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Abstract. We shall prove that for all ` ≥ 3 and β > 0 there exists a sparse
oriented graph of arbitrarily large order with oriented girth ` and such that

any 1/2 + β proportion of its arcs induces an oriented cycle of length `.

1. Introduction

We call the pair ~G = (V,E) an oriented graph if the set of vertices V is a finite set
and the set of oriented edges E ⊆ V ×V , which we call arcs, is such that (v, v) 6∈ E
for any v ∈ V and if (u, v) ∈ E then (v, u) 6∈ E. Our notation will basically follow
[1].

The main result of this note, Theorem 1, is related to a conjecture of Woodall,
which we now describe. Given an oriented graph ~G = (V,E), we say that a subset
B ⊆ E of E is an oriented cut in ~G if there exists a subset W ⊆ V of V such
that B = E(~G) ∩ (W × W ) and E(~G) ∩ (W × W ) = ∅, where W = V \ W . A
subset F ⊆ E of E is a transversal of the family of oriented cuts of ~G if F ∩B 6= ∅
for all oriented cuts B in ~G.

In 1978, Woodall [7] conjectured that, for any oriented graph ~G, a minimum
oriented cut in ~G has cardinality equal to the maximum cardinality of a family of
pairwise disjoint transversals of oriented cuts. Woodall’s conjecture has been proved
in some particular cases. Feofiloff and Younger [2], and independently Schrijver [6],
proved this conjecture for source-sink connected graphs. An oriented graph is called
source-sink connected if it is acyclic and each source is joined to each sink by an
oriented path. Lee and Wakabayashi [5] recently proved the conjecture for series-
parallel oriented graphs.

To relate this conjecture to Theorem 1, we consider its dual version in the case of
planar oriented graphs. By the oriented girth of ~G, we mean the length of a shortest
oriented cycle in ~G. We call a subset D ⊆ E of the set of arcs E a transversal of
the family of oriented cycles of ~G if D intersects all oriented cycles of ~G. From now
on, by a transversal in an oriented graph ~G, we mean a transversal of the family of
oriented cycles of ~G.

A dual version of Woodall’s conjecture may be stated as follows: for any planar
oriented graph ~G, the oriented girth of ~G is equal to the maximum cardinality
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of a family of pairwise disjoint transversals. In other words, this version of the
conjecture states that if ` is the oriented girth of ~G then ` is the largest k ∈ N for
which there exists a k-coloring of E(~G), say ϕ : E(~G) → [k], such that any oriented
cycle of ~G meets all the k colours, that is, |ϕ(~C)| = k for all oriented cycles ~C ⊆ ~G.

We have learnt from D. Younger [8] that we cannot remove the hypothesis of
planarity from the dual of Woodall’s conjecture. Indeed, Thomassen constructed a
tournament T on 15 vertices with oriented girth 3 for which the smallest number
of arcs we have to delete to get rid of all oriented cycles is more than one third of
its arcs. Hence, the oriented girth of T is larger than the maximum cardinality of
a family of pairwise disjoint transversals and, therefore, T is a counterexample to
this generalized dual statement.

Thomassen’s tournament is as follows. Take V (T ) as the disjoint union of the
sets

X = {x1, x2, x3, x4, x5}, Y = {y1, y2, y3, y4, y5} and Z = {z1, z2, z3, z4, z5}.

We define E(T ) first putting arcs on each of the subsets X, Y and Z, in such a
way that we must delete at least three arcs from each of the induced subgraphs T [X],
T [Y ] and T [Z] to get rid of all the oriented cycles in these subgraphs. For example,
we may take the arcs on X to be the union of the following three oriented cycles:
(x1, x2)(x2, x3)(x3, x1), (x1, x4)(x4, x5)(x5, x1) and (x2, x5)(x5, x3)(x3, x4)(x4, x2).

Now add the arcs (yi, xi), (xi, zi) and (zi, yi), for each i ∈ {1, 2, 3, 4, 5}. We
complete the description of the set of arcs putting in E(T ) the arcs (xi, yj), for each
pair i 6= j ∈ {1, 2, 3, 4, 5}, plus the arcs (yi, zj), for each pair i 6= j ∈ {1, 2, 3, 4, 5}
and, finally, the arcs (zi, xj), for each pair i 6= j ∈ {1, 2, 3, 4, 5}.

A tedious case analysis shows that to destroy all oriented cycles of T we have to
delete a minimum of 20 + 5 + 5 + 3 + 3 + 3 = 39 > 35 = 105/3 arcs, out of a total
of 105. Note that, in Thomassen’s example T above, we have that any subset of
E(T ) with at least 2/3 of the arcs of T induces an oriented cycle in T . In this note
we prove the following result. We write ~Gn for an oriented graph on n vertices.
Theorem 1. Let an integer ` ≥ 3 and a real number β > 0 be given. For any
sufficiently large n, there exists an oriented graph ~Gn with O(n1+1/(`−1)) arcs and
oriented girth ` such that any 1/2 + β proportion of the arcs of ~Gn induces an
oriented cycle of length `.

This theorem is best possible in the following sense: any oriented graph ~G con-
tains a subgraph without oriented cycles and with at least a half of its arcs, as may
be seen by taking a random linear ordering on V (~G).

Theorem 1 goes beyond Thomassen’s counterexample in that it tells us that
there exists an infinite family of oriented graphs showing that the planarity hy-
pothesis may not be dropped from the dual version of Woodall’s conjecture. More
importantly, the graphs given by Theorem 1 are sparse, with vanishing density.
Corollary 2. There exist infinitely many oriented graphs with vanishing density
whose oriented girth is larger than the maximum cardinality of a family of pairwise
disjoint transversals.

This note is organized as follows. In the next section we shall describe the tools
we need to prove Theorem 1. The proofs of Theorem 1 and Corollary 2 are given
in Section 3. We close with a remark in Section 4. In what follows, we often tacitly
assume that n is large enough for our inequalities to hold.
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2. Auxiliary results

2.1. Szemerédi’s regularity lemma. We now describe a version of Szemerédi’s
regularity lemma for sparse oriented graphs.

Given an oriented graph ~G = (V,E), for any pair of disjoint sets U , W ⊆ V , we
denote the set of arcs and the number of arcs from U to W by E~G(U,W ) and by

e~G(U,W ) =
∣∣E~G(U,W )

∣∣ = ∣∣ {(a, b) ∈ E : a ∈ U and b ∈ W}
∣∣,

respectively.
Suppose that 0 < η ≤ 1, D > 1 and 0 < p ≤ 1 are given real numbers. We

say that ~G is (η, D, p)-bounded if, for any pair of disjoint sets U , W ⊆ V with |U |,
|W | ≥ η|V |, we have

e~G(U,W ) ≤ 1
2
Dp|U ||W |.

We define the oriented p-density from U to W in ~G by

d~G,p(U,W ) =
e~G(U,W )

(p/2)|U ||W |
.

For any 0 < ε ≤ 1 the pair of disjoint non-empty sets (U,W ), with U , W ⊆ V ,
is said to be (ε, ~G, p)-regular if for all U ′ ⊆ U , with |U ′| ≥ ε|U |, and all W ′ ⊆ W ,
with |W ′| ≥ ε|W |, we have∣∣d~G,p(U,W )− d~G,p(U

′,W ′)
∣∣ < ε.

We say that a partition P = {V0, V1, . . . , Vk} of V is (ε, k, ~G, p)-regular if |V0| ≤
ε|V | and |Vi| = |Vj | for all i, j ∈ {1, 2, . . . , k}, and for more than (1 − ε)

(
k
2

)
pairs {i, j} ⊆ {1, 2, . . . , k}, i 6= j, we have that (Vi, Vj) and (Vj , Vi) are both
(ε, ~G, p)-regular.

In this note, we shall use the following lemma, which is a natural variant of
Szemerédi’s regularity lemma. In fact, this is a version for sparse oriented graphs
of a lemma observed independently by Kohayakawa and Rödl (see, e.g., [3]).
Lemma 3. For any real number ε > 0, integer k0 ≥ 1 and real number D > 1,
there exist constants η = η(ε, k0, D) > 0 and K = K(ε, k0, D) ≥ k0 such that, for
any 0 < p = p(n) ≤ 1, any (η, D, p)-bounded oriented graph ~G = ~Gn admits an
(ε, k, ~G, p)-regular partition for some k0 ≤ k ≤ K. �

2.2. A counting lemma. Suppose that m > 0 and ` ≥ 3 are fixed integers and
V(m) = (Vi)`

i=1 is a fixed vector of pairwise disjoint sets, each of cardinality m.
Below, the indices of the Vi’s will be taken modulo `. Let B > 0, C ≥ 1, D > 1,
ε ≤ 1, γ ≤ 1 be positive real numbers and let an integer T ≥ 1 be given. We call ~F
an (ε, γ,B, C, D;V(m), T )-graph if

(i) E(~F ) =
⋃`

i=1 E(Vi, Vi+1) and |E(~F )| = T .
(ii) For all 1 ≤ i ≤ ` we have that the pairs (Vi, Vi+1) are (ε, ~F , p)-regular,

with p = Bm−1+1/(`−1), and their oriented p-density satisfies

γ ≤ d~F ,p(Vi, Vi+1) ≤ D.

(iii) For any U ⊆ Vi and W ⊆ Vi+1, where 1 ≤ i < `− 1, such that

|U | ≤ |W | ≤ 1
2
pm|U | ≤

(
1
2
pm

)`−2

,



4 JAIR DONADELLI AND YOSHIHARU KOHAYAKAWA

we have
e(U,W ) ≤ C|W |. (1)

The main technical result that we shall need is as follows. We denote by ~C` the
oriented cycle of length `.
Lemma 4. Let an integer ` ≥ 3 be fixed, and let constants σ > 0, 0 < α ≤ 1,
0 < γ ≤ 1, C ≥ 1 and D ≥ 1. be given. Then there exist positive constants ε =
ε(`, σ, α, γ, C, D) ≤ 1, B0 = B0(`, σ, α, γ, C, D) > 0, and m0 = m0(`, σ, α, γ, C, D)
such that, for all integers m ≥ m0 and T ≥ 1, and all real B ≥ B0, the following
holds. The number of (ε, γ,B,C, D;V(m), T )-graphs containing less than σm`/(`−1)

cycles ~C` is at most

αT

(
(` + 2)m2

T

)
. (2)

�

We shall not prove Lemma 4 here. The interested reader may check Kohayakawa
and Kreuter [4], where it is proved that the number of (ε, γ,B, C, D;V(m), T )-
graphs containing no ~C`’s is at most as given by (2) above. It may be checked
that the proof of this result in [4], with some more bookkeeping, does in fact prove
Lemma 4 above.

3. Proof of Theorem 1

To prove our main result, we first need to recall some standard definitions.
Given 0 < p ≤ 1, for any positive integer n we write Gn,p for the random graph
in the standard binomial model, where n is the number of vertices and p is the
probability of edges. From Gn,p we get the random oriented graph ~Gn,p by putting,
for each edge {u, v} ∈ E(Gn,p) in Gn,p,

P
(
(u, v) ∈ E(~Gn,p)

)
= 1− P

(
(v, u) ∈ E(~Gn,p)

)
= 1/2,

with all these orientations independent.
Let us now start our proof. Let ` ≥ 3 and β > 0 be as given in Theorem 1. Put

δ = β/2 and set

γ =
δ

5
, α =

γ`

e2(` + 2)
, C = 4(`− 1), D = 2, σ =

1
2
, and % =

δ

4
.

Then, there are constants ε, B0, and m0 for which the upper bound of Lemma 4
holds for the constants `, σ, α, γ, C, and D as above. We may suppose ε < δ/16.

In order to apply Lemma 3, take

k0 = max{4/δ, s}, (3)

where s is such that for any integer k ≥ s we have that ex(k, C`) < (1/2 + %)
(
k
2

)
,

where ex(k, C`) is the Turán number (see, e.g., [1]) for the cycle C` of length `.
We observe that when ` is even, we could even omit “1/2” in the definition of s, as
ex(k,C`) = o(k2).

Let η and K be the constants given by Lemma 3 when applied to ε, k0, and D
as above. We may suppose η < δ/20. Put

A = B0K
1−1/(`−1) and p = An−1+1/(`−1).

We prove Theorem 1 using the claims below, whose proofs we postpone.
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Define OG = OG(n), for all n ∈ N, as the set of all oriented graphs ~Gn on
V = V (~Gn) = [n] satisfying the following properties:

(i) ~Gn is (η, 1 + η, p)-bounded,
(ii) e(~Gn) = (1 + o(1))

(
n
2

)
p,

(iii) for any pair of disjoint non-empty sets U , W ⊆ V satisfying

|U | ≤ |W | ≤ 1
2
pn|U | ≤

(
1
2
pn

)`−2

, (4)

the upper bound on the number of arcs (1) holds.

Using Lemma 3 we prove that graphs in OG contain (ε, γ,B, C, D;V(m), T )-
graphs in a very robust way.

Claim 1. For any ~Gn ∈ OG with large enough n, we have that any subgraph
~J ⊆ ~Gn of ~Gn with

e( ~J) ≥
(

1
2

+ δ

)
n2p

2
(5)

arcs contains a subgraph isomorphic to an

(ε, γ, pm1−1/(`−1), C, D;V(m), T )-graph,

for some integer m, with n/2K ≤ m ≤ n/k0, and some integer T ≥ 1.

Let OG′ be the set of graphs ~Gn from OG such that

(iv) any subgraph of ~Gn isomorphic to an (ε, γ,B,C, D;V(m), T )-graph, where
n/2K ≤ m ≤ n/k0, B = pm1−1/(`−1) and T ≥ 1, contains at least
σ0n

`/(`−1) oriented cycles ~C`, where σ0 = σ(2K)−`/(`−1),
(v) the number of oriented cycles of length at most ` − 1 in ~Gn is no larger

than Ān`/(`−1)/ log log n, where Ā = (1/16) max{`− 1, (`− 1)A`−1}.
The family OG′ is not empty; in fact, most graphs ~Gn,p are in OG′, as our next
result states.

Claim 2. With probability tending to 1 as n tends to infinity, we have ~Gn,p ∈ OG′.
We may now complete the proof of Theorem 1 using Claims 1 and 2.
Fix a graph ~Fn ∈ OG′. Let ~Gn be a graph obtained from ~Fn deleting one arc

from each of the at most Ān`/(`−1)/ log log n cycles of length at most `− 1 in ~Fn.
Then, as it is easily seen, we have ~Gn ∈ OG, and, by Claim 1, any subgraph ~J ⊆ ~Gn

with e( ~J) ≥ (1/2 + β)e(~Gn) ≥ (1/2 + δ)n2p/2 contains an

(ε, γ,B,C, D;V(m), T )-graph,

where B = pm1−1/(`−1). As ~Gn ⊆ ~Fn ∈ OG′ we have, by (iv) from definition of
OG′, that each ~J as above contains (1− o(1))σ0n

`/(`−1) > 0 oriented cycles ~C`.
We have thus obtained an oriented graph satisfying the conclusions of Theorem 1,

as required. �

3.1. Proof of Claim 1. Let ~J be an oriented graph as in the statement of Claim 1.
Clearly, ~J is (η, 1 + η, p)-bounded (hence, (η, D, p)-bounded).

Let P = (Vi)k
i=0 be an (ε, k, ~J, p)-regular partition given by Lemma 3 with the

above choices of ε, k0 and D. Put m = |Vi| ≤ n/k, for any i ∈ [k] = {1, . . . , k}.
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Call R the graph whose vertex set is {V1, . . . , Vk} with {Vi, Vj} an edge in R if
both densities d ~J,p(Vi, Vj) and d ~J,p(Vj , Vi) are at least γ and (Vi, Vj) and (Vj , Vi)

are (ε, ~J, p)-regular. Suppose that e(R) < (1/2 + %)
(
k
2

)
.

The number of arcs in ~J is

e( ~J) ≤
{

εn2 + k

(
n/k

2

)
+ ε

(
k

2

)(n

k

)2

+ γ

(
k

2

)(n

k

)2

+

+
(

1
2

+ %

)(
k

2

)(n

k

)2
}

(1 + η)p

<

(
4ε +

1
k

+ γ +
1
2

+ %

)
(1 + η)

n2p

2

<

(
4ε +

1
k

+ γ +
1
2

+ % + η

)
n2p

2

<

(
1
2

+ δ

)
n2p

2
,

contradicting (5).
Therefore, R contains at least (1/2+%)

(
k
2

)
edges and, because of the choice of k0

(see (3)), we may conclude that R contains a cycle Vi1 , . . . , Vi`
.

Thus, we have an (ε, γ, pm1−1/(`−1), C,D;V(m), T )-graph given by taking V(m)

as the vector (Vi1 , . . . , Vi`
) of pairwise disjoint subsets of V ( ~J), putting the set

of arcs as the set
⋃`

j=1 E ~J(Vij , Vij+1) (here the indices are taken modulo `), and
letting T be the cardinality of this union. For these choices of V(m) and T , and
the above choices for ε, γ, B, C and D one may easily check properties (i)–(iii)
from the definition of an (ε, γ,B,C, D;V(m), T )-graph. This completes the proof
of Claim 1.

3.2. Proof of Claim 2. We prove that ~Gn,p, with the above choice for p, satisfies
items (i)–(iii) of the definition of OG and (iv) and (v) of the definition of OG′ with
probability tending to 1 as n tends to infinity.

To check that (i) holds with high probability, observe that by Chernoff’s inequal-
ity, for all pairs of disjoint sets U , W ⊆ V with |U |, |W | ≥ ηn, we have

P
(
e(U,W ) > (1 + η)

p

2
|U ||W |

)
≤ exp

{
−1

3
η2 p

2
|U ||W |

}
≤ exp

{
−A

6
η4n1+1/(`−1)

}
.

Then, the expected number of pairs of sets U , W ⊆ V , where V = V (Gn,p),
with at least ηn vertices and that violate the (η, 1 + η, p)-boundedness condition
is at most 4nexp{−A6−1η4n1+1/(`−1)} = o(1). Thus, if X is the number of pairs
of sets U , W ⊆ V with at least ηn vertices and that violate the (η, 1 + η, p)-
boundedness condition, then we have, by Markov’s inequality, that P (X > 0) <
4nexp{−A6−1η4n1+1/(`−1)} = o(1).

We have (ii) with high probability from Chernoff’s inequality. In fact, we easily
verify that for any ρ > 0 the probability that |e(~Gn,p)− p

(
n
2

)
| > ρp

(
n
2

)
is exponen-

tially small in pn2.
In order to prove that properties (iii) and (iv) hold for Gn,p with probability

1− o(1), we again apply Markov’s inequality to appropriate random variables.
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Let us consider (iii) first. Let U , W ⊆ V be disjoint sets satisfying (4). To verify
that (iii) holds with high probability, notice that the probability that (1) fails is

P (e(U,W ) > C|W |) ≤
(
|U ||W |
C|W |

)(p

2

)C|W |
≤
(

e
C
· p|U |

2

)C|W |

.

Observe that (1/2)p|U | ≤ ((1/2)pn)`−2/n ≤ (A/2)`−2n−1/(`−1). From n−|U | ≥
n− |W | ≥ |W |, where the last inequality comes from |W | = o(n), we may conclude
that

(
n
|U |
)
≤
(

n
|W |
)

and, therefore,
(

n
|U |
)(

n
|W |
)
≤
(

n
|W |
)2.

These inequalities imply that the expected number of subsets U and W , with
cardinalities u and w respectively, for which (4) holds and e(U,W ) > C|W |, is at
most

∑
1≤w<n/2

w∑
u=1

(
n

u

)(
n

w

)( e
C
· pu

2

)Cw

≤
∑

1≤w<n/2

w

(
n

w

)2
(

e
C

(
A

2

)`−2

n−1/(`−1)

)Cw

≤
∑

1≤w<n/2

w
(en

w

)2w
(

e
C

(
A

2

)`−2

n−1/(`−1)

)Cw

=
∑

1≤w<n/2

w

w2w

(
e1+2/C

C

(
A

2

)`−2

n(2/C)−(1/(`−1))

)Cw

=
∑

1≤w<n/2

w

w2w

(
e1+2/C

C

(
A

2

)`−2

n−2/C

)Cw

= o(1),

for C = 4(`− 1). Thus (iii) holds with probability 1− o(1).
We now turn to (iv). Notice that we have K ≥ n/m, and hence

B = pm1−1/(`−1) ≥ B0(Km/n)1−1/(`−1) ≥ B0.

Observe that the number of arcs T is at least γ(p/2)m2`, and the expected num-
ber of (ε, γ,B, C, D;V(m), T )-subgraphs of ~Gn,p containing at most σ0n

`/(`−1) ≤
σm`/(`−1) cycles ~C` of length ` is o(1). In fact, for any given positive integers m
and T ≥ γ(p/2)m2`, this expected number is, by Lemma 4, at most

(n)`mαT

(
(` + 2)m2

T

)(p

2

)T

≤ n`m

(
α · e(` + 2)m2

T
· p

2

)T

≤ n`m

(
eα(` + 2)

`γ

)T

= n`m

(
1
e

)T

≤ exp
{
(log n)m`− γ(p/2)m2`

}
= o(n−3).

Summing over all possible choices for m and T , we only have an additional factor
of at most n3. Thus (iv) holds with probability 1− o(1) by Markov’s inequality.
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Finally, the expected number of short oriented cycles is
`−1∑
i=3

(n)i

2i

(p

2

)i

≤ 1
16

`−1∑
i=3

nipi ≤ Ān.

Invoking Markov’s inequality again, we see that the probability that the number
of short oriented cycles should be greater than Ān`/(`−1)/log log n is smaller than
log log n/n1/(`−1) = o(1).

3.3. Proof of Corollary 2. Let ` ≥ 3 be an integer. Set β = 1/2 − 1/` and let
~Gn be an oriented graph with oriented girth ` given by Theorem 1.

Suppose we have a family T of pairwise disjoint transversals of cardinality |T | =
`. Let ~H be the graph obtained from ~Gn by deleting a transversal T ∈ T of this
family that satisfies |T | ≤ e(~Gn)/`. We have e( ~H) ≥ (1 − 1/`)e(~Gn) = (1/2 +
β)e(~Gn) and, by Theorem 1, the oriented graph ~H must contain an oriented cycle,
contradicting the fact that T should be a transversal.

4. Concluding remark

Both Theorem 1 and Corollary 2 assert the existence of sparse oriented graphs,
with some given oriented girth `, that contain oriented `-cycles in a very robust way.
Our proof technique is non-constructive. It would be interesting to see whether one
is able to prove these results constructively.
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