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The aim of this paper is to prove a Turan type theorem for random graphs. For 0 <
and graphs G and H, write G —, H if any v-proportion of the edges of G spans
at least one copy of H in G. We show that for every graph H and every fixed
real 6 > 0 almost every graph G in the binomial random graph model G(n,q),
with ¢ = q(n) > ((logn)*/n)Y/4H)  satisfies G — (x(H)—2)/(x(H)—1)+5 H, where
as usual x(H) denotes the chromatic number of H and d(H) is the “degeneracy
number” of H.

Since K7, the complete graph on [ vertices, is l-chromatic and (I — 1)-degenerate
we infer that for every [ > 2 and every fixed real § > 0 almost every graph G in
the binomial random graph model G(n,q), with ¢ = ¢(n) > ((log n)4/n)1/<l*1),
satisfies G H(Z—Q)/(l—l)-&-é Kl~
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1. Introduction

A classical area of extremal graph theory investigates numerical and structural problems
concerning H-free graphs, namely graphs that do not contain a copy of a given fixed
graph H as a subgraph. Let ex(n, H) be the maximal number of edges that an H-free
graph on n vertices may have. A basic question is then to determine or estimate ex(n, H)
for any given H and large n. A solution to this problem is given by the celebrated
Erdés—Stone—Simonovits theorem, which states that, as n — oo, we have

ex(n, H) = (1 - ﬁ + 0(1)) (;L) (1)

where as usual y(H) is the chromatic number of H. Furthermore, as proved independently
by Erdés and Simonovits, every H-free graph G = G™ that has as many edges as in is
in fact ‘very close’ (in a certain precise sense) to the densest n-vertex (x(H) — 1)-partite
graph. For these and related results, see, for instance, Bollobés [I].

Here we are interested in a variant of the function ex(n, H). Let G and H be graphs,
and write ex(G, H) for the maximal number of edges that an H-free subgraph of G may
have. Formally, ex(G, H) = max{|E(F)|: H ¢ F C G}. For instance, if G = K,, the
complete graph on n vertices, then ex(K,, H) = ex(n, H) is the usual Turdn number
of H.

Our aim here is to study ex(G, H) when G is a random graph. Let 0 < ¢ = ¢q(n) <1
be given. The binomial random graph G in G(n, ¢) has as its vertex set a fixed set V(G)
of cardinality n and two vertices are adjacent in G with probability ¢. All such adja-
cencies are independent. (For concepts and results concerning random graphs not given
in detail below, see, e.g., Bollobds [2].) Here we wish to investigate the random vari-
ables ex(G(n,q), H), where H = K; (I > 2) or H is a d-degenerate graph, a graph that
may be reduced to the empty graph by the successive removal of vertices of degree less
or equal d.

Let H be a graph of order |H| = |V(H)| > 3. Let us write dy(H) for the 2-density
of H, that is,

e(H)—1
]~ 2
A general conjecture concerning ex(G(n,q), H), first stated in [I0], is as follows (as is
usual in the theory of random graphs, we say that a property P holds almost surely

dQ(H):max{ :H' CH, |H’|>3}.
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or that almost every random graph G in G(n,q) satisfies P if P holds with probability
tending to 1 as n — 00).

Conjecture 1.1. Let H be a non-empty graph of order at least 3, and let 0 < q =
q(n) < 1 be such that gn*/(") — oo as n — oo. Then almost every G in G(n,q)
satisfies

ex(G, H) = (1 - + 0(1)> \E(G)|.

X(H) =1

In other words, for G in G(n,q) the Conjecture claims that G —, H holds al-
most surely for any fixed v > 1 — 1/(x(H) — 1). There are a few results in support of
Conjecture [T}

Any result concerning the tree-universality of expanding graphs, or any simple ap-
plication of Szemerédi’s regularity lemma for sparse graphs (see Theorem below),
gives Conjecture for H a forest. The cases in which H = K35 and H = Cy are es-
sentially proved in Frankl and Rédl [3] and Fiiredi [4], respectively, in connection with
problems concerning the existence of some graphs with certain extremal properties. The
case for H = K, was proved by Kohayakawa, Luczak, and Rodl [I0] and the case in
which H is a general cycle was settled by Haxell, Kohayakawa, and Luczak [5] [6] (see
also Kohayakawa, Kreuter, and Steger [9]).

Our main result relates to Conjecture[L.1]in the following way: we deal with the case in
which H = K; and ¢ = g(n) > ((logn)*/n)/(=1). More precisely we prove the following.

Theorem 1.2. Letl > 2, ¢ = q(n) > ((log n)4/n) 1/(171), and let G(n,q) be the bino-
mial random graph model with edge probability q. Then for every 1/(I —1) > 3§ >0 a
graph G in G(n,q) satisfies the following property with probability 1 — o(1): If F' is an
arbitrary, not necessarily induced subgraph of G with

B = (1= 2 +9)(3).

then F' contains K;, the complete graph on | wvertices, as a subgraph. Moreover, there

1
exists a constant ¢ = ¢(8,1) such that F contains at least cq(2)nl copies of K.

In this paper we give a proof of Theorem In Section [5| we outline the proof of an
extension of this result, Theorem (the detailed proof is given in [14]).

Recall that a graph H with |V(H)| = h is d-degenerate if there exists an ordering
of the vertices v1,...,v, such that each v; (1 < ¢ < h) has at most d neighbours in

t Very recently, Szabé and Vu [I6] proved independently the same result under a slightly weaker as-
sumption; in fact, they proved Theorem for g(n) > n~1/(1=3/2)  Their proof is elegant. To obtain
the smaller lower bound for g, they make use of the fact that Conjecture holds for H = K4 [10]
as the base of an induction; without using this result, their proof gives essentially the same condition
on ¢ as ours. Their approach extends to several infinite families of graphs H (see [16, Section 4]); the
present proof extends to all graphs, and works for g(n) > ((logn)4/n)'/?, where d = d(H) is the
“degeneracy number” of the graph H; see Theorem
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{v1,...,v;-1} (for more details concerning d-degenerate graphs see [I3] [15]). Since K; is
clearly (I — 1)-degenerate and I-chromatic, the following result extends Theorem [1.2

Theorem . Let d be a positive integer, H a d-degenerate graph on h vertices,
qg = q(n) > ((logn)4/n)1/d, and G(n,q) the binomial random graph model with edge
probability q. Then for every 1/(x(H) —1) > 6 > 0 a graph G in G(n,q) satisfies the
following property with probability 1 — o(1): If F is an arbitrary, not necessarily induced

subgraph of G with
1 n
> -
0> (1= 5= +9) )

then F' contains H as a subgraph. Moreover, there exists a constant ¢ = ¢(0, H) such that
F contains at least cq B Inl copies of H.

This paper is organized as follows. In Section [2] we describe a sparse version of Sze-
merédi’s regularity lemma (Theorem and we state the counting lemma (Lemma,
which are crucial in our proof of Theorem We prove Theorem in Section |3 Sec-
tion[)is entirely devoted to the proof of Lemma[2.3] The proof of Lemma[2.3|relies on the
‘Pick-Up Lemma’ (Lemma and on the ‘k-tuple lemma’ (Lemma . We give these
preliminary results in Section In Section [£.3] we outline the proof of Lemma [2.3
in the case [ = 4. Finally, the proof is given in Section [£.4] We discuss the case when H
is a d-degenerate graph and sketch the proof of Theorem in Section

For a general remark about the notation we use throughout this paper see the remark
in Section 2.3

Acknowledgement. The authors thank the referee for his or her detailed work.

2. Preliminary results

2.1. Preliminary definitions
Let a graph G = G™ of order |V(G)| = n be fixed. For U, W C V = V(G), we write

E(U,W) = Eg(U,W) = {{u,w} €EQ): uel, we W}

for the set of edges of G that have one end-vertex in U and the other in W. Notice
that each edge in U N W occurs only once in E(U,W). We set e(U, W) = eq(U,W) =
|E(U,W)|.

If G is a graph and Vi, ..., V; C V(G) are disjoint sets of vertices, we write G[V1, ..., V]
for the t-partite graph naturally induced by V1,...,V;.

2.2. The regularity lemma for sparse graphs

Our aim in this section is to state a variant of the regularity lemma of Szemerédi [I7].
Let a graph H = H™ = (V, E) of order |V| = n be fixed. Suppose £ > 0, C > 1,

and 0 < ¢ < 1.

Definition 2.1 ((¢,C)-bounded). For & > 0 and C > 1 we say that H = (V, E) is
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a (&, C)-bounded graph with respect to density q, if for all U, W C V, not necessarily
disjoint, with |U|, |W| > £|V|, we have

enw) < cq (- (571).

For any two disjoint non-empty sets U, W C V| let
6H(U, W) (2)
qUW]
We refer to dy (U, W) as the g-density of the pair (U, W) in H. When there is no danger
of confusion, we drop H from the subscript and write dy, (U, W).

Now suppose ¢ > 0, U, W C V, and UNW = (). We say that the pair (U, W) is
(e, H,q)-regular, or simply (e, q)-regular, if for all U" C U, W' C W with |U’| > ¢|U]|
and |W'| > ¢|W| we have

A, (U W) =

|diz,g(U', W) = dpr,o(UW)| < e. (3)

Below, we shall sometimes use the expression e-reqular with respect to density q to mean
that (U, W) is an (e, ¢)-regular pair.

We say that a partition P = (V;)§ of V. = V(H) is (e,t)-equitable if |Vy| < en,
and |Vi| = --- = |V4]. Also, we say that V} is the exceptional class of P. When the value
of € is not relevant, we refer to an (g,t)-equitable partition as a t-equitable partition.
Similarly, P is an equitable partition of V if it is a t-equitable partition for some ¢.

We say that an (e, t)-equitable partition P = (V;)f of V' is (g, H, q)-regular, or simply
(e, q)-regular, if at most (%) pairs (V;,V;) with 1 <4 < j < ¢ are not (g, g)-regular. We
may now state a version of Szemerédi’s regularity lemma for (£, C')-bounded graphs.

Theorem 2.2. For any given € > 0, C > 1, and tg > 1, there exist constants & =
&(e,C tg) and Ty = To(e,C,tg) > to such that any sufficiently large graph H that is
(&, C)-bounded with respect to density 0 < q¢ < 1 admits an (e, H, q)-reqular (¢, t)-equitable
partition of its vertex set with tg <t <Tj.

A simple modification of Szemerédi’s proof of his lemma gives Theorem [2.2] For ap-
plications of this variant of the regularity lemma and its proof, see [8, [12].

2.3. The counting lemma for complete subgraphs of random graphs
Let t > 1 > 2 be fixed integers and n a sufficiently large integer. Let a and € be constants
greater than 0. Let G € G(n,q) be the binomial random graph with edge probability
q = q(n), and suppose J is an [-partite subgraph of G with vertex classes Vi, ..., V]. For
all 1 <7 < j <1 we denote by J;; the bipartite graph induced by V; and V;. Consider
the following assertions for J.

@) Vil =m =mn/t
(I) ¢~'n>> (logn)*
(I1I) J;; has T = pm? edges where 1 > ag = p > 1/n, and
(IV) J;j is (e, g)-regular.
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Remark. Strictly speaking, in (I) we should have, say, |[m/t], because m is an integer.
However, throughout this paper we will omit the floor and ceiling signs | | and [ ],
since they have no significant effect on the arguments. Moreover, let us make a few more
comments about the notation that we shall use. For positive functions f(n) and g(n),
we write f(n) > g(n) to mean that lim,_ . g(n)/f(n) = 0. Unless otherwise stated,
we understand by o(1) a function approaching zero as the number of vertices of a given
random graph goes to infinity.
Finally, we observe that our logarithms are natural logarithms.

We are interested in the number of copies of complete graphs on [ vertices in such a
subgraph J satisfying conditions (I)~(IV).

Lemma 2.3 (Counting lemma). For every o, o > 0 and integer | > 2 there exists
e > 0 such that for every fixed integer t > 1 a random graph G in G(n,q) satisfies the
following property with probability 1 — o(1): Every subgraph J C G satisfying conditions
(I)~(IV) contains at least

1

(1 - o)pl)m!
copies of the complete graph K;.

We will prove Lemma [2.3] later in Section [4]

3. The main result

In this section we will prove the main result of this paper, Theorem This section is
organized as follows. First, we state two properties that hold for almost every G € G(n, q).
Then, in Section we prove a deterministic statement about the regularity of certain
subgraphs of an (g, ¢)-regular a-dense t-partite graph. Finally, we prove Theorem |1.2

3.1. Properties of almost all graphs
We start with a well known fact of random graph theory which follows easily from the
properties of the binomial distribution.
Fact 3.1. If G is a random graph in G(n,q), then
n
IB(G)] = (1+0(1))q( ]
holds with probability 1 — o(1).

The next property refers to Definition [2.1] and will enable us to apply Theorem

Lemma 3.2. ForeveryC > 1,£ >0 and g = g(n) > 1/n a random graph G in G(n, q)
is (&, C)-bounded with probability 1 — o(1).
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We will apply the following one-sided estimate of a binomially distributed random
variable.

Lemma 3.3. Let X be a binomial distributed random variable in Bi(N, q) with expec-
tation EX = Nq and let C > 1 be a constant. Then

P(X > CEX) < exp(—TCEX),

where T =logC —14+1/C > 0 for C > 1 (recall that all logarithms are to base e, see the

remark in Section .

Proof. The proof is given in [7] (see Corollary 2.4). Ul

Proof of Lemma Let G € G(n,q) and let U, W C V(G) be two not necessarily
disjoint sets such that |U|, |W| > &n. Clearly, e(U, W) is a binomial random variable

with
siew. )] = (wiw - (V51)).

Observe that E[e(U, W)] > n since ¢ > 1/n. Set 7 =log C — 1+ 1/C. Then Lemma 3.3
implies
P(e(U, W) > CE[e(U,W)]) < exp (—7CE[e(U,W)]).

‘We now sum over all choices for U and W to deduce that

P(G is not (&, C)-bounded) <
> 2 () (gpy) exp (rCEE@.W))
2 2 (o))
< 4" exp (—TCEle(U, W)]) = o(1),

since 7C' > 0 and E[e(U, W)] > n. O

3.2. A deterministic subgraph lemma
The next lemma states that every (e, ¢)-regular, bipartite graph with at least agm? edges
contains an (3¢, q)-regular subgraph with exactly agm? edges.

Lemma 3.4. For everye > 0, a > 0, and C > 1 there exists mqy such that if H =
(U,W; F) is a bipartite graph satisfying
(Z) |U| =mq, |W| = ms > My,
(i) Cgmimg > eg (U, W) > agmims for some function ¢ = q(mg) > 1/mq, and
(iii) H 1is (e, q)-reqular,
then there exists a subgraph H' = (U,W; F') C H such that
(i") e (U, W) = agmims and
(is") H' is (3¢, q)-reqular.
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Proof. We select a set D of
|D| = ey (U, W) — agmims

different edges in Ey (U, W) uniformly at random and fix H' = (U, W;F \ D). We
naturally define the density in D with respect to ¢ for sets U’ C U and W/ C W
by
_EaU, W) D) "
q|U"[[W]

In order to check the (3¢, H', g)-regularity of (U, W), it is enough to verify the inequality
corresponding to for sets U’ C U, W' C W such that |U’| = 3em; and |[W'| = 3ems.
Let (U’, W) be such a pair. We distinguish three cases depending on |D| and ey (U, W').

dp (U, W)

Case 1 (|D| < e3¢mims). The graph H is (e, H, q)-regular and thus
dH7q(U/, W’) > dqu(U7 W) —E&.
Since dg (U, W') > du (U, W') —dp o(U',W’), we have

D 1
DL S gm0

dH’~,q(UI,WI) > dH,q(U/,W/) ;

922gmyime

which implies that H' is (3¢, ¢)-regular.

Case 2 (exg(U',W') < e3gmims). Observe that ey (U’',W') < e3gmims implies

dy (U, W) < g (5)
H is (e, H, g)-regular and thus
10
A (UW) <e+dy (U, W) < 5E (6)

On the other hand, dp’ o(X,Y) < duq¢(X,Y) for arbitrary X C U and Y C W, which
combined with and @ yields

1
(ds o (U W) — dge o (U, W)] < 505 +5 <3

Up to now, we have not used the fact that D is chosen at random. To deal with the
case that we are left with (that is, the case in which |D| > e3gmimsy and ey (U',W') >
e3gmyms), we will make use of this randomness. Before we start, we state the following
two-sided estimate for the hypergeometric distribution.

Lemma 3.5. Let sets B C U be fized. Let |U| = u and |B| = b. Suppose we select a
d-set D uniformly at random from U. Then, for 3/2 > X\ > 0, we have

bd bd A% bd
IF’<|DHB|— 2)\)§2exp(—).
u U 3 u

Proof. For the proof we refer to [7] (Theorem 2.10). Ul
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We continue with the proof of Lemma

Case 3 (|D| > e2qgmimsy and ey (U',W') > e3gmimsy). Recall that U’ C U and
V' C V are such that |U’| = 3em; and |V’| = 3ems. First, we verify that

dp (U, W)
d »q ) _d / "l <
DU W) G s = (U1, W) < & (7)
implies that
|drr q(U, W) = dp o(U", W] < 3e. (8)

Indeed, straightforward calculation using the (g, ¢)-regularity of H and give
|drr q(U,W) = dp o (U, W)
= [(d1,q(U, W) = dp o(U,W)) = (dug([U",W') = dp o(U", W))]
< e+ |dp,g(U W) —dpq U, W]
dp (U, W)
du,q(U,W)
dp (U, W)
dp,q(U,W)

<e+|dpUW)—dp,(UW)

dpq(U,W) —dp(U' W)

|dm,q(UW) —dg (U, W) +e

Next, we will prove that is unlikely to fail, because of the random choice of D. We

set
3
/\—min{gé,g}. 9)
Then the two-sided estimate in Lemma [3.5] gives that
U',W")|D| eq (U, W")|D|
DrEsw, W) - 2 <A ’
00 Bl 0 en(U.W)
fails with probability
A ey (U, W")|D|
<2 —_—— 10
= eXp( 3 en(UW) ) (10)
Since
dy (U, W")
dp U W') —dp (U W)—21— 1 2
D,q( bl ) D,q( I )dH’q(U7W)
1 exg(U',W")|D|
=——||[DNEg(U W) - ———F——2—
9e2gmyma | n(U Wl en (U, W) )

and because of (ii) and (9)), we have
! ! ! !
9ge2mimse ey (U, W) 9qe2mimas 9qe2myims

<eg



10 Y. Kohayakawa, V. Rédl, and M. Schacht

we infer that and consequently fails with small probability given in .
We now sum over all possible choices for U’ and W’ and use the conditions of this case
(i.e. |D| > e3gmima, e (U, W') > e3gmymsz) and (ii). We have that

2.6
P (H' is not (3e, q)-regular) < 2™1™2.2exp <3éqm1m2> <1

for mq, mqy sufficiently large, since ¢ = g(mg) > 1/myg. This implies that, for mg large
enough, there is a set D such that H' is (3¢, ¢)-regular, as required.

O

3.3. Proof of the main result
The proof of Theorem [I.2]is based on Lemma[2.3] which we prove later in Section [d The
main idea is to “find” a regular subgraph J satisfying (I)~(IV) of the Counting Lemma,
in the arbitrary subgraph F' with

\E(F)| > <1 - z_% +5> q(Z)

Proof of Theorem Let I > 2 and 1/(I —1) > § > 0 be fixed and suppose
q = q(n) > ((logn)*/n)/¢=1) First we define some constants that will be used in the
proof.

We start by setting

o = g, (11)
o = 107° (12)

(As a matter of fact, our proof is not sensitive to the value of the constant o; in fact, as
long as 0 < o < 1, every choice works.) We want to use the Counting Lemma, Lemma
in order to determine the value of e. Set a®“ = @ and ¢“" = ¢, then Lemma yields

eCL. We set
eClo§
=min{ —, — 13
€ mln{ 3 ’80} (13)
and

C= 4T+6' (14)

We then apply the sparse regularity lemma (Theorem with eSRl = ¢ OSRL = ¢
and t§RY = max{,/812/6,40/6}. Theorem [2.2| then gives ¢5FE and we define

5 _ §SRL'
Moreover, Theorem [2.2] yields

/812 4
TOSRthztSRthSRL:maX{ 8;,50}. (15)

For the rest of the proof all the constants defined above (o, o, ¢, C, &, and t) are fixed.
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Fact Lemma, and Lemma imply that a graph G in G(n,q) satisfies the
following properties (P1)—(P3) with probability 1 — o(1):

(P1) [E(G)| = (1 +0(1))a(3),
(P2) G is (&, C)-bounded, and
(P3) G satisfies the property considered in Lemma

We will show that if a graph G satisfies (P1)—(P3), then any F' C G with |E(F)| >
(1—1/(1—1)+6)q(}) contains at least cq(é)nl (for some constant ¢ = ¢(d,1)) copies of
K, and Theorem will follow.

To achieve this, we first regularise F' by applying Theoremwith gSRL — ¢ COSRL —
and t58%Y = max{,/812/5,40/6}. Consequently F admits an (&, ¢)-regular (e, t)-equitable
partition (V;)§. We set m = n/t = |V;| for i # 0.

Let Feuster be the cluster graph of F with respect to (V;)§ defined as follows

V(Fcluster) = {1,...7t},
E (Fouster) = {{i,j}: (Vi, V) is (e, q)-regular A ep(V;,V;) Zame}.

Our next aim is to apply the classical Turdn theorem to guarantee the existence of a
K| C F_juster- For this we define a subgraph F’ of F'. Set

E(F/) = U{EF(Via Vj) {17]} € E(Fcluster)}

We now want to find a lower bound for |E(F’)|. There are four possible reasons for an
edge e € E(F) not to be in E(F'):

(R1)

(R2) e is contained in some vertex class V; for 1 <i <t¢,

(R3) eisin E(V;,V;) for an (g, ¢)-irregular pair (V;,V;), or
(R4) eis in E(V;,V;) for sparse a pair (i.e., e(V;, V) < agm?).

e has at least one vertex in Vj,

We bound the number of discarded edges of type (R1)-(R3) by applying that G is (&, C)-
bounded (Property (P2)):

# of edges of type (R1) < Cqen?,
2
# of edges of type (R2) < Cq <7) -1,

# of edges of type (R3)

A
Q
<
N
-3
N—

()
(L)
TN
O o
N——

Furthermore, we bound the number of discarded edges of type (R4), by

2 t
# of edges of type (R4) < ag (%) . <2)
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This, combined with n > 2, (11] @ @ @, and ¢ < 1 implies that

\E(F)\ E(F")| < ( (5—1— + )+§)qn2
(0ee+1)+5) ()
(600 (G+35) + 1)) =

Bz (1- 2+ 5 )a(3):

We use the last inequality and once again (P2) to achieve the desired lower bound for
|E( Clustcr)' Indeed

|E(Fetuster)| > ng/li) = (1 - % + g) (1 ~ i) (1+ i)_l g

and then, for n large enough (n > 16/§2), by using t? > 812/, we deduce that

1 4] 5\ t2
|E(Fcluster)| > <1 — m + 2) (1 _ 4) 5
1 5\ t2
<1l—1+8)2 (16)

1fi ﬁ+£
l—1) 2 2"

The last inequality implies, by Turdn’s theorem [18], that there is a subgraph K; in
Feouster- Let {i1,...,4;} be the vertex set of this K; in Fguster- Then we set Jy =
FVi,...,V;] € F. Now, every pair (V;;,V;,) for 1 < j < j* < [ satisfies the con-
ditions of Lemma [3.4 with e“*™34 = ¢ and a™34 = . Thus there is a subgraph
J C Jo C F that is (3¢, g)-regular and e ;(V;; Vi ) = agm?. Since ¢ < e°/3 and J satis-
fies conditions (I)~(IV) of the Counting Lemma Lemma [2.3] with the constants chosen
above (a®t = a, 0t = g, and eF > 3¢), there are at least

IN

IN

én
29\ 2 )’

and thus

Y]

v

3 1—-o0 Oé(;) 1 1—0 a(;) 1
(1= o)pBm! = %Q(Q)nz > ((TOSR)L)l ()0

different copies of K; in J C F. Observe that «, o and T depend on ¢ and [ but not on
1 1

n. Consequently, there are c(5,l)q(2)nl > 1 (where ¢(6,1) = (1 — a)a(2)/ (TOSRL)Z) copies

of K; in F, as required by Theorem ]

4. The counting lemma

Our aim in this section is to prove Lemma [2.3] In order to do this, we will need two
lemmas. We introduce these in the first two subsections. Then, in Section 4.3} we will
illustrate the proof of the Counting lemma on the particular case [ = 4. Finally, we give
the proof of Lemma in Section
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4.1. The pick-up lemma
Before we state the ‘Pick-Up Lemma’, Lemmal[d.3] let us state a simple one-sided estimate
for the hypergeometric distribution, which will be useful in the proof of Lemma

Lemma 4.1 (A hypergeometric tail lemma). Let b, d, and u be positive integers
and suppose we select a d-set D uniformly at random from a set U of cardinality u.
Suppose also that we are given a fized b-set B C U. Then we have for A\ >0

bd o\ Mbd/u
P <|D nB| > ,\u> < (X) . (17)

Proof. For the proof we refer the reader to [11]. Ul

We now state and prove the Pick-Up Lemma. Let k& > 2 be a fixed integer and let
m be sufficiently large. Let Vi,..., V) be pairwise disjoint sets all of size m and let B
be a subset of Vi x --+ x Vi. For 1 > p = p(m) > 1/m set T = pm? and consider the

probability space
0= Vi x Vi % % Vi—1 x Vi
N T T ’

where (V@;V’“) denotes the family of all subsets of V; x Vj of size T, and all the R =
(Ry,...,Rk—1) € Q are equiprobable, i.e., have probability

m2 —(k-1)
()

For every R = (Ry,. .., Ry—1) € Q the degree with respect to R; (1 < i < k) of a vertex
v in Vi is

dg, (vi) = [{vi € Vi: (vi, o) € R} (18)
Definition 4.2 (II(¢, u, K)). For ¢, p, K with 1> ¢, p > 0 and K > 0, we say that
property 11(C, u, K) holds for R = (R1,...,Rx—1) € Q if
Vi = Vi(K) = {op € Vi: dg,(vx) < Kpm, V1 <i<k—1}
and
B(R)={b=(v,...,vx) €B: vp € Vi A (vj,0) € Rj, V1< j<k—1}
satisfy the inequalities
Vil
IB(R)|

> (1-wm, (19)
< ¢ptimk (20)

We think of B(R) as the members of B that have been picked-up by the random
element R € Q. We will be interested in the probability that the property II((, u, K) fails
for a fixed B in the uniform probability space €.
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Lemma 4.3 (Pick-Up Lemma). For every 3, ¢ and p with 1 > ,{,pu > 0 there
exist 1 >n=n(3,(,pu) >0, K =K(8,1) >0 and mg such that if m > mg and

|B| < nm", (21)

then
P(II(¢, p, K) fails for R € Q) < g—DT, (22)

For the proof we need a few definitions. Suppose § and p are given. We define

0 = 387 (23)

K = max{?)(k_llibgl/e,ez}. (24)

Since p > 1/m the definition of K > 3(k — 1)log(1/60)/u implies that

-1 (um/zz - 1)) P <_m> =0

holds for m sufficiently large.
Using the definition of dg, in we construct for each i = 1,...,k—1 a subset of Vj
by putting

(25)

Vi) = {ur € VIV dp, (0g) < Kpm},

where Vk(o) = V. Observe that Vj, = Vk(o) D} Vk(l) D+ D Vk(k_l) = Vk. In the view of
Lemma [£.3] we define the following “bad” events in .

Definition 4.4 (A4;,B). For eachi =10,....,k—1 and K, p > 0, ¢ > 0, let A; =
Ai(p, K), B=B((,K) CQ be the events

A;: \Vk(i)| < (I—ip/(k=1))m,
B: |B(R)| > (pFimk.

Observe that the definition of Vk(o) = V), implies
P(Ay) = 0. (26)

We restate Lemma by using the notation introduced in Definition |4.4

Lemma (Pick-up Lemma, event version). For every 3, ¢ and p with 1 >
B,¢, ;> 0 there exist 1 > n = n(8,{,pn) >0, K = K(B,1) > 0 and mqg such that if
m > mg and

|B| < nm", (27)
then
P(Ag—1(p, K) v B(¢, K)) < =17, (28)
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We need some more preparation before we prove Lemma[d.3]. Suppose 3, ¢, i are given
by Lemma and 6, K are fixed by and . Foreachi=1,...,k—1 we consider
the set B; C B consisting of those k-tuples b € B which were partially “picked up” by
edges of Ry,...,R;. For technical reasons we consider only those k-tuples containing
vertices vy € Vk(lfl), i.e., with dg; (vx) < Kpm for j = 1,...,i—1. More formally, we let

B;={b=(v1,...,u05) € B: v EVk(Fl)/\ (vj,vp) € R, V1< j <i}.

We also set By = B. N
The definitions of V}, = Vk(kfl) - Vk(k72) and By_1 imply

B(R) C By_1. (29)

quality may fail in ecause we may have B B .) Foreachi =k, ...,
Equali fail in (29) b have V2PNV £ 0.) Foreach i = k..., 1
define (;_1 by

Ck—l = C:
k—1—(i=1p ki1,
i— - , ; 9 /CL .
Gi-1 4(k — 1)Kt G (30)
Furthermore, consider for each i =0, ...,k — 1 the event B; = B;({;, K) C Q defined by
B |Bi| > ¢ip'mF. (31)

In order to prove Lemma we need two more claims, which we will prove later.

Claim 4.5. For alll <i<k—1, we have
P(A;) =P <|V,§“ < (1 - sz1> m> <.

Claim 4.6. For all1 <i <k —1, we have

P(B; | ~Ai_1 A—=B;_1) < 6T,
Assuming Claims and we may easily prove Lemma [4.3].

Proof of Lemma . Set n = (o where ( is given by . The definition of By = B
and implies |By| < (ym* and consequently by the definition of the event By in

P(By) = 0. (32)
Because of and (;_1 = ( in we have
P(B) < P(Bi-1). (33)

Using the formal identity
P(B;) =P(B; A (mAj—1 A=Bi_1)) + P(B; A (Ai—1 V Bi—1)),
we observe that

P(B;) <P(B; | 7A;—1 A—=B;—1) + P(A;—1) + P(B;—1) (34)
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foreach i =1,...,k — 1. It follows by applying and that
P(Ax_1V B) <P(Ak—1) + P(Bk_1)

k—1
< P(Ax-1)+ > (BB | ~Ai A=Bisy) + P(Ai 1)) +B(Bo).
i=1

Claims and and , and finally imply
5I~c—l T
P(Aj_1V B) <2(k—1)0T <2(k—1) <2> < pl=1T
for m sufficiently large, as required. ]
We now prove Claim and then Claim

Proof of Claim 4.5 Fix a set V* C Vj, of size um/(k — 1). For a fixed j (1 < j <)
assume that dg, (vx) > Kpm for every vy in V*. This clearly implies the event

T
E;(V*):  |R;N(V; x V)| > Kpm-e = g 2=
k—1 k—1
The T pairs of R; are chosen uniformly in V; x Vj,, so the hypergeometric tail lemma,
Lemma [4.1] applies, and using the fact that e < K/2 by we get

(35)

e\ KuT/(k=1) uTK log K
. ) < [ — < e
P 5V < (2 <omp (155 (36)
Set E; =\/ E;(V*), where the union is taken over all V* C Vj, of size um/(k —1). Then
m wIT'Klog K
P(E;) < _pE A g B
D% (s 1) o (25 o
holds for each j = 1,... 4, and this implies
' ‘ m uTK 10gK>
P E; | <1 exp (— .
<\_/ > <um/(k - 1>> 2(k — 1)
Finally, the fact that A; C \/;:1 E; and the choice of K with gives that
. m wIT'Klog K T
P(A4;) < —— | <
40 % - ) o () <
as required. ]

Proof of Claim Recall g, ¢ and p are given by Lemmam and 0, K and (; are

fixed by , and . In order to prove Claimwe fixi (1<i<k-—1)and we
assume —A;_1 and —B;_1 occur. This means by Definition and that

Gioap'tmt. (39)

VY

Y

N

|Bi—1]
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‘We have to show that
|Bi| < Cip'm”* (40)

holds for R in the uniform probability space Q with probability > 1 — 7.
First we define the auxiliary constant

1\ 4K G
e ()" ”
The definition of € in and the facts that 0 < (; < 1 foreachi=1,...,k—1 and
K > 1 imply that
9 \4
@z<m4>>& (42)

holds.
We define the degree of a pair in V; x Vk(i_l) with respect to B;_1 by

dp,_, (w;,wg) = ’{b = (v1,...,0%) € Bi—1: v; = w; and vy = wg}|.

We can bound the value of the average degree by and (39):

o) (s -0 Bial
avg {dlsifl(%vk-)- (vi,v) € V; x Vy } = VD) (43)

k—1 »
< i i—1 k72.
Sy s AL

We also can bound ABFI(VZ',V,C(FH) = max{dg,_,(vi,vx): (vi,vg) € V; X V,C(Fl)} by
the following observation. Let (v;,vr) be an arbitrary element in V; x Vk(i_l). Then, by
the definition of Vk(’_l), we have

dp, (v, o) < dg, (vg) - ... dg,_, (vx) - mF"27 07D < (Kpm)=tmF—i—1, (44)
Inequality implies
As. | (Vi,vk(i—l)) < Kimlpi—imh=2, (45)
Let F be the set of pairs of “high degree”. More precisely, set

F = {(vi,vk) eV x Vk(i_l): dp, , > Czipi_lmk_Q}.

A simple averaging argument applying yields

2(k = 1)¢i—1

2(k — 1)@},1 m2
(h—1—(i—Dw) ‘

Fl < 1 (- DG

Qmmﬁﬂwg
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On the other hand, if we set F' = V; x Vk(i*l) \ F then the definition of F and imply

|Bl| = Z dBi—l(/Ui?,Uk) + Z dBi—l(viﬂvk)

(vi,op)ERNF (vi,vk)ERINFE

IN

%pi—lmk’—2|Ri ) F‘ + Ki—lpi—lmk—Q‘Ri ) F|

IN

%pi—lmk—2T + Ki—lpi—lmk—Q‘Ri ) F|

G, Ko ik
(2+ T |R; N F| ) p'm". (47)

Next we prove that

9Ki-1
which, together with , yields our claim, namely, that

P (|RmF| 5 T ) <7, (48)

P (|Bl| > Qpimk) S QT. (49)

We now prove inequality . Without loss of generality we assume equality holds in .
Then the hypergeometric tail lemma, Lemma implies that

|F|T B ‘ ) 2(k - ]-)Cifl
P<mﬂwﬂ>hnﬂ)—P<R”””>L@—1—0—DMQT)

2(k—1)¢; 1

AR e
<(L> (50)

L;(log L;)(k — 1)1 T
< o (- Lo e = DGaT
(k=1—=(—-1u)G
where in the last inequality we used that L; > e? (see (42))). The definitions of (;_; and

L; in and yield

Litk=1G1  _ LiG parci-rye, _ G
k—1—(i—-Dp)G 4Ki—1 AKi—1

We use the last inequality to derive

L;(log L; —1)G— 1

i(log z)(k )Gi—1 — log>,
(k—1- (G- DG g
L. 2(]{3 — I)Ci—l _ Cz

“k=1—(G—1)u)¢ 2Ki-17

which, combined with inequality , gives (48). L]

4.2. The k-tuple lemma for subgraphs of random graphs
Let G € G(n,q) be the binomial random graph with edge probability ¢ = ¢(n), and
suppose H = (U, W; F) is a bipartite, not necessarily induced subgraph of G with |U| =
my and |W| = mgy. Furthermore, denote the density of H by p = e(H)/mims.

We now consider subsets of W of fixed cardinality & > 1, and classify them according
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to the size of their joint neighbourhood in H. For this purpose we define
B® (U, W;~) = {b={vi,...,00} eW: |dg(b) fpkm1| > 'ypkml} ,

where dg(b) denotes the size of the joint neighbourhood of b in H, that is,

k

(Tu(vi)|.

i=1

dij (b) =

The following lemma states that in a typical G € G(n, q) the set B®) (U, W;~) is “small”
for any sufficiently large (g, ¢)-regular subgraph H = (U, W; F’) of a dense enough random
graph G. Recall that if G is a graph and U, W C V(G) are two disjoint sets of vertices,
then G[U, W] denotes the bipartite graph naturally induced by (U, W).

Lemma 4.7 (The k-tuple lemma). For any constantsa >0,y > 0,7 >0, andk > 1
and function mo = mo(n) such that ¢*mqy > (logn)*, there exists a constant € > 0 for
which the random graph G € G(n,q) satisfies the following property with probability
1 —o(1): If for a bipartite subgraph H = (U,W; F) of G the conditions

(i) e(H) > ae(G[U,W)),

(ii) H is (e, q)-regular,
(i) |U] =mq > mg and [W|=msa > mg

apply, then

O @) <)) G1)
also applies.
Proof. The proof of Lemma[L.7)is given in [11]. Ul

4.3. Outline of the proof of the counting lemma for [ =4

The proof of the Lemma [2.3| contains some technical definitions. In order to make the
reading more comprehensible, we first informally illustrate the basic ideas of the proof
for the case | = 4, before we give the proof for a general [ > 2 in Section [£.4]

Consider the following situation: Let Vi, Va, V3, and V4 be pairwise disjoint sets of
vertices of size m. Let J be a 4-partite graph with vertex set V(J) =V, UV U V3 U V,.
We think of J as a not necessarily induced subgraph of a random graph in G(n, ¢) with
T = pm? edges between each V; and V; (1 <i < j < 4), where p = aq. We will describe
a situation in which we will be able to assert that J contains the “right” number of Kj’s.
Here and everywhere below by the “right” number we mean “as expected in a random
graph of density p”: notice that, for the number of K,’s, this means ~ pSm?. Observe
that, however, J is a not necessarily induced subgraph of a graph in G(n,q), and this
makes our task hard. As it turns out, it will be more convenient to imagine that J is
generated in | — 1 = 3 stages. First we choose the edges from V; to V3 UV, U V3. Then we
choose the edges from V5 to V3 UV5, and in the third stage we disclose the edges between
V2 and Vl.

The key idea of the proof is to consider “bad” tuples, which we create in every stage.



20 Y. Kohayakawa, V. Rédl, and M. Schacht

“bad” 3-tuples
— -~

- ~
- e DU . dicaidéd

\ + . vertices

\ s N
“picked-up” Pair (v1,v2) is good if it has:
3-tuple (i) approxiametly expected number of joint

neighbours vz such that
(ii) (v1, v2, v3) is not a “bad” 3-tuple

(a) (b)

Figure 1

After we chose the edges from Vj to the other vertex classes, we define “bad” 3-tuples
in V7 x Vo x V3: a 3-tuple is “bad” if its joint neighbourhood in V4 is much smaller
than expected. Then, with the right choice of constants, Proposition for k = 3
and J = J[V4, Vi UV, U V3] will ensure that there are not too many “bad” 3-tuples.
(Proposition is a corollary of the the k-tuple lemma, Lemma )

We next generate the edges between V3 and V3 U Vo. We want to define “bad” pairs in
V1 x V5. Here it becomes slightly more complicated to distinguish “bad” from “good”.
This is because there are two things that might go wrong for a pair in Vi x V. First of
all, again the joint neighbourhood (now in V3) of a pair in V; X Vo might be too small.
On the other hand, it could have the right number of joint neighbours in V3, but many
of these neighbours “complete” the pair to a “bad” 3-tuple. Here the Pick-Up Lemma
comes into play for k = 3 (see Proposition : this lemma will ensure that, given the
set of “bad” 3-tuples (which was already defined in the first stage) is small, we will not
“pick-up” too many of these (see Figure a)), while choosing the edges between V3 and
V1 U Vs, (We say that a triple (v1,vg, v3) has been picked-up if (v1,v3) and (ve, v3) are in
the edge set generated between V5 and V; U V5.)

Here the situation complicates somewhat. The Pick-Up Lemma forces us to discard a
small portion (less or equal uP'Y fraction) of vertices in V3. Thus, in order to avoid the
first type of “badness” (too small joint neighbourhood) as a 2-tuple in V; x V3 it is not
enough to have the right number of joint neighbours in V3; we need the right number
of joint neighbours in V3, which is V3 without the pFYm vertices (at most) we lose by
applying the Pick-Up Lemma (see Figure [I{b)). This will be ensured by the the k-tuple
lemma (to be more precise, Proposition , now for k=2 and J = J[Vg, V1 U Wl

Later, in the general case, we will refer to the set of “bad” ¢-tuples in V3 x --- x V;
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as B; (see Definition E below). We define B; as the union of the sets Bga) and ng),
defined as follows. We put in Bga) the i-tuples that are “bad” because they have a joint
neighbourhood in 17i+1 that is too small; the set Bl(b) is defined as the set of i-tuples in
Vi x --- x V; that “bad” because they extend to too many “bad” (¢ + 1)-tuples (i.e.,
(i + 1)-tuples in B;y1).

As described above, we define B; (i = [ — 1,...,1) by reverse induction, starting
with B;_1, and going down to B;. With the right choice of constants, there will not be
too many “bad” vertices in V.

Having ensured that most of the m vertices in V; are not “bad” (i.e., do not belong to
B1) we are now able to count the number of K,’s. We will use the following deterministic
argument, which will later be formalized in Lemmal[4.13] Consider a vertex vy in V; that is
not “bad”. This vertex has approximately the expected number of neighbours in Va (i.e.,
~ pm), and not too many of these neighbours constitute, together with vy, a “bad” 2-
tuple. In other words, this means that v; extends to ~ pm copies of Ky in (V4 x V3)\ Bs.
This implies that each such K3 has the right number of joint neighbours in Vs (i.e.,
~ p?m), and consequently extends to the right number of K3’s in (V; x Vo x V3) \ Bs.
Repeating the last argument, each of these K3’s extends into ~ p3m different copies of
K. Since we have ensured that most of the m vertices in V; are not “bad”, we have
~m-pm-p?m-pPm = p(g)m4 copies of Kjy.

4.4. Proof of the counting lemma

In this section we will prove Lemma [2.3] In the section ‘Concepts and Constants’, we
introduce the key definitions and describe the logic of all important constants which will
appear later in the proof. Afterwards we prove two technical propositions in the section
‘Tools’. These propositions correspond to the lemmas in Sections .1] and [£:2] and their
use will give a short proof of the Counting Lemma, to be presented in the section ‘Main
proof’.

Concepts and constants. Let ¢ > [ > 2 be fixed integers and let n be sufficiently
large. Let o and € be positive constants. Let G € G(n, ¢q) be the binomial random graph
with edge probability ¢ = ¢(n), and suppose J is an l-partite subgraph of G with vertex
classes Vi,..., V. For all 1 <i < j <1 we denote by J;; the bipartite graph induced by
Vi and Vj. Consider the following assertions for J.

(@) |Vil=m=mn/tforall 1 <i<lI,

(1) ¢~tn > (logn)?,
(IT) J;; (1 <4< j <I)has T = pm? edges, where 1 > ag = p>> 1/n, and
(IV) Ji; (1 <i<yj<l)is (e g)-regular.
Let 0 > 0 be given. We define the constants

1
’y:u:V:§(1—(1—U)1/l), (52)

and, for 1 <i <1[—2, we put

Bis = (; (a)@—(;))”f 53)

e
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In order to prove Lemma we need some definitions. These definitions always depend
on a fixed subgraph J of our random graph G € G(n,q) satisfying (I)~(IV). However,
we will drop references to J because we want to simplify the notation (e.g., we write V;
instead of V;7). Also, for each i = 1,...,l we denote V; x --- x V; by W.

In the proof we consider for a fixed J sets of “bad” i-tuples B; CW; (1 <i<l—1).
We define these sets recursively from B;_; to B;. As mentioned above in the discussion
of the [ = 4 case, there are two reasons that make a given i-tuple in W; “bad”. First
of all, its joint neighbourhood in V;;; might be too small (see the definition of Bga) in
Definition and, secondly, it could extend into too many “bad” (i 4+ 1)-tuples in B; 1
(see the definition of Bl(b) in Definition . Note that the “bad” (i + 1)-tuples have
already been defined, as we are using reverse induction in these definitions.

Next we apply the Pick-Up Lemma for k =i+ 1 (1 <4 <[ — 2) with uffl = p and

"YU = Bit1 (and yet unspecified ¢}). As a result we obtain K14 = K (B0, pid))
and the set

Vier = VT (KZY) € Vi
of undiscarded vertices with
Vira| = (1 = wym.
We need a few more definitions before we define B;, Bga) and be) (recursively for
i=1-—1,...,1). Let T';;1(b) be the joint neighbourhood of b = (vy,...,v;) € W; in V;44
with respect to J, more precisely

Lo (b) = {w e Vigr: (vj,w) € BE(Jji41), V1< j<i}.
For a fixed set B C W;y1 and b = (vy,...,v;) € W; we denote the degree dg(b) of b in B
with respect to J by
dg(b) = Hw eTip1(b): (vi,...,vi,w) € BH .

Next we define (still for a fixed J) the sets of “bad” i-tuples B; = B;(y, u,v) C W;
mentioned earlier. Although we do not apply the Pick-Up Lemma for k = [, for the sake
of convenience we consider the neighbourhood of elements in W,_; in V;, instead of in V.

Definition 4.8 (B;_1, Bga), Bl(b), B;). Let~y, p, v be given by . We define recur-
sively the following sets of “bad” tuples fori=1—1,...,1:

Bi = Bii(vp) = {bewi: ‘fl(b) <(1—'y—u)pl71m},
BY = BV = {pewi [Tia)| <@ -y-pmpim},
B = BPw) = {beW: dg,, (b)>vpm},

Bi = Bi(y,mv) = B(v,muB" ().

We also consider “bad” events in G(n,q) defined on the basis of the size of the sets
Bi—1(v, p), BEG)(%M), ng)(u), and B; (v, p, v) defined above. In the following definition
we mean by J an arbitrary subgraph of G € G(n, q) satisfying conditions (I)—(IV).
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Definition 4.9. Let vy, u, v be given by and letn; >0 (i=1—1,...,1) be fized.
We define the events
3JCG st |Bioa| > (m—a/2)m!
B\ > (ni/2)m’

ElJCGSt |Bl+1\<n+1mz+l A |B |>(m/2)m

X1 (7 1

):
Xy, i) 3T CG st
):
)=

Xy, gt v, 05, i
Xi(v v mimien) = X\ (v i) VX (3 v mi)-
For simplicity, we let
X = X1 = Xooa (7, s 1),
Xi(a) = Xi(a)(’y,,umi) fori=1,...,1—1,
Xi(b) = Xi(b)(%p, UMy Mig1) fori=1,...,1—2,
and

Xi:Xi(’yvu7V7niuni+1) fOT”izl,...7l—1.

Owing to the special role of X; later in the proof, we let

Xpad = Xbad (7, s v, 01, m2) = X1(v, s v, 01, m2).

We will now describe the remaining constants used in the proof. Notice that « and
o were given and we have already fixed v, u, and v in and §; for 2 < i <[—-1
in . The (yet unspecified) parameters 7; and e will be determined by Propositions
and First we set 171 = v. Then Proposition [4.10| (PU;;1) inductively describes
Nit1 = Ni+1(Bit1, 7y, 1y v,m;) for i = 1,...,1 — 2 such that P(X (b)) o(1). Finally, for
i=1,...,1—1, Proposition [£.11] (TL;) imphes the choice for e; = €;(«v, 7, i1, 1;) such that
]P’(Xi(a)) = 0(1). We set

e=min{g;:i=1,...,1—1}.

A diagram illustrating the definition scheme for the constants above is given in Figure

a7o—a’y“u'77/7/827' e 7ﬁl—1

PUy PU;+1 PU;_1
m=v 2 i Mi+1 n—-1
lTLl l lTLi l lTLl,l
€1 €2 Eq Ei+1 E1—-1
£ =ming;

Figure 2 Flowchart of the constants

Thus, ¢ is defined for any given a and o, as claimed in Lemma From now on, these
constants are fixed for the rest of the proof of Lemma
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Tools. We need some auxiliary results before we prove Lemma [2.3] For this purpose we
state variants of the Pick-Up Lemma, Lemma[4.3] and of the k-tuple lemma, Lemma [4.7]
in the form that we apply these later. These variants will be referred to as (PU;;1)
and (TL;).

The next proposition follows from Lemma fork=i+1(1<i<Il-2).

Proposition 4.10 (PU;41). Fiz 1 <i<[—2. Let a, 0 > 0 be arbitrary, let v, p, v

and B;y1 be given by and , and let n; be defined as stated in Section (see
Figure @) Then there exists n;+1 = Ni+1(Bix1,7, 1y vy 1;) > 0 such that for everyt >1 a
random graph G in G(n,q) satisfies the following property with probability 1 — o(1): If J
is a subgraph of G satisfying (I)-(IV) and Bi11 (v, t, v) € Wiy1 is such that

Bia (v, 1, v)| < ipam™, (54)
then the number of i-tuples b in W; with
dg,.,(b) > vp'm

is less than

i i
2 b
which means
BZ@(V)‘ < %m (55)
Furthermore,
Vit = (1= p)m
holds.

We restate Proposition by using the events Xi(b) from Definition M Observe
that inequalities and correspond to X(” so that P(X”)) = o(1) is equivalent
to the first part of Proposition .

Proposition (PU;41). PFiz1 <i<Il—2. Let o, o > 0 be arbitrary, let v, p,

v and B;+1 be given by and , and let n; be defined as stated in Section (see
Figure @) Then there exists 1,41 = Ni+1(Bix1, 7, 1, v, mi) > 0 such that for every t > 1

P (Xz(b) (77 M,V i, 77i+1)) = 0(1)
and

P ([l < (1= p)m) = o(1).

Proof. We apply Lemma for k =i+ 1 and with the following choice of Y, ¢PU,
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/’LPU:
PV = B, (56)
U= 2 (57)
o= (58)

Lemmathen gives n*'Y, from which we define the constant 7;,; we are looking for by
putting
i1 =1"".

We assume inequality holds. In other words, the number of the “bad” (i 4+ 1)-tuples
in Wi+1 is

Bita| < migam™t = n"Umi (59)
On the other hand, if we assume that does not hold (i.e., the event Xi(b) occurs),
then the number of (i + 1)-tuples in B;; that have been “picked-up” has to exceed

%mi -vpim = PUpimi+t, (60)

The Pick-Up Lemma bounds the number of these configurations in

Vi xVig wox Vi x Vi
T T

. 2\ ¢ 2\ ?
(87" - (?) = (Bir1)" (n;) : (61)
We now estimate the number of all possible graphs J satisfying (I)-(IV) for which
holds but the number of members in B;;; that have been “picked-up” exceeds .
There are fewer than (::l)l different ways to fix the [ vertex classes of J. Furthermore,
observe that B;;1 is determined by all the edges in J;;» (i < j' <1, 1 < j < j/ <1, which

! m) (2)-("%")

gives (2) — (i‘gl) different pairs jj’). Thus we have at most (T
determine B; ;. This, combined with , (I11), and , yields that

p(x) = (2) (%) D (7t
<o (emT2q> (()-G)T o)™ < 2 <(2>(£)—(§) (/Bi+1)i)T i

Since [ is fixed and T > m = n/t, we have

i (X}b)) = o(1).

by

possibilities to

Note that the set ‘7i+1 was determined by the application of the Pick-Up Lemma.
Therefore, the second assertion in Proposition m also follows from the proof above.

O
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The following is an easy consequence of Lemma [4.7|for k =4 (1 <i<[—1).

Proposition 4.11 (TL;). Fiz1 <i<Il-1. Let o, o > 0 be arbitrary, let v, u be given
by , and let n; be defined as stated in Section (see Figure @ Then there exists
g; = €i(a, 7y, u,m;) > 0 such that for every t > 1 a random graph G in G(n,q) satisfies the
following property with probability 1 — o(1): If € < &; and J is a subgraph of G satisfying
(I)-(IV), then the number of i-tuples b in W; with

()] < (1 =7 = pp'm

is less than

which means that
B ()| < B, (62)

We can reformulate Proposition in a shorter way by using the event Xi(a) (see
Definition [4.9)).

Proposition (TL;). PFizl1 <i<1l-1. Let o, o > 0 be arbitrary, let v, p be
given by and let n; be defined as stated in Section (see Figure @) Then there
exists €; = g;(a, 7y, 1, m;) > 0 such that for every t > 1 and € < g;

P (X 1)) = o(1).

Proof. We apply the k-tuple lemma, Lemma with k& =i, ™" = a/3, y™* = ~ and

Nt =i/ (2i). (63)
The k-tuple lemma gives an €™ and we set ¢; = anin{(aTL)3 ,a/2,1/27}. Let € < g
and J be a subgraph of G € G(n, q) satisfying (I)~(IV). Set U = V; 11 and W = U;’:l V.
By (IV), the graph J;;» (1 < j < j' <) is (e, ¢)-regular. A straightforward argument
(using € < 1/27 and Lemma for C' = 3/2) shows that with probability 1 — o(1) the
subgraph J[U, W] is at least ({/¢, ¢)-regular and therefore (¢T%, ¢)-regular, which yields
condition (ii) of Lemma Moreover, with probability 1 — o(1) we have, say,

3
IB(GIU, W])| < Sa(1 — p)km?,
and using the regularity of J we see that
[E(JU,W])| 2 (a = e)q(1 — p)km?,

which by our choice of € gives condition (i) of Lemma Finally, with assertion (II)
for J all assumptions of the k-tuple lemma are satisfied for J[U, W].
Therefore, the k-tuple lemma implies that, with probability 1 — o(1), we have

Foa®)] < -1 = ] <7 (7).

‘{bEWi:
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The choice of T in gives

HbGWi:

fm(b)‘ <(AQ-v—n +w)pim}‘ < %mi,

and hence holds with probability 1 — o(1), by the simple observation that

Ty ()] < (1 =5 = wp'm  implies

Fi+1(b)‘ < (=7 —p+ypp'm.

O

Main proof. Our proof of the Counting Lemma, Lemma [2.3] follows immediately from
Lemmas and below. Lemma [£.12]is a probabilistic statement and asserts that
the probability of the event Xp.q C G(n,q) is o(1). On the other hand, Lemma
is deterministic and claims that if a graph G is not in Xp,q and J is a not necessarily
induced subgraph of G satisfying (I)—(IV), then J contains the right number of copies
of K;. We apply the technical propositions from the last section in the proof of the
probabilistic Lemma below.

Lemma 4.12. For arbitrary o and o > 0, let v, p, v be given by , and let € and n;
(t=2,...,1—1) be defined as stated in Section . Let G be a random graph in G(n,q).
Then

P(G € Xbad(’%.“a V)) - 0(1)

Proof. Formal logic implies

Xpad € Xl(a) \ (X1(b)

A-Xy) v X v (X A -Xy)
VAR, :
v x v x®A-x_1) v X
1—2 -2 -1 -1
and thus, by Propositions and (notice X;—1 = X l(f)l by Deﬁnition, we have
1-2
P (Xpaa) < 3 (BOXY) + (X)) + B(Xi 1) = o(1).
i=1
]

Lemma 4.13. For arbitrary a and o > 0, let v, u, v be given by , and let € and
n; (i =2,...,1—1) be defined as stated in Section , Then every subgraph J of a graph
G & Xvad(7, 1, V) satisfying conditions (I)—(IV) contains at least

1

(1-— a)p(2)ml

copies of K.

Proof. We shall prove by induction on i that the following statement holds for all
1<:<1:
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(S;) Let J be a subgraph of G € Xpaq such that (I)~(IV) apply. Then there are at least

(1—y—p— V)ip@mi different i-tuples in W; \ B; that induce a K; in J[Vi,..., Vi].
Suppose i = 1. Note that = Xp.q implies that [V N By| < mym = vm. Therefore Vi \ B;
contains at least (1 —v)m > (1 — v — u — v)p’m* copies of K;.

We now proceed to the induction step. Assume i > 2 and (S;—1) holds. Therefore,
Wi_1 \ Bi_1 contains at least (1 — 5 — u — v)~'p("2 )mi=1 different (i — 1)-tuples b =
(v1,...,v;—1), each constituting the vertex set of a K;_1 in J[Vi,...,V;_1]. For every
be W;_1\ Bi—1, we have
(i) [F4(0)| = (1 - — p)pi~tm, and
(ii) dp,(b) < vp'~tm.

Therefore, every such b extends to at least (1 — v — p — v)p'~1m different v’ € W; \ B;
that correspond to a K; C J[Vi,...,V;]. This implies (S;), and hence our induction is
complete.

Assertion (S;) and the choice of 7, p, and v in give at least

1

(1= = p—)plEm! = (1 - o)ple)m!

copies of K; in J. L]

Clearly, Lemmas and together imply the Counting Lemma, Lemma

5. The d-degenerate case

In this section we describe how the proof of Theorem extends to the proof of Theo-
rem . The detailed proof of Theorem is given in [14]. First we outline the proof
of Theorem [1.2, assuming a counterpart for the Counting Lemma, Lemma which
we state below.

Let d be an integer and H a d-degenerate graph on h vertices. Let t > h > 2 be fixed
integers and let n be sufficiently large. Let « and € be constants greater than 0. Suppose
J is an h-partite subgraph of G with vertex classes Vi,..., V) satisfying the following
conditions:

(I') |V;] = m =n/t for all i,

(IT') ¢*n > (logn)*,
(IIT") for all 1 <4 < j < h,
|E(J )|7 T:pm2 1f{wl,wj}6E(H)
Yo if {wi, w;} & B(H),

where 1 > ag=p > 1/n, and
(IV') Ji; (1 <i<j<h)is (e q)regular.

We now state the appropriate counting lemma for the d-degenerate case.

Lemma (Counting lemma, d-degenerate case). For every a, o > 0, integer
d and d-degenerate graph H on h vertices, there exists € > 0 such that for everyt > h a
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random graph G in G(n,q) satisfies the following property with probability 1—o(1): Every
subgraph J C G satisfying conditions (I')—(IV’) contains at least

(1— 0)p|E(H)|mh

copies of H.

Sketch of the proof of Theorem . Let d be a fixed positive integer and suppose
H is a d-degenerate graph of order h. Let the vertices of H be ordered wy, ..., wy such
that each w; has at most d neighbours in {wy,...,w;—1}.

At first, we follow the proof of Theorem and observe that, by , the Erd6s—
Stone—Simonovits theorem (see (1)) implies that Feuster contains at least one copy of
H if we choose t5% big enough. This yields, in the same way as in the original proof,
that F contains an h-partite (e*°™23' q)-regular graph J with |E(J;;)| = aF*™23 gm?
if {w;,w;} € E(H) and E(J;;) = 0 if {w;,w;} ¢ E(H). For 1 <14 < h, we identify the
vertex class V; in J with the vertex w; € V(H).

We then apply Lemma with appropriate a™™23" and 0 < o < 1 to deduce
Theorem [L.2]. L]

Finally, we outline of the proof of Lemma .

Sketch of the proof of Lemma . We prove Lemma in the same way as
Lemma [2.3] Observe that conditions (I) and (IV) are unchanged in Lemma [2.3. Condi-
tions (IIT) and (IIT") state that J is a “blown-up” copy of the subgraph we are considering,
namely, K; and H, respectively. The main difference is between (II) and (II').

The crucial part of the proof of the original counting lemma is the definition of “bad”
tuples in Definition [4.8] Recall that the proof of Lemma [2.3] used the Pick-Up Lemma
(Lemma [4.3). There we had to discard a small portion of the vertices of V; (of high
degree to some Vj, j < i) to obtain Vi C V. For 1 < i< |V(K;)|, we considered two
types of “bad” (i — 1)-tuples in W;_1 = V1 x -+ x V;_1. The first t type, the ones put in
Bz(a)l, was determined by the size of their joint nelghbourhood in V On the other hand,

an (i — 1)-tuple in W;_; was bad ‘of the second type’, and was put in 81(717 if it was
contained in too many “bad” i-tuples in B;.

We use the property that H is d-degenerate to change the definition of Bl(a). In the
proof of Lemma @ we wanted to extend inductively each K;_; in W;_; that is not
“bad” to the right number of copies of K; in W; \ B;. For this purpose we had to consider
the joint neighbourhood of all vertices in the (i — 1)-tuple. The graph H is d-degenerate,
and we fixed an ordering wy, ..., wy of V(H) so that each w; has at most d neighbours
in {wy,...,w;—1}. This implies that it is sufficient to consider the joint neighbourhood
of at most d elements of the (i — 1)-tuple to determine its “badness”, or its membership
in Bz@l. For ¢ =1,...,h, we define the index sets I; consisting of the the indices of the
neighbours of w; in {ws,...,w;—1}. Also, for a fixed (i — 1) tuple (v1,...,v;-1) € Wi_1,
we consider the joint nelghbourhood of NI'(v;) N Vi=: I‘(vj) where the intersection
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is taken over j € I;,. More precisely, we define BEG) as follows:

I, = {jeli—1]: {wj,w;} € E(H)},
Bz(a_)1(7nu) = (Ulv‘“avi 1 sz 1° m F vj 1_7 ,u’)pulm
Jel;
Obviously,
;] <d for 1<i<h (64)

holds. The definition of ng) remains almost unchanged; again, for some B C W;;1 and
b= (vi,...,v;) € W;, we set dp(b) = |[{w € Ti11: (v1,...,v;,w) € B}| and we only
adjust the exponent of p:

ng) = ng)(y) = {b eEW;: dp,,,(b) > Vplli‘m} .

Then we define the corresponding events exactly as in Definition [£.9]

The proof of Lemma [2.3] consists of two propositions (Propositions and and
two lemmas (Lemmas and . We now discuss the proofs of the corresponding
results with the new definition for the families Bz(a) and ng) under (I')-(IV’) instead
of ()—(IV), and with K] replaced by an arbitrary d-degenerate graph H. We define the
following constants, slightly different compared to the ones in the original proof (see

and ):
y=p=v=3(1-(1-0)""), (65)

and, for 1 <¢<[—2and |[;41] > 0,

1 fan S e
Biv1 = <2 (E) ) . (66)

The other constants are defined in the same way as described in Section (see Figure
with [ replaced by h).

We now discuss the proofs of the results that correspond to Propositions .10 and [£.11]
and Lemmas [£12] and E13]

Proposition [4.10L The proof is an application of the Pick-Up Lemma, Lemma for

w|

k = i+ 1. The Pick-Up Lemma does not require condition (II). It is already valid for
q(n) > 1/n, which is still guaranteed by (IT'). It is easy to see that XZ-(b) is impossible if
we set m;41 = nv/2 and if |1 41| = 0. If [I;41] > 0, then essentially the same calculation
with the new (;4; defined in gives the proposition. We apply the Pick-Up Lemma

for the space Hjeliﬂ (Vj XTV/"“) and the projection of B;11 onto Hjeli+1 Vi X Vig1.
Proposition [4.11] The proof is a straightforward application of the k-tuple lemma,
Lemma In the original proof we apply the k-tuple lemma for k =i (1 <:<1—1)
and we needed condition (II) (namely, ¢'~'n > (logn)*) for i = [ — 1. Here, the new
definition of 31@1 from above comes into play. Inequality ensures that we consider at
most the joint neighbourhood of d vertices. This means that we apply the k-tuple lemma

for k < d and thus condition (II') (namely, ¢%n > (logn)?) is sufficient.
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Lemmal[4.12] For the proof we only apply Propositions[d.10]and [£.11] In order to adjust
the proof, we simply replace [ by h.

Lemma [4.13] This lemma is a deterministic statement. It is not affected by the change
from (II) to (I'), but the induction there is formulated in such a way that it relies on
the structure (symmetries) of K;. We fix this and reformulate (S;) to

(S;) Let J be a subgraph of G & Xpaq such that (I')-(IV’) apply. Then there are at least
(1—y—p—v)ip>=i=1 ilmi different i-tuples in W;\B; which induce a H[{w1, . .., w;}]
in J[Vi,...,Vil.

Thus, the induction works exactly the same way and (Sj,) implies the result, by our
choice of the constants in (there we again replace [ with h and (é) with |E(H)|).
L]
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