) as in that lemma associated with this choice of m, b, ε,
and k0.

Let us conclude this section with two simple observations. The definition of ε-regularity
deals with the distribution of edges between ‘large’ sets. Nonetheless, it turns out that
each ε-uniform `-partite graph G contains a large 3ε-uniform `-partite subgraph Ḡ such
that each vertex of Ḡ has a fairly large degree. In fact, more is true as shows the following
lemma.

Fact 6. Suppose ` ≥ 2 and 0 < ε < 1/5`. Let G be an ε-uniform (`+1)-partite graph

with (`+ 1)-partition V (G) = V0 ∪ · · · ∪ V`. Then there exist subsets V̄i ⊆ Vi (1 ≤ i ≤ `)
such that, for every 1 ≤ i ≤ `, we have |V̄i| ≥ (1 − `ε)|Vi| and for every vertex v ∈ V̄i we

have

|NG(v) ∩ V̄j | ≥ (1− 2`ε)eG(Vi, Vj)/|Vj |

for every j 6= i (1 ≤ j ≤ `). In particular, the graph Ḡ induced in G by
⋃`
i=1 V̄i is

3ε-uniform.

Proof. Since proofs of very similar statements may be found in [HK L ??], here we only
mention the simple idea behind the argument. In order to find the V̄i (0 ≤ i ≤ `) we
successively delete from Vi the vertices that violate the conditions we seek. Then one can
easily show that, because of the ε-uniformity of G, this process finishes with the required
sets V̄i (0 ≤ i ≤ `).

Finally, since every graph G on n vertices contains a bipartite subgraph H whose vertex
classes are of cardinality bn/2c and dn/2e and such that e(H) ≥ e(G)/2, the following fact
is an immediate consequence of the definition of a (b, η)-sparse graph.

Fact 7. If G is (b, η)-sparse then every subgraph H of G with |V (H)| ≥ 2η|V (G)|+ 2
vertices contains at most b|V (H)|2e(G)/|V (G)|2 edges.

§3. The Ruzsa–Szemerédi Theorem for Sparse Graphs

In this section we state and prove an analogue of a result of Ruzsa and Szemerédi [RSz 78]
(see also Erdős, Frankl and Rödl [EFR 86] or Graham and Rödl [GR 87]) which remains
valid for (b, η)-sparse graphs. Let us say that a graph is 3-decomposable if it is the union
of edge-disjoint triangles. Then the Ruzsa–Szemerédi theorem that we shall need (and
generalize below) may be stated as follows.

Theorem 8. For every constant c > 0 there exists a constant δ̂(c) > 0 such that every

3-decomposable graph G with at least cn2 edges contains at least δ̂(c)n3 triangles.
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We would like to apply a similar result for graphs which are not so dense. Unfortu-
nately, in this case the above theorem is no longer valid: there are 3-decomposable graphs G
with n vertices and at least n2 exp(−3

√
log n) edges which contain only e(G)/3 triangles

(see, e.g., Theorem 6.6 in [GR 87]). We are thus forced to take another approach. Very
roughly speaking, our method will consist in proving a probabilistic version of Theorem 8,
Lemma 19, asserting that, in some sense, ‘counterexamples’ as above are rare. However,
we need to work for a while before we may state and prove Lemma 19.

We start with a result saying that if a 3-decomposable graph G admits an ε-regular
partition then, although G may contain only a few triangles, it must contain many ‘dense’
triples of partition classes. To emphasize the difference between triangles on the one hand
and triples of partition classes on the other, we shall refer to the latter as triads.

Thus, let G be a (b, η)-sparse graph on n vertices and let Π = (V i)k0 be an (ε, k)-
equitable (ε,G)-regular partition of the vertex set of G. We say that a pair (V r, V s)
(1 ≤ r < s ≤ k) is thick if it is (ε,G)-regular and

eG(V r, V s) ≥ |V r||V s|e(G)/50n2 .

We say that a triad (V r, V s, V t) (1 ≤ r < s < t ≤ k) is thick if all three pairs (V r, V s),
(V r, V t) and (V s, V t) are thick.

Lemma 9. For every b > 2 there exist constants δ̄ = δ̄(b) > 0 and k̄0 = k̄0(b) ≥ 1 that

depend only on b such that the following holds. For every (b, η)-sparse 3-decomposable

graph G, if Π is an (ε, k)-equitable (ε,G)-regular partition of G such that 200εb ≤ 1,

k ≥ k̄0, and 0 < η ≤ min{ε, 1/2k}, then Π contains at least δ̄k3 thick triads.

Proof. Let k̄0 = k̄0(b) = 40000b and δ̄ = δ̄(b) = δ̂(0.3/b) > 0, where δ̂ is as given by
Theorem 8. We shall show that these values will do for our lemma. Suppose 200εb ≤ 1
and let Π be an (ε, k)-equitable (ε,G)-regular partition of a (b, η)-sparse 3-decomposable
graph G, where k ≥ k̄0 and 0 < η ≤ min{ε, 1/2k}. Then the following assertions hold:

(i) the number of edges of G that have both ends in one set of Π is, by Fact 7, less
than

ε2n2be(G)/n2 + k(n/k)2be(G)/n2 = (ε2b+ b/k)e(G) ≤ e(G)/100 ,

(ii) the number of edges of G incident to the vertices in V 0 is less than

εn2be(G)/n2 ≤ εbe(G) ≤ e(G)/200 ,

(iii) the number of edges between pairs (V r, V s) (1 ≤ r < s ≤ k) that are not
ε-regular is less than

ε

(
k

2

)(n
k

)2 be(G)
n2

≤ εbe(G) ≤ e(G)/200 ,
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(iv) the number of edges between pairs (V r, V s) (1 ≤ r < s ≤ k) that are not thick
is less than (

k

2

)(n
k

)2 e(G)
50n2

≤ e(G)/100 .

Hence, at least 0.97e(G) edges of G belong to thick pairs (V r, V s). Let these edges form the
edge set of the spanning subgraph G0 of G. Let F be a family of edge-disjoint triangles of G
such that G =

⋃
F . Clearly, just considering F , we see that G0 contains at least e(G)/3−

0.03e(G) ≥ 0.3e(G) triangles. In particular, the partition Π has at least one thick triad,
say (V r(1), V s(1), V t(1)). Let us delete from G0 all edges between the sets V r(1), V s(1)

and V t(1), and letG1 be the graph obtained in this way. Since the number of edges we delete
is smaller than 3b(n/k)2e(G)/n2 ≤ 3be(G)/k2, we destroy at most 3be(G)/k2 < 0.3e(G)
triangles from F . Thus, the graph G1 contains a triangle and hence the partition Π,
viewed as a partition of G1, contains at least one thick triad. We repeat the procedure
above and obtain a sequence G = G0 ⊃ · · · ⊃ G` of spanning subgraphs of G with G`

such that Π, viewed as a partition of G`, contains no thick triad. Since in every step we
decrease the number of triangles in F by at most 3be(G)/k2, we have ` ≥ 0.1k2/b. Hence,
the graph G(Π), whose vertices are the sets V 1, . . . , V k and V r, V s (1 ≤ r < s ≤ k)
are joined by an edge if and only if the pair (V r, V s) is thick, contains at least 0.1k2/b

edge-disjoint triangles. Thus, by Theorem 8 and our choice of δ̄ = δ̄(b) = δ̂(0.3/b), the
graph G(Π) contains at least δ̄k3 triangles. Consequently, there exist at least δ̄k3 thick
triads in Π and Lemma 9 follows.

We now turn to the main lemma of this section, Lemma 10. As we have already
mentioned in §1, this is a rather technical result, and before we may state it we need to
introduce a few definitions, including the definition of a ‘flower’ in an edge-coloured graph.
Let us say that a sequence G1, . . . , Gm of graphs on the same vertex set is balanced if

(i) E(Gi) ∩ E(Gj) = ∅ for all 1 ≤ i < j ≤ m,

(ii) e(Gi) = e(Gj) for all 1 ≤ i < j ≤ m,

(iii) for all 1 ≤ i ≤ m, all the vertices of Gi have the same degree.

It will be convenient to think of a balanced sequence as above as a graph G, namely G =⋃m
i=1Gi, whose edges have been coloured with m colours. Let G̃ = (Gi)mi=1 be a balanced

sequence of graphs and G =
⋃m
i=1Gi. Let n = |V (G)|. Suppose also that Π̃1, . . . , Π̃m

is the (ε, k0)-canonical sequence of partitions associated to G1, . . . , Gm for some given k0

and some ε = (ε1, . . . , εm). Then, for any constant 0 < δ ≤ 1, a (δ, k0, ε; G̃)-flower , or,
for short, a (δ, G̃)-flower , consists of three indices 1 ≤ w(1) < w(2) < w(3) ≤ m together
with a vertex v of G and a family {(X(i), Y (i)): 1 ≤ i ≤ g} of pairs of non-exceptional
elements X(i) and Y (i) of Π̃w(1) such that

(i) 2g|X(i)| = 2g|Y (i)| ≥ δn,

(ii) the 2g sets X(i), Y (i) (1 ≤ i ≤ g) are all distinct,
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(iii) all pairs (X(i), Y (i)) are (εw(i), Gw(1))-regular and

eGw(1)(X
(i), Y (i)) ≥ δ|X(i)||Y (i)|e(Gw(1))/106n2

= δ|X(i)||Y (i)|e(G)/106mn2 ,

(iv) the vertex v is joined to eachX(i) (1 ≤ i ≤ g) by at least δ|X(i)|e(Gw(2))/106n2 =
δ|X(i)|e(G)/106mn2 edges of Gw(2),

(v) the vertex v is joined to each Y (i) (1 ≤ i ≤ g) by at least δ|Y (i)|e(Gw(3))/106n2 =
δ|Y (i)|e(G)/106mn2 edges of Gw(3).

We may now state and prove Lemma 10.

Lemma 10. Let b > 2 be given. Then there exist integers m = m(b) ≥ 3 and

k0 = k0(b), and a real number 0 < δ = δ(b) ≤ 1 that depend only on b such that,

for any 0 < ε ≤ 1, there exists a constant 0 < η = η(b, ε) ≤ 1 for which the follow-

ing holds. Let ε = ε(m, b, ε, k0). If G̃ = (Gi)mi=1 is a balanced m-edge-colouring of a

(b, η)-sparse 3-decomposable graph G =
⋃m
i=1Gi, then the (ε, k0)-canonical sequence of

partitions Π̃1, . . . , Π̃m associated to G̃ = (Gi)mi=1 admits a (δ, k0, ε; G̃)-flower.

Remark. In the sequel, when considering (b, η)-sparse sequences of graphs G̃ as above,
we shall often say that ‘a (δ, k0, ε; G̃)-flower exists’ or that ‘G̃ contains a (δ, G̃)-flower’. In
such cases, we are tacitly assuming that these flowers are built from the (ε, k0)-canonical
sequence of partitions associated to our G̃, where ε = ε(m, b, ε, k0) is the vector we have
explicitly associated with m, b, ε and k0.

Proof of Lemma 10. Let δ̄(b) > 0 be as given by Lemma 9. Set m = m(b) = d3 ×
106/δ̄(b)e, δ = δ(b) = δ̄(b)/1600m3 > 0 and k0 = k0(b) = max{k̄0(b), 800m3/δ̄(b)} ≥ 1,
where k̄0(b) is given by Lemma 9. We shall show that the assertion holds with this choice
of m and δ and k0. Thus, let an arbitrary 0 < ε ≤ 1 be given. Clearly, we may assume
that ε ≤ min{1/200b, δ̄(b)/800m3}. Now let us invoke Lemma 5 to obtain η(ε, b, k0,m) > 0
and K0 = K0(ε, b, k0,m) ≥ k0 as given by that lemma. We may and shall assume that η ≤
min{ε, 1/2K0}. Our aim is to show that the assertion holds for η = η(b, ε) = η(ε, b, k0,m)
given above. Therefore, let G̃ = (Gi)mi=1 be a balanced m-edge-colouring of a (b, η)-sparse
3-decomposable graph G =

⋃m
i=1Gi. We need to verify that, under these conditions, a

(δ, k0, ε; G̃)-flower does indeed exist.

Let Π̃1, . . . , Π̃m be the (ε, k0)-canonical sequence of partitions associated G1, . . . , Gm.
We first concentrate our attention on the graph G =

⋃m
i=1Gi and the partition Π̃m. We

show that each of at least a half of the thick triads (V r, V s, V t) in Π̃m, whose existence is
guaranteed by Lemma 9, has the property that we may assign to its ‘sides’, i.e., the pairs
(V r, V s), (V r, V t) and (V s, V t), some three distinct colours so that, if a side is assigned
colour 1 ≤ w ≤ m, then it contains a substantial number of edges from Gw.

Let us eliminate first the triads for which an assignment as we seek is not possible.
Given 1 ≤ w ≤ m, we say that a thick triad (V r, V s, V t) of the ε-regular partition Π̃m
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of G is dominated by w if, putting u = |V r| = |V s| = |V t|, at least two out of the three
pairs of sets (V r, V s), (V r, V t) and (V s, V t) are joined by more than

u2e(G)/150n2 ≥ (n/2km)2e(G)/150n2 = e(G)/600k2
m

edges of Gw, where km = |Π̃m| − 1 ≤ K0. If a thick triad is not dominated by any w

(1 ≤ w ≤ m), we say that it is balanced . Since every vertex of Gw has degree 2e(Gw)/n =
2e(G)/mn, at most 2e(G)/mkm edges of Gw are incident to a given set V r of Π̃m. Con-
sequently, the number of thick triads dominated by w is less than

km

[
2e(G)/mkm
e(G)/600k2

m

]2

≤ 1.5× 106k3
m

m2
≤ δ̄(b)k3

m

2m
,

so the number of thick triads dominated by some w (1 ≤ w ≤ m) is less than δ̄(b)k3
m/2.

Thus, by Lemma 9, the graph G contains at least δ̄(b)k3
m/2 balanced thick triads.

We call a pair (V r, V s) of partition classes of Π̃m a w-rich pair, where 1 ≤ w ≤ m,
if the number of edges of Gw between V r and V s is larger than |V r||V s|e(Gw)/150n2 =
|V r||V s|e(G)/150mn2. We say that (V r, V s, V t) is (w(1), w(2), w(3))-colourable, where
the w(i) (i ∈ {1, 2, 3}) are three distinct colours from {1, . . . ,m}, if and only if we may
assign the colours w(1), w(2) and w(3) to the pairs (V r, V s), (V r, V t) and (V s, V t), in some
order, in such a way that a colour w is assigned to a pair only if this pair is w-rich. Now,
let (V r, V s, V t) be a balanced thick triad. A moment’s thought reveals that any such triad
is (w(1), w(2), w(3))-colourable for some 1 < w(1) < w(2) < w(3) ≤ m. Consequently,
there is a choice of (w(1), w(2), w(3)) with 1 ≤ w(1) < w(2) < w(3) ≤ m such that Π̃m

contains at least δ̄(b)k3
m/2

(
m
3

)
thick triads that are (w(1), w(2), w(3))-colourable.

Thus, there exist a non-exceptional partition class V̄ of Π̃m and pairs (U im,W
i
m) (1 ≤

i ≤ f = dδ̄(b)k2
m/2m

3e) of non-exceptional partition classes of Π̃m such that, for all 1 ≤
i ≤ f , the triple (V̄ , U im,W

i
m) satisfies the following conditions:

(i) the pair (U im,W
i
m) is (ε,Gw(1))-regular, and

eGw(1)(U
i
m,W

i
m) ≥ |U im||W i

m|e(Gw(1))/150n2,

(ii) the pair (V̄ , U im) is (ε,Gw(2))-regular, and

eGw(2)(V̄ , U
i
m) ≥ |V̄ ||U im|e(Gw(2))/150n2,

(iii) the pair (V̄ ,W i
m) is (ε,Gw(3))-regular, and

eGw(3)(V̄ ,W
i
m) ≥ |V̄ ||W i

m|e(Gw(3))/150n2.

11



Now, it follows from Fact 6 with ` = 3 that, for every given i (1 ≤ i ≤ f), at least
a half of the vertices of V̄ is joined both by at least |U im|e(Gw(2))/300n2 edges of Gw(2)

to U im and by at least |W i
m|e(Gw(3))/300n2 edges of Gw(3) to W i

m. Thus, by an elementary
averaging argument, there is a vertex v in V̄ and a set Ξ = {(U im,W i

m): i ∈ Λ} of w(1)-
rich pairs (U im,W

i
m) of cardinality |Λ| ≥ f/2 ≥ δ̄(b)k2

m/4m
3 such that v is joined by at

least |U im|e(Gw(2))/300n2 edges of Gw(2) to U im and by at least |W i
m|e(Gw(3))/300n2 edges

of Gw(3) to W i
m for all (U im,W

i
m) ∈ Ξ.

We shall show that the existence of such a vertex v and such a set Ξ implies the existence
of a (δ, G̃)-flower. The three colours associated to the flower we shall exhibit are w(1), w(2),
w(3). Our only problem is that so far we have only considered the partition Π̃m, whereas
the definition of the flower deals with subsets of the partition Π̃w(1). Thus, in the rest of the
proof we shall try to relate the properties of Π̃m with those of Π̃w(1). In order to do this, we
shall consider the graph Ĝ(Π̃m,Ξ), whose vertex set is the set of non-exceptional partition
classes of Π̃m, with two such vertices Um, Wm being connected by an edge in Ĝ(Π̃m,Ξ) if
and only if (Um,Wm) ∈ Ξ.

Note first that Ĝ(Π̃m,Ξ) has N = km vertices and at least cN2 edges, where c =
δ̄(b)/8m3. Furthermore, since Π̃m is a subpartition of Π̃w(1), each non-exceptional partition
class of Π̃m is contained in some non-exceptional partition class of Π̃w(1). Thus, the
partition Π̃w(1) of G naturally induces a partition Π̂w(1) of the vertex set of Ĝ(Π̃m,Ξ).
Unfortunately, because of the exceptional class V 0

m of Π̃m, not all partition classes of Π̂w(1)

need have the same size. However, since |V 0
w(1)|, |V

0
m| ≤ εn we immediately see that all

of them contain at most 2km/kw(1) elements, and a little argument shows that at least
(1− 3ε)kw(1) of them have at least km/2kw(1) elements.

Now suppose ` ≥ 100/c and ε ≤ c/100. Then simple calculations show that the
following holds: for any graph Ĝ with N vertices and at least cN2 edges, and every
partition Π̂ = (V i)`i=1 of the vertex set of Ĝ into ` classes such that all the partition
classes V i have cardinality at most 2N/` and not fewer than (1 − 3ε)` of them have
cardinality greater than or equal to N/2`, there exist at least c`2/100 pairs {V̂ , V̂ ′} of
distinct partition classes of Π̂ such that |V̂ |, |V̂ ′| ≥ N/2` and V̂ , V̂ ′ are joined by at
least c|V̂ ||V̂ ′|/10 edges. Hence, since every graph on at most k vertices and at least ck2

edges contains a matching of size at least ck/2, the above partition Π̂ of Ĝ must contain
at least g = dc`/200e disjoint pairs (X̂i, Ŷ i) (1 ≤ i ≤ g) such that |X̂i|, |Ŷ i| ≥ N/2` and
such that the number of edges between X̂i and Ŷ i is at least c|X̂i||Ŷ i|/10 for all 1 ≤ i ≤ g.
Finally, we may again use the fact that dense graphs contain large matchings to deduce
that there is a matching of size at least cN/40` between X̂i and Ŷ i for all 1 ≤ i ≤ g.

We apply this observation to Ĝ = Ĝ(Π̃m,Ξ) and the partition Π̂ = Π̂w(1). Thus let
us check the required hypotheses for our observation to apply. First note that the condi-
tion ` ≥ 100/c becomes in our context kw(1) ≥ 800m3/δ̄(b), whilst ε ≤ c/100 corresponds
to ε ≤ δ̄(b)/800m2. The number of disjoint pairs (X̂i, Ŷ i) (1 ≤ i ≤ g) guaranteed by the
observation is g = dckw(1)/200e = dδ̄(b)kw(1)/1600m3e. Moreover, X̂i is joined to Ŷ i by
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at least
c|X̂i||Ŷ i|

10
≥ c

10

(
km

2kw(1)

)2

≥ 1
10
· δ̄(b)

8m3
· k2

m

4k2
w(1)

=
δ̄(b)k2

m

320k2
w(1)m

3

edges of Ĝ(Π̃m,Ξ), and hence the corresponding pair (Xi
w(1), Y

i
w(1)) of partition classes

of Π̃w(1) is joined by at least

δ̄(b)k2
m

320k2
w(1)m

3

(
n

2km

)2 e(Gw(1))
150n2

≥
δ̄(b)|U iw(1)||W

i
w(1)|e(G)

2× 105m4n2

edges of Gw(1).

Furthermore, we know that, for every 1 ≤ i ≤ g, the graph Ĝ(Π̃m,Ξ) contains a
matching M̂i between X̂i and Ŷ i of size at least

c

40
· km
kw(1)

=
δ̄(b)

320m3
· km
kw(1)

.

Recall that every edge of Ĝ(Π̃m,Ξ) corresponds to a pair (Um,Wm) from Ξ. We may
and shall assume that at least (δ̄(b)/640m3)km/kw(1) of the edges (Um,Wm) from M̂i are
such that Um ∈ X̂i and Wm ∈ Ŷ i (i.e., Um ⊆ Xi

w(1) and Wm ⊆ Y iw(1)). Recall that, for
every (Um,Wm) ∈ Ξ, the vertex v is joined to Um by at least

|Um|e(Gw(2))
300n2

≥ n

2km
· e(G)

300mn2
=

e(G)
600kmmn

edges of Gw(2), and similarly it is joined to Wm by at least e(G)/600kmmn edges of Gw(3).
Therefore the vertex v is joined to Xi

w(1) by at least

δ̄(b)
640m3

· km
kw(1)

· e(G)
600kmmn

≥ |Xi
w(1)|

δ̄(b)e(G)
4× 105m4n2

edges of Gw(2). Clearly, the same argument applied to Y iw(1) shows that v is joined to Y iw(1)

by at least |Y iw(1)|δ̄(b)e(G)/4 × 105m4n2 edges of Gw(3). Since δ = δ̄(b)/1600m3, we
conclude that there are at least g = dδkw(1)e pairwise disjoint pairs (Xi

w(1), Y
i
w(1)) of

non-exceptional partition classes of Π̃w(1) such that every such pair is (ε,Gw(1))-regular,
between every such pair there are at least δ̄(b)|U iw(1)||W

i
w(1)|e(G)/106m4n2 edges of Gw(1),

and one set of every such pair is joined to v by at least

|Xi
w(1)|

δ̄(b)e(G)
4× 105m4n2

≥
δ̄(b)|Xi

w(1)|e(G)

106m4n2
=
δ̄(b)|Y iw(1)|e(G)

106m4

edges of Gw(2), while the other is joined to v by at least δ̄(b)|Y iw(1)|e(G)/106m4n2 edges
of Gw(3). Finally, if u is the common cardinality of the sets Xi

w(i), Y
i
w(1) (1 ≤ i ≤ g),
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then 2gu ≥ δn. Therefore 1 ≤ w(1) < w(2) < w(3) ≤ m, together with v ∈ V (G),
and {(Xi

w(1), Y
i
w(1)): 1 ≤ i ≤ g} form a (δ, G̃)-flower, and Lemma 10 follows.

§4. Random Subgraphs of Uniform Bipartite Graphs

In this section we give a result that, although a little technical, may be of independent
interest. Namely, we prove that, under quite weak hypotheses, with very large probability a
random induced subgraph H ′ of a bipartite uniform graph H contains a fair number edges.
In fact, we show that, in selecting the random subgraph H ′ in question, we may allow an
‘adversary’ to ‘mark’, during the selection process, a few vertices of H as forbidden vertices
for H ′ so as to minimize our chances of getting many edges in our random subgraph; even
with this rule the probability that we fail to get a few edges in H ′ is essentially super-
exponentially small in the number of edges of the original bipartite graph H.

Let H = H(u, ρ, ε) be an ε-uniform bipartite graph with bipartition V (H) = V1 ∪ V2,
where |V1| = |V2| = u ≥ 1, and with edge-density e(H)u−2 = ρ. Let d1, d2 ≤ u be two given
positive integers. Now select a random induced subgraph of H in the following manner.
First, an adversary chooses a set S1 ⊂ V1 with |S1| ≤ u/ log log u. Then we randomly
pick a set D1 ⊂ V1 \ S1 with |D1| = d1, with all the d1-subsets of V1 \ S1 equiprobable.
Next, under the full knowledge of the sets S1 and D1, our adversary picks a set S2 ⊂ V2

with |S2| ≤ u/ log log u, and we randomly pick a set D2 ⊂ V2 \ S2 with |D2| = d2, with all
the d2-subsets of V2 \ S2 equiprobable. Let us call the outcome of the above procedure a
random (d1, d2;S1, S2)-subgraph of H, or simply a (d1, d2)-subgraph of H.

Lemma 11. For every constant 0 < β ≤ 1, there exist a constant 0 < ε = ε(β) ≤ 1
and a natural number u0 such that, for any real d ≥ 2(u/ε)1/2 and any given graph H =
H(u, ρ, ε) as above with u ≥ u0 and ρ ≥ d/u, the following assertion holds. If d1, d2 ≥ d,

regardless of the choices for S1 and S2 of our adversary, the probability that a random

(d1, d2;S1, S2)-subgraph of H fails to contain at least d/2 edges is at most βd.

Proof. Given 0 < β ≤ 1, we choose ε = β2/16 > 0 and show that this choice of ε > 0
will do. In the sequel, we assume that u is large enough for our inequalities to hold. Let our
adversary choose the set S1 ⊂ V1. Recall that |S1| ≤ u/ log log u. We show first that the
set U of those vertices of V2 that are adjacent to the vertices in our random set D1 ⊂ V1\S1

is larger than (1− ε)n with probability at least 1− (4ε)d/2. In order to do so we generate
the vertices of D1 one by one and prove that, typically, in each step we enlarge the set U
by a fair number of vertices.

Let us randomly choose a vertex v1 among all the vertices of V1\S1 to be the first vertex
of D1. Denote by W 1 the set of the vertices of V1 that have fewer than dε/2 < (1 − ε)d
neighbours in V2. Then, by the ε-regularity of (V1, V2), we have that |W 1| ≤ εu. If v1

belongs to W 1, let us say that it is a bad vertex, whereas if v1 /∈W 1 let us say that it is a
good vertex. Finally, let U1 ⊆ V2 be the set of the neighbours of v1 in V2.
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Similarly, let us suppose that for some 2 ≤ i ≤ d1 the vertices v1, . . . , vi−1 have
already been put into D1. We randomly pick a vertex vi from V1 \ ({v1, . . . , vi−1} ∪ S1)
to be the ith vertex of D1 and denote by U≤i−1 the set of neighbours of v1, . . . , vi−1.
Then, if |U≤i−1| ≤ (1− ε)u, we let W i be the set of all the vertices in V1 that have fewer
than dε/2 ≤ (1 − ε)εd neighbours in V2 \ U≤i−1. Note that, by the ε-regularity of the
pair (V1, V2), we have |W i| ≤ εu. As before, we call vi bad if it belongs to W i and good
otherwise. Moreover, in the case in which |U≤i−1| > (1 − ε)u, we always say that vi is
good. This process is continued until all the d1 elements of D1 have been chosen.

Now, suppose that our process has terminated with a set D1 with U = U≤d1 of
cardinality |U | < (1−ε)u. Since each good vertex vi increases the size of the neighbourhood
of D1 in V2 by at least dε/2, the number of good elements in D1 must be less than
2u/dε ≤ d1/2. Hence, at least a half of all the elements of D1 must be bad, but the
probability of this happening is smaller than 2d1εd1/2 ≤ (4ε)d/2. Thus, |U | ≥ (1−ε)n with
probability at least 1− (4ε)d/2.

Assume now that our process has terminated with a set D1 with U = U≤d1 of car-
dinality |U | ≥ (1 − ε)u. We now let our adversary pick his set S2 ⊂ V2. Then the
probability that at least a half of the d2 ≥ d vertices of D2 should lie outside U is at
most 2d2

(
εn/(n − |S2|)

)d2/2, which, for sufficiently large u, is less than 2d2(2ε)d2/2 ≤
(8ε)d/2.

Thus, the probability that our random (d1, d2)-subgraph of H contains fewer than d/2
edges is bounded from above by (4ε)d/2 + (8ε)d/2 ≤ (16ε)d/2 = βd, as required.

§5. A Sufficient Condition for Uniformity

Let G be an `-partite graph with `-partition V (G) = V1 ∪ · · · ∪ V` (` ≥ 2). Recall
that G is ε-uniform if all pairs (Vi, Vj) (1 ≤ i < j ≤ `) are ε-regular. Moreover, observe
that in order to check the ε-regularity for any such pair (Vi, Vj), in principle one must
examine the density of many pairs (A,B) with A ⊆ Vi, B ⊆ Vj . However, it turns out
that the ε-regularity of (Vi, Vj) is implied by a rather simple condition imposed upon the
intersection of the neighbourhoods of pairs of vertices. This idea has been exploited in
many places; see, e.g., Alon, Duke, Lefmann, Rödl and Yuster [ADLRY 94], Frankl, Rödl
and Wilson [FRW 88] and Thomason [Th 87a] (see also [Th 87b]). The following fact is a
slight refinement of earlier results in [Th 87a] and [FWR 88].

Lemma 12. Let G be a d-regular bipartite graph with bipartition V (G) = V1 ∪ V2,

where |V1| = |V2| = n and d = pn (0 < p ≤ 1). Assume that for a subset B of V2 with b

vertices and some ε > 0 we have

∑
x,x′∈B

|N(x) ∩N(x′)| ≤ (1 + ε)
(
b

2

)
np2 , (1)

15



where the sum is taken over all unordered pairs x, x′ ∈ B with x 6= x′. Then, for every

subset A of V1 with a vertices, we have

(e(A,B)− abp)2 ≤ εa(n− a)b2p2 + abnp .

Proof. Suppose V1 = {x1, . . . , xn} and let di (1 ≤ i ≤ n) be the number of neighbours
the vertex xi has in B. For simplicity of notation, assume that A = {x1, . . . , xa}. Then,
since G is d-regular, we have

n∑
i=1

di = e(V1, B) = db = e(A,B) + e(V1 \A,B) .

Furthermore, using (1), counting directed paths of length two with both ends in B leads
to

(1 + ε)b(b− 1)np2 ≥
n∑
i=1

di(di − 1) =
a∑
i=1

di(di − 1) +
n∑

i=a+1

di(di − 1) .

Since
∑a
i=1 di = e(A,B) and

∑n
i=a+1 di = e(V1 \ A,B) = db − e(A,B), by the Cauchy–

Schwarz inequality we have

(1 + ε)b(b− 1)np2 ≥ 1
a
e(A,B)(e(A,B)− a)

+
1

n− a
(db− e(A,B))(db− e(A,B)− n+ a) ,

which, after elementary calculations, may be reduced to

abpn(n− a)(1− p) + εab(b− 1)p2n(n− a) ≥ n(e(A,B)− abp)2 ,

from which the assertion easily follows.

As an immediate consequence of the above result we obtain a simple sufficient condition
for the η-uniformity of a regular bipartite graph G.

Lemma 13. Let G be a d-regular bipartite graph with bipartition V (G) = V1 ∪ V2,

where |V1| = |V2| = n, d = pn, and p = ω/n with ω = ω(n)→∞ as n→∞. Suppose that

for some constant 0 < ε < 1/2 independent of n we have∑
x,x′

(
|N(x) ∩N(x′)| − (1 + ε)np2

)
≤ 4ε3n3p2 , (2)

where the sum is taken over all unordered pairs x, x′ ∈ V2 with x 6= x′ and |N(x)∩N(x′)| ≥
(1 + ε)np2. Then G is 8ε1/3-uniform provided n is large enough.

Proof. Take any A ⊆ V1, B ⊆ V2 of sizes a = |A| ≥ 2ε1/3n and b = |B| ≥ 2ε1/3n.
Then, writing

∑′
x,x′∈B for the sum over all unordered pairs of distinct vertices x, x′ ∈
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B, and
∑′′
x,x′∈V2

for the sum over all unordered pairs of distinct vertices x, x′ ∈ V2

with |N(x) ∩N(x′)| ≥ (1 + ε)np2, we have from (2) that∑′

x,x′∈B
|N(x) ∩N(x′)| ≤ (1 + ε)

(
b

2

)
np2 +

∑′′

x,x′∈V2

(
|N(x) ∩N(x′)| − (1 + ε)np2)

)
≤ (1 + ε)

(
b

2

)
np2 + 4ε3n3p2 ≤ (1 + ε+ 2ε2)

(
b

2

)
np2 ≤ (1 + 2ε)

(
b

2

)
np2 .

Furthermore, since ω = pn → ∞ as n → ∞, for large enough n we have that abpn ≤
εanb2p2 and hence, by Lemma 12, we have

|e(A,B)− abp| ≤
√

4εanb2p2 ≤ 2ε1/3abp.

Now, to complete the proof, it is enough to observe that, according to our definition of
density, dG(A,B) = 4e(A,B)/abp while dG(V1, V2) = 4. Hence

|dG(A,B)− dG(V1, V2)| = 4|e(A,B)− abp|
abp

≤ 8ε1/3 ,

as required.

§6. Difference-Graphs

Let A be a subset of [n] = {0, 1, . . . , n − 1}. The associated difference-graph GA =
GA(n) is the bipartite graph with bipartition V (GA) = V ∪ W , where both V and W

are copies of [n], and for v ∈ V and w ∈ W the pair {v, w} is an edge of GA if and
only if w ≡ v + a (mod n) for some a ∈ A. It is immediate that each vertex of GA has
degree |A|, and that the number of common neighbours of two distinct vertices v and v′

that belong to the same class of the bipartition depends only on the value of v − v′. In
fact, this value is the same as the number tA(v − v′) of ordered pairs (a, a′) ∈ A×A such
that a′ − a ≡ v − v′ (mod n). Therefore, the structure of GA is closely related to the
behaviour of the numbers tA(j) (1 ≤ j < n). Our next result deals with the distribution
of the tR(j) for a random set R ∈ R(n, p). In the sequel, we write ⊕ and 	 for addition
and subtraction modulo n, respectively.

Lemma 14. For every fixed 0 < ε ≤ 1 and 0 < η ≤ 1 there exists a constant C =
C(ε, η) for which the following holds. For every p = p(n) ≥ C/

√
n, the probability

that R ∈ R(n, p) satisfies ∑{
tR(j)− (1 + ε)np2

}
≤ ηn2p2, (3)

where the sum is taken over all 1 ≤ j < n such that tR(j) ≥ (1 + ε)np2, tends to 1
as n→∞.

Proof. For i ∈ [n], let Ii be the characteristic function of the event {i ∈ R}. Thus Ii is
a 0–1 random variable with Ii = 1 if and only if i ∈ R. For a given 1 ≤ j < n, let us divide
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the set of all n pairs (i, i ⊕ j) (i ∈ [n]) into three classes B1(j), B2(j) and B3(j) in such
a way that bn/3c ≤ |B`(j)| ≤ dn/3e for all ` ∈ {1, 2, 3}, and such that, for any i ∈ [n],
no B`(j) contains both pairs (i	j, i) and (i, i⊕j). The fact that such a partition is always
possible follows from the simple observation that every 2-regular graph admits a proper 3-
edge-colouring in which the sizes of any two colour classes differ by at most one. In fact, for
later convenience, we may and shall further require of the B`(j) that, for all ` ∈ {1, 2, 3},
if j1 + j2 = n, then the set of unordered pairs that naturally correspond to the elements
of B`(j1) should be the same as the corresponding set for B`(j2). Now, for all 1 ≤ j < n

and ` ∈ {1, 2, 3}, define the random variables X(j, `) and X̂(j, `) by setting

X(j, `) =
∑

(i,i⊕j)∈B`(j)

IiIi⊕j ,

and

X̂(j, `) =
{ 0 if X(j, `) < (1 + ε)|B`(j)|p2

X(j, `) otherwise

or, shortly, X̂(j, `) = 1I(j, `)X(j, `), where 1I(j, `) is the characteristic function of the
event {X(j, `) ≥ (1+ε)|B`(j)|p2}. Then, clearly, we have tR(j) = X(j, 1)+X(j, 2)+X(j, 3)
for all 1 ≤ j < n. Notice now that the left-hand side of (3) is at most

3∑
`=1

n−1∑
j=1

(
X̂(j, `)− 1I(j, `)(1 + ε)|B`(j)|p2

)
.

Hence it is enough to show that, with probability tending to 1 as n→∞, we have

Z =
3∑
`=1

n−1∑
j=1

X̂(j, `) ≤ ηn2p2. (4)

Let us estimate first the expectation E X̂(j, `) of X̂(j, `). Note that X(j, `) is a sum
of independent 0–1 random variables, and thus it has binomial distribution Bi(m, p2),
where m = |B`(j)|. (It was for achieving the above independence that the classes B1(j),
B2(j) and B3(j) were introduced). Therefore, setting r0 = d(1 + ε)p2me, we get

E(X̂(j, `)) =
m∑

r=r0

r

(
m

r

)
p2r(1− p2)m−r = mp2

m∑
r=r0

(
m− 1
r − 1

)
p2r−2(1− p2)m−r

= mp2
m−1∑

r=r0−1

(
m− 1
r

)
p2r(1− p2)m−r−1 = mp2b≥(r0 − 1;m− 1, p2), (5)

where b≥(r0 − 1;m − 1, p2) is the probability that a binomial random variable with pa-
rameters m− 1 and p2 takes values greater than or equal to r0 − 1. The behaviour of the
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function b≥ is, of course, well studied, and it is known that for every choice of m′, p′ and k′

such that k′ ≤ m′p′ we have

b≥(m′p′ + k′;m′, p′) ≤ exp
(
− (k′)2

3m′p′
)
.

(See, for instance, §6 in McDiarmid [McD 89]). Thus, in our case,

b≥(r0 − 1;m− 1, p2) ≤ exp
(
− (εp2m− 1)2

3(m− 1)p2

)
≤ exp

{
− 1

10
ε2np2

}
,

where here and below we assume that n is large enough for all our inequalities to hold.
Hence E X̂(j, `) ≤ |B`(j)|p2 exp(−ε2np2/10) and, consequently,

E(Z) = E
( 3∑
`=1

n−1∑
j=1

X̂(j, `)
)
≤ n2p2 exp

{
− 1

10
ε2np2

}
.

Thus, if p = p(n) is such that np2 → ∞ as n → ∞, then the right-hand side of the
above inequality is o(n2p2). Therefore, by Markov’s inequality, relation (4) holds with
probability 1− o(1) as n→∞, and hence our lemma follows in this case.

In order to complete the proof, it is enough to consider the case when p = p(n) > C/
√
n

for some large C > 0 but, say, np2 < log log n. Thus we henceforth assume that p = p(n)
satisfies these conditions. In the remaining, rather technical part of the proof, we shall
compute the variance of Z =

∑3
`=1

∑n−1
j=1 X̂(j, `) for such a p and then show that this

random variable is concentrated around its expectation through a direct application of
Chebyshev’s inequality.

First, let us note that with m = |B`(j)| as before we have that the variance Var(X̂(j, `))
of X̂(j, `) is no greater than

m∑
r=r0

r2

(
m

r

)
p2r(1− p2)m−r =

m∑
r=r0

r(r − 1)
(
m

r

)
p2r(1− p2)m−r + E X̂(j, `)

= m(m− 1)p4
m−2∑

r=r0−2

(
m− 2
r

)
p2r−2(1− p2)m−r−2 + E X̂(j, `)

= m(m− 1)p4b≥(r0 − 2;m− 2, p2) +mp2b≥(r0 − 1;m− 1, p2)

≤ n2p4 exp
{
− 1

10
ε2np2

}
= O(1).

Note that for j1, j2 ∈ {1, . . . , n − 1}, if j1 + j2 = n, then X̂(j1, `) = X̂(j2, `) for
all ` ∈ {1, 2, 3}. Thus the covariance Cov(X̂(j1, `), X̂(j2, `)) between X̂(j1, `) and X̂(j2, `)
coincides with Var(X(j1, `)) = O(1). Now let (j1, `1) 6= (j2, `2) and suppose also that
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if j1 + j2 = n then `1 6= `2. We shall estimate Cov(X̂(j1, `1), X̂(j2, `2)). For sim-
plicity, put U1 = X̂(j1, `1) and U2 = X̂(j2, `2). We have Cov(X̂(j1, `1), X̂(j2, `2)) =
Cov(U1, U2) = E(U1U2) − E(U1) E(U2). We shall first estimate from above the value
of E(U1U2). Recall that we write R for a random element of our probability space R(n, p).
We have

E(U1U2) =
∑

R0⊆[n]

U1(R0)U2(R0) Prob(R = R0). (6)

Let us say that R ∈ R(n, p) is exceptional if either U1(R) or U2(R) is at least as large
as umax = blog nc. Standard inequalities for the tail of the binomial distribution gives that
the probability that R ∈ R(n, p) is exceptional is no greater than n−(1/2) log logn. Since U1

and U2 are at most n, we have that the exceptional R0 contribute with n2−(1/2) log logn to
the sum in (6). In the sequel we concentrate our attention on non-exceptional R ∈ R(n, p).

Let us introduce some notation. Let Gs (s ∈ {1, 2}) be the directed graph with
vertex set [n] and edge set B`s(js). Thus each Gs simply consists of some isolated edges.
Moreover, the directed graph G1 ∪ G2 contains no cycle of length 2. Let Hs = Hs(R)
(s ∈ {1, 2}) be the random subgraph of Gs induced by the elements of R ∈ R(n, p), and
put H = H(R) = H1(R) ∪H2(R) ⊆ G1 ∪G2.

We now consider the structure of H. Let us say that R ∈ R(n, p) is typical if H =
H(R) is a matching. The probability that R ∈ R(n, p) is not typical is at most np3 ≤
(log log n)3/2/

√
n. Thus, the contribution of the atypical, non-exceptional R0 ⊆ [n] in (6)

is at most u2
max(log log n)3/2n−1/2 = O((logn)2(log log n)3/2n−1/2). From here onwards we

only take into account R ∈ R(n, p) that are typical and non-exceptional. Thus H = H(R)
will always consist of isolated edges.

To bound the contribution of the typical, non-exceptional R0 ⊆ [n] to the sum in (6),
we shall need the following consequence of a large deviations inequality of Janson,  Luczak,
and Ruciński [J LR 90]. Let J be a graph with maximal degree at most 2, with m̄ edges,
and n2 vertices of degree two. Let Jp be a random induced subgraph of J obtained
by selecting its vertices randomly and independently each with probability p. Then the
inequality of Janson,  Luczak and Ruciński gives that the probability that Jp has no edges
is at most exp{−m̄p2 + 2n2p

3}.
We are now ready to bound E′(U1U2) =

∑
U1(R0)U2(R0) Prob(R = R0), where the

sum is taken over all typical and non-exceptional R0 ⊆ [n]. For s ∈ {1, 2}, let ms =
|B`s(js)| and us = d(1 + ε)msp

2e. Then E′(U1U2) is at most
umax∑
u1=r1

u1

(
m1

u1

) umax∑
u2=r2

u2

(
m2

u2

)
p2u1+2u2 exp(−(m1 +m2 − 3u1 − 3u2)p2 + 2np3)

≤
umax∑
u1=r1

u1

(
m1

u1

)
p2u1(1− p2)m1−u1

umax∑
u2=r2

u2

(
m2

u2

)
p2u2(1− p2)m2−u2

× exp(2umaxp
2 + np4 + 2np3)

≤ (1 +O(n−1/2(log log n)3/2) E(U1) E(U2) .
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Therefore

Cov(X̂(j1, `1), X̂(j2, `2)) = Cov(U1, U2) = E(U1U2)− E(U1) E(U2)

≤ n2−(1/2) log logn +O(n−1/2(log n)2(log log n)3/2) +O(n−1/2(log log n)7/2)

= O(n−1/2(log n)2(log log n)3/2).

Thus,

Var(Z) = Var
( 3∑
`=1

n−1∑
j=1

X̂(j, `)
)

=
3∑

`1=1

n−1∑
j1=1

3∑
`2=1

n−1∑
j2=1

Cov(X̂(j1, `1), X̂(j2, `2))

= 6nO(1) + 9n2O(n−1/2(log n)3) = O(n3/2(log n)3).

We now note that (5) and the trivial fact that

b≥(r0 − 1;m− 1, p2) ≥
(
m− 1
r0 − 1

)
p2(r0−1)(1− p2)m−r0 ≥ exp{−3np2}

implies that

E(Z) =
3∑
`=1

n−1∑
j=1

E X̂(j, `) ≥ n(n− 1)p2 exp{−3np2} ≥ C2n/2(log n)3.

Thus Var(Z) = o((E(Z))2) and, hence, from Chebyshev’s inequality, with probability
tending to 1 as n → ∞, we have Z ≤ 2 E(Z) ≤ 2n2p2 exp(−ε2np2/10). Thus (4) holds
with probability tending to 1 as n→∞ provided C2 ≥ 10ε−2 log(2/η).

Lemmas 13 and 14 immediately imply that the difference graph GR = GR(n) for a
random subset R ∈ R(n, p) is η-uniform, provided the probability p is large enough.

Fact 15. For every 0 < η ≤ 1 there exists a constant C = C(η) such that, if p =
p(n) ≥ C/

√
n and R ∈ R(n, p), then the bipartite graph GR = GR(n) is η-uniform with

probability tending to 1 as n→∞.

§7. Proof of Theorem 1

Let S be a subset of [n] = {0, . . . , n−1}, where n is an odd natural number. Following
Ruzsa and Szemerédi [RSz 78] (see also Erdős, Frankl and Rödl [EFR 86] and Graham
and Rödl [GR 87]) we introduce a graph G(n, S) that reflects the arithmetic structure
of S. Thus, G(n, S) is a tripartite graph whose vertex set consists of three copies V1, V2,
V3 of the set [n] and {i, j} is an edge of G(n, S) if and only if one of the following three
conditions holds:

(i) i ∈ V1, j ∈ V2 and j = i⊕ k for some k ∈ S,

(ii) i ∈ V2, j ∈ V3 and j = i⊕ k for some k ∈ S,

(iii) i ∈ V1, j ∈ V3 and j = i⊕ 2k for some k ∈ S,
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where here and below ⊕ and 	 stand for addition and subtraction modulo n. Clearly,
if k ∈ S then the vertices i ∈ V1, i⊕ k ∈ V2 and i⊕ 2k ∈ V3 induce a triangle in G(n, S).
A triangle of G(n, S) of this type is said to be trivial . We are interested in the non-trivial,
or spontaneous, triangles of G(n, S), since they reflect the arithmetic structure of S in the
sense made precise below.

Clearly, each G(n, S) contains precisely n|S| trivial triangles, and in fact G(n, S) is
the edge-disjoint union of those triangles. More importantly, the number of spontaneous
triangles in G(n, S) depends on the number of arithmetic triples in S, that is triples
of distinct elements a, b, and c ∈ S such that a 	 c = c 	 b. Indeed, for any arithmetic
triple ∆ = (a, b, c) and every i ∈ [n], the graph G(n, S) contains the associated spontaneous
triangle with vertices i ∈ V1, i⊕a ∈ V2 and i⊕a⊕b ∈ V3, and, conversely, any spontaneous
triangle is associated to such a pair (∆, i). Thus, in order to verify whether S contains an
arithmetic triple it is enough to look for a spontaneous triangle in G(n, S).

Naturally, we shall be particularly interested in the structure of G(n,R) for a ran-
dom subset R of [n]. It will be later crucial that, for a large random set R ⊆ [n], the
graph G(n,R) is typically uniform, and hence sparse, as show our next two results. In the
sequel, it will be convenient to extend the definition of η-uniformity to subsets of [n] in
the obvious way. If S ⊆ [n] is such that G(n, S) is η-uniform for some 0 < η ≤ 1, then
let us say that S itself is η-uniform. Moreover, given b > 2 and 0 < η ≤ 1, we define the
notion of (b, η)-sparseness for S above in the analogous way.

Fact 16. For every 0 < η ≤ 1 there exists a constant C = C(η) such that, if p =
p(n) ≥ C/

√
n, then the probability that R ∈ R(n, p) is η-uniform tends to 1 as n → ∞

along the odd integers.

Proof. Since for odd n the graph G2R = G2R(n) may be identified with GR̄ = GR̄(n)
for some R̄ ∈ R(n, p), with the map R 7→ R̄ measure preserving, the assertion follows from
Fact 15 and the definition of G(n,R).

From Fact 16 one may deduce the following result concerning the uniformity and
sparseness of RM ∈ R(n,M) for large M .

Fact 17. For every 0 < η ≤ 1 there exists a constant C = C(η) such that, if M =
M(n) ≥ C

√
n, then the probability that R ∈ R(n,M) is η-uniform and (4, η)-sparse tends

to 1 as n→∞ along the odd integers.

Proof. We start by noticing that, for any 0 < η ≤ 1, if 0 < η0 ≤ 1 is small enough,
then for any S ⊆ [n] the fact that the graph G = G(n, S) is η0-uniform implies that G is,
say, (4, η)-sparse. Therefore we proceed to show that for any 0 < η0 ≤ 1, if Cn1/2 ≤M =
M(n) ≤ n for some sufficiently large constant C, then G = G(n,RM ) is η0-uniform with
probability 1− o(1) as n→∞ along the odd integers.

Pick η1 = η0/6 and ε = η2
1/3. Let C = (1 + ε)C1, where C1 = C(η1) is as given by

Fact 16. and assume that C
√
n ≤ M = M(n) ≤ n. Set p = p(n) = M/(1 + ε)n. We may
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generate RM ∈ R(n,M) by picking Rp ∈ R(n, p) conditioned on Rp satisfying |Rp| ≤M ,
and then by adding random elements of [n]\Rp to Rp to obtain a set RM of cardinality M .
Since with probability 1− o(1) as n→∞, we have |Rp| ≥ (1− ε)pn, we shall assume that
our Rp does satisfy this condition. Assume also that G = G(n,Rp) is η1-uniform, and
recall that by Fact 16 this event also holds with probability 1 − o(1). It now suffices to
show that, under these two conditions on Rp, the set RM is η0-uniform whatever elements
were added to Rp to generate RM .

Write GM for G(n,RM ) and Gp for G(n,Rp). Let U , W ⊂ V (GM ) be two disjoint
sets contained in two distinct vertex classes of GM with |U |, |W | ≥ η1n. Put ρM = M/n

and ρp = |Rp|/n. Note that then (1−2ε)ρM ≤ ρp ≤ ρM and that |ρp−p| ≤ εp. Moreover,
we have

eGM (U,W ) ≥ eGp(U,W ) ≥ (1− η1)ρp|U ||W | ≥ (1− 2η1)ρM |U ||W |

and

eGM (U,W ) ≤ eGp(U,W ) + 2εpn|U | ≤ (1 + η1)ρp|U ||W |+ 2(εp/η1)|U ||W |
≤ (1 + 2η1)ρp|U ||W | ≤ (1 + 2η1)ρM |U ||W |.

Now notice that

dGM (U,W ) = 3eGM (U,W )/ρM |U ||W |

and the density between two any sets of tripartition of G(n,RM ) is 3. Thus,

|dGM (U,W )− 3| ≤ 3|eGM (U,W )− ρM |U ||W | |
ρM |U ||W |

≤ 6η1 = η0 ,

and so GM = G(n,RM ) is indeed η0-uniform, as required.

In the sequel, it will be necessary for us to look at R(n,M) in a way that it re-
sembles a product of a large number of spaces. Let us assume that the integer m di-
vides M , and put M0 = M/m. We then define the space R̃(n,m,M0) as the uniform
space of m-tuples R̃ = (Ri)mi=1 of pairwise disjoint M0-subsets Ri ⊆ [n]. Thus all m-
tuples R̃ ∈ R̃(n,m,M0) are equiprobable, and the map R̃ = (Ri)mi=1 ∈ R̃(n,m,M0) 7→⋃m
i=1Ri ∈ R(n,M) is measure-preserving. We shall also consider the probability space G̃ =
G̃(n,m,M0) of the balanced 3-decomposable m-edge-coloured graphs G̃ = G̃(n, R̃) =
(Gi)mi=1 determined by the Gi = G(n,Ri) (1 ≤ i ≤ m), where R̃ = (Ri)mi=1 is a ran-
dom element of R̃(n,m,M0). In this space we consider the event A(b, η) that a graph
from G̃ should be (b, η)-sparse, and denote the conditional probability space obtained from
G̃ by conditioning on A(b, η) by G̃(n,m,M0

∣∣ b, η).
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Lemma 18. Let m ≥ 3, k0 ≥ 1, b > 4, 0 < ξ ≤ 1 and 0 < δ ≤ 1 be given. Then

there exist constants 0 < ε = ε(m, ξ, δ) ≤ 1 and C = C(m, k0, b, ξ, δ) for which the

following holds for any sufficiently large n. Suppose Cn1/2 ≤ M = mM0 = mM0(n) ≤
n/(log log n)2, let G̃ = (Gi)mi=1 ∈ G̃(n,m,M0

∣∣ b, η) and let Π̃1, . . . , Π̃m be the (ε, k0)-
canonical sequence of partitions associated to G̃, where as usual ε = ε(m, b, ε, k0). Then the

probability that there exists a (δ, k0, ε; G̃)-flower which contains no spontaneous triangles

is smaller than ξM .

Proof. Put β = ξ108mδ−2
, and let 0 < ε = ε(β) = ε(m, ξ, δ) ≤ 1 be as given by

Lemma 11. Furthermore, let η and K0 ≥ 1/2ε be such that Lemma 5 holds and let
C1 = C(η) be as in Fact 17. Finally, set C = max{C1, 107m

√
K0/δ

√
ε}. We shall show

that for such a choice of ε, η and C the assertion holds. We also remark that in the sequel
we tacitly assume that n is sufficiently large whenever it is needed.

Let us first restate our result in terms of m-coloured graphs G̃ = (Gi)mi=1 from
G̃(n,m,M0). Let B(δ) be the event that G̃ should be (b, η)-sparse and moreover it should
contain a (δ, k0, ε; G̃)-flower without a spontaneous triangle. We have to show that

Prob(B(δ)
∣∣A(b, η)) ≤ ξM .

Suppose we show that
Prob(B(δ)) ≤ ξM/2. (7)

Then, by our choice of C, we have that for any large enough n we have Prob(A(b, η)) > 1/2.
Therefore

Prob(B(δ)
∣∣A(b, η)) =

Prob(B(δ) ∩ A(b, η))
Prob(A(b, η))

≤ Prob(B(δ))
ProbA(b, η))

≤ ξM ,

as required. Hence it only remains to prove (7).

Let us estimate first the probability that a fixed (δ, G̃)-flower should contain no spon-
taneous triangle. Thus, let the colours 1 ≤ w(1) < w(2) < w(3) ≤ m, the vertex v ∈ V (G),
and the family {(X(i), Y (i)): 1 ≤ i ≤ g}, where

u = |X(i)| = |Y (i)| ≥ n/2K0 ,

and 2gu ≥ δn, form a (δ, G̃)-flower. We may further assume that all the X(i) (1 ≤ i ≤
g′ = dg/2e) are contained in a single vertex class of the tripartition of G, as are all the Y (i)

(1 ≤ i ≤ g′). Below we shall only consider X(i) and Y (i) for 1 ≤ i ≤ g′. Also, let us
mention for completeness that G has 3n vertices and e(G) = |E(G)| = 3nM = 3nmM0

edges.

Let us now suppose that the Ri (1 ≤ i < w(2)) have been chosen. Thus, in particular,
the graphs Hi = Gw(1)[X(i), Y (i)] (1 ≤ i ≤ g′), namely the bipartite subgraphs of Gw(1)
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with bipartition V (Hi) = X(i) ∪ Y (i) and edge set EGw(1)(X
(i), Y (i)), have been fixed. By

the definition of a (δ, G̃)-flower, each Hi (1 ≤ i ≤ g′) is ε-uniform, and for all 1 ≤ i ≤ g′

we have e(Hi) = eGw(1)(X
(i), Y (i)) ≥ ρ0u

2, where ρ0 = 10−6δM0/n.

Let us now pick Rw(2), and let us study the neighbourhoodN (i)
w(2)(v) ⊂ X(i) (1 ≤ i ≤ g′)

of the vertex v in the graph Gw(2) inside the set X(i). Put d = ρ0u. Again by the definition
of a (δ, G̃)-flower, we know that d(i)

1 = |N (i)
w(2)(v)| ≥ d = ρ0u. Now let us condition on the

values of the d(i)
1 (1 ≤ i ≤ g′). Once these g′ numbers are fixed, for every 1 ≤ i ≤ g′, all the

subsets of cardinality d(i)
1 of the set X(i) \ S(i)

1 are equally likely to be chosen as N (i)
w(2)(v),

where S(i)
1 is the neighbourhood of v within X(i) in the graph

⋃
1≤k<w(2)Gk. Furthermore,

we make the simple but important observation that, because we choose Rw(2) randomly
and uniformly from all the M0-subsets of [n]\

⋃
1≤k<w(2)Rk, and because we have decided

on the cardinalities d(i)
1 (1 ≤ i ≤ g′) in advance, the sets N (i)

w(2)(v) (1 ≤ i ≤ g′) are all
selected independently.

Let us now suppose that the Ri (w(2) ≤ i < w(3)) have also been chosen, and
pick Rw(3). Let N (i)

w(3)(v) ⊂ Y (i) be the Gw(3)-neighbourhood of v within Y (i). Put d(i)
2 =

|N (i)
w(3)(v)| (1 ≤ i ≤ g′), and note that again d

(i)
2 ≥ d = ρ0u. We now condition on the val-

ues of the d(i)
2 (1 ≤ i ≤ g′). As above, under this conditioning, for every 1 ≤ i ≤ g′, all the

subsets of cardinality d(i)
2 of the set Y (i) \ S(i)

2 are equally likely to be chosen as N (i)
w(3)(v),

where S(i)
2 is the neighbourhood of v within Y (i) in the graph

⋃
1≤k<w(3)Gk. As before,

the sets N (i)
w(3)(v) (1 ≤ i ≤ g′) are all selected independently.

We now apply Lemma 11 to all theHi (1 ≤ i ≤ g′). Recall that d = ρ0u and notice that,
for all 1 ≤ i ≤ g′, the density e(Hi)u−2 of Hi is at least ρ0 = d/u and d(i)

j ≥ d (j ∈ {1, 2}).
Also, by the choice of C, we have that d ≥ 2(u/ε)1/2. Moreover, since M = mM0 ≤
n/(log log n)2, for large enough n we have that |S(i)

j | ≤ u/ log log u for all 1 ≤ i ≤ g′,

j ∈ {1, 2}. We now recall that the sets N (i)
w(2)(v) (1 ≤ i ≤ g′) are all selected independently,

as are all the N (i)
w(3)(v) (1 ≤ i ≤ g′). Thus, applying Lemma 11 simultaneously to all the Hi

(1 ≤ i ≤ g′), we see that the probability that we do not have a spontaneous triangle in G

is at most βdg
′ ≤ ξ2M .

Now, to complete the proof, it suffices to estimate the number of all possible candidates
for (δ, G̃)-flowers in our (b, η)-sparse m-edge-coloured graph G̃. Clearly, the vertex v can be
selected in at most n ways, there are at most

(
m
3

)
≤ m3 possible choices for the indices w(1),

w(2) and w(3) and, since |Π̃w(1)| ≤ K0 +1 (cf. Lemma 5) and g ≤ (|Π̃w(1)|−1)/2 < K0, the
number of possible choices for the set of pairs {(X(i), Y (i)): 1 ≤ i ≤ g} can be estimated
very generously by K0 ×K0! ≤ (K0 + 1)!. Thus, since M grows to infinity at least as fast
as
√
n, we have

Prob(B(δ)) ≤ nm3(K0 + 1)!ξ2M ≤ ξM/2

whenever n is large enough. Thus (7) holds and Lemma 18 is proved.
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As an almost immediate consequence of the above lemma and Lemma 10, we get the
following result, which will be crucial for the proof of Theorem 1.

Let R(n,M
∣∣ b, η) denote the uniform probability space whose elements are the (b, η)-

sparse M -subsets R of [n]. Clearly, R(n,M
∣∣ b, η) may be obtained from R(n,M) by con-

ditioning on the event that G(n,R) should be (b, η)-sparse. Let the associated probability
space of the G(n,R) (R ∈ R(n,M

∣∣ b, η)) be denoted by G(n,M
∣∣ b, η). Thus to pick an

element G from G(n,M
∣∣ b, η) we simply generate R ∈ R(n,M

∣∣ b, η) and let G = G(n,R).
Suppose the integer m divides M . Clearly, since all graphs from G(n,M

∣∣ b, η) are gener-
ated by M -subsets of [n] and each such subset can be decomposed into m subsets of size
M0 = M/m in the same number of ways, one can generate an element of G(n,M

∣∣ b, η) by
choosing a graph from G̃(n,m,M0

∣∣ b, η) and ignoring the colouring of its edges.

Now our next result can be stated as follows.

Lemma 19. For every b ≥ 4 and 0 < ξ ≤ 1, there exist constants 0 < η(b, ξ) ≤ 1,

C = C(b, ξ), and N = N(b, ξ) such that, for every n ≥ N and C
√
n ≤ M = mM0 =

mM0(n) ≤ n/(log log n)2, where m = m(b) is as given in Lemma 10, the probability

that G ∈ G(n,M
∣∣ b, η) contains no spontaneous triangle is at most ξM .

Proof. Let b ≥ 4 and 0 < ξ ≤ 1 be given. Choose m = m(b) ≥ 3, 0 < δ = δ(b) ≤ 1
and k0 = k0(b) ≥ 1 as in Lemma 10, and let 0 < ε = ε(m, ξ, δ) ≤ 1 be as in Lemma 18.
Finally, let 0 < η = η(b, ε) ≤ 1 be as given by Lemma 10, and let C = C(m, k0, b, ξ, δ)
be as given by Lemma 18. As always, we shall always assume that n is sufficiently large
whenever it is needed.

Let us now observe that, because of the choice of m, k0, and δ, every element of
G̃(n,m,M0

∣∣ b, η) contains a (ε(m, b, ε, k0), k0)-flower and, because of Lemma 18, with prob-
ability at least 1 − ξM every such flower must contain a spontaneous triangle. Thus the
probability that an element of G̃(n,m,M0

∣∣ b, η) should contain no spontaneous triangle
is smaller than ξM . As we have already mentioned, the graphs from G̃(n,m,M0

∣∣ b, η)
naturally correspond to elements from G(n,mM0

∣∣ b, η), and hence Lemma 19 follows.

We may now finally prove Theorem 1.

Proof of Theorem 1. Clearly, it suffices to prove that, for any given 0 < α ≤ 1, there
is a suitable choice for C = C(α) such that

(†) if Cn1/2 ≤M = M(n) ≤ n, then limn→∞ Prob(R→α 3) = 1, where

the limit is taken along odd values of n.

Thus henceforth we may and shall assume that n is odd. Also, below we assume that n
is sufficiently large whenever it is needed. For convenience, let us say that a property holds
almost surely if it holds with probability tending to 1 as n tends to infinity along odd
integers.

Let a constant 0 < α ≤ 1 be given, and assume that 1 ≤ M = M(n) ≤ n. Note
that the Heath-Brown–Szemerédi result mentioned in §0 implies that any set A ⊂ [n]
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with |A| ≥ n/(log log n)2 contains a 3-term arithmetic progression provided n is sufficiently
large. Thus we may and shall assume that αM ≤ n/(log log n)2, since otherwise R →α 3
for any set R ⊆ [n] with |R| = M .

Let us put α′ = α/2. Set b = 6/α′ ≥ 4 and 0 < ξ = α′/4 ≤ 1, and let m = m(b) ≥ 3
be as given in Lemma 10. Moreover, let 0 < η = η(b, ξ) ≤ 1 and C1 = C(b, ξ) be as
given in Lemma 19, and let C2 = C(η) be as given in Fact 17. We let C = C(α′) =
max{(4/3α′)C1, C2}. We shall now show that (†) holds with this choice of C.

Our first aim is to verify that R ∈ R(n,M) almost surely has the property that any
subset A′ ⊆ R with at least α′|R| elements contains an arithmetic triple. For simplicity,
let us write R→′α′ 3 if R has this property.

Let us start by picking an integer multiple M ′ = M ′(n) of m such that (3α′/4)M ≤
M ′ ≤ α′M holds for any sufficiently large n. Put M0 = M0(n) = M ′/m. We now con-
sider the spaces R(n,M ′

∣∣ b, η) and G(n,M ′
∣∣ b, η). Note that C1n

1/2 ≤ M ′ = mM0 ≤
n/(log log n)2, and hence that by Lemma 19 the probability that G ∈ G(n,M ′

∣∣ b, η) con-
tains no spontaneous triangle is at most ξM

′
. Thus, the probability that R ∈ R(n,M ′

∣∣ b, η)
contains no arithmetic triple is at most ξM

′
for all large enough n. Therefore, the number

of (b, η)-sparse subsets A′ of [n] with M ′ elements that do not contain arithmetic triples
is at most ξM

′( n
M ′

)
.

Let D be the event that R ∈ R(n,M) should contain a (b, η)-sparse subset A′ with M ′

elements which is free of arithmetic triples. Then the probability that D holds is at most

ξM
′
(
n

M ′

)(
n−M ′

M −M ′

)(
n

M

)−1

≤
(

eξn
M ′

)M ′ (
M

n

)M ′
≤
(

4eξ
3α′

)M ′
= o(1).

Let now S be the event that R ∈ R(n,M) should be (4, η)-sparse. Then, by Fact 17,
we have that almost surely S holds. We now note that if R is (4, η)-sparse, then any
subset A′ ⊆ R with |A′| = M ′ is (b, η)-sparse. Therefore, if D fails and S holds, then R→′α′
3. Since almost surely D does fail and S does hold, we conclude that a random set R ∈
R(n,M) satisfies R→′α′ 3 almost surely.

Now recall that n is odd, and write n = 2k + 1. Observe that if A is a subset
of R with at least α|R| elements, then at least one of the subsets A1 = A ∩ {0, . . . , k}
and A2 = A ∩ {k, . . . , 2k} must have at least α′|R| = α|R|/2 elements, and that Ai
(i ∈ {1, 2}) contains an arithmetic triple if and only if it contains an arithmetic progression
of length three. Thus (†) does hold and Theorem 1 is proved.

Corollary 3 may be deduced from Theorem 1 in a routine manner.

Sketch of the Proof of Corollary 3. Let s = s(n), g = g(n), and α be as in the
statement of our corollary. Pick C0 sufficiently large so that with p = p(n) = C0n

−1/2

and R = Rp ∈ R(n, p) we have R→α/2 3 with probability 1− o(1) as n→∞.

The probability that a fixed set as in (i) of the corollary meets R in more than 3 el-
ements is O(s4n−2). Hence the expected number of such sets is O(s4) = o(

√
n). The
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probability that a fixed set as in (ii) meets R in more than Cm/
√
n elements is at

most exp{−2m/
√
n} for large enough C. Therefore the probability that such a set ex-

ists is o(1). Now, let G(3) = G
(3)
n be the 3-uniform hypergraph on [n] whose hyperedges

are the 3-term arithmetic progressions contained in [n]. One can easily check that for every
` ≥ 2 the number of cycles of length ` in G(3) is at most (3n)`. For any such cycle of G(3)

the probability that it appears in F = F(R) is p2`. Therefore the expected number of
cycles in F shorter than g is at most

∑g
`=2(3np2)` = o(

√
n).

In view of the above remarks, with probability 1 − o(1) as n → ∞, there exists a
set S ⊆ R with |S| ≥ |R|/2 satisfying (i), (ii), and (iii). Finally, note that if R →α/2 3,
then S →α 3.
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