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The aim of this paper is to prove a Turán type theorem for random graphs. For 0 < γ
and graphs G and H, write G →γ H if any γ-proportion of the edges of G spans
at least one copy of H in G. We show that for every graph H and every fixed

real δ > 0 almost every graph G in the binomial random graph model G(n, q),
with q = q(n) � ((log n)4/n)1/d(H), satisfies G →(χ(H)−2)/(χ(H)−1)+δ H, where

as usual χ(H) denotes the chromatic number of H and d(H) is the “degeneracy

number” of H.

Since Kl, the complete graph on l vertices, is l-chromatic and (l − 1)-degenerate
we infer that for every l ≥ 2 and every fixed real δ > 0 almost every graph G in
the binomial random graph model G(n, q), with q = q(n) � ((log n)4/n)1/(l−1),

satisfies G →(l−2)/(l−1)+δ Kl.
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1. Introduction

A classical area of extremal graph theory investigates numerical and structural problems
concerning H-free graphs, namely graphs that do not contain a copy of a given fixed
graph H as a subgraph. Let ex(n, H) be the maximal number of edges that an H-free
graph on n vertices may have. A basic question is then to determine or estimate ex(n, H)
for any given H and large n. A solution to this problem is given by the celebrated
Erdős–Stone–Simonovits theorem, which states that, as n →∞, we have

ex(n, H) =
(

1− 1
χ(H)− 1

+ o(1)
)(

n

2

)
, (1)

where as usual χ(H) is the chromatic number of H. Furthermore, as proved independently
by Erdős and Simonovits, every H-free graph G = Gn that has as many edges as in (1) is
in fact ‘very close’ (in a certain precise sense) to the densest n-vertex (χ(H)− 1)-partite
graph. For these and related results, see, for instance, Bollobás [1].

Here we are interested in a variant of the function ex(n, H). Let G and H be graphs,
and write ex(G, H) for the maximal number of edges that an H-free subgraph of G may
have. Formally, ex(G, H) = max{|E(F )| : H 6⊂ F ⊂ G}. For instance, if G = Kn, the
complete graph on n vertices, then ex(Kn,H) = ex(n, H) is the usual Turán number
of H.

Our aim here is to study ex(G, H) when G is a random graph. Let 0 < q = q(n) ≤ 1
be given. The binomial random graph G in G(n, q) has as its vertex set a fixed set V (G)
of cardinality n and two vertices are adjacent in G with probability q. All such adja-
cencies are independent. (For concepts and results concerning random graphs not given
in detail below, see, e.g., Bollobás [2].) Here we wish to investigate the random vari-
ables ex(G(n, q),H), where H = Kl (l ≥ 2) or H is a d-degenerate graph, a graph that
may be reduced to the empty graph by the successive removal of vertices of degree less
or equal d.

Let H be a graph of order |H| = |V (H)| ≥ 3. Let us write d2(H) for the 2-density
of H, that is,

d2(H) = max
{

e(H ′)− 1
|H ′| − 2

: H ′ ⊂ H, |H ′| ≥ 3
}

.

A general conjecture concerning ex(G(n, q),H), first stated in [10], is as follows (as is
usual in the theory of random graphs, we say that a property P holds almost surely
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or that almost every random graph G in G(n, q) satisfies P if P holds with probability
tending to 1 as n →∞).

Conjecture 1.1. Let H be a non-empty graph of order at least 3, and let 0 < q =
q(n) ≤ 1 be such that qn1/d2(H) → ∞ as n → ∞. Then almost every G in G(n, q)
satisfies

ex(G, H) =
(

1− 1
χ(H)− 1

+ o(1)
)
|E(G)|.

In other words, for G in G(n, q) the Conjecture 1.1 claims that G →γ H holds al-
most surely for any fixed γ > 1 − 1/(χ(H) − 1). There are a few results in support of
Conjecture 1.1.

Any result concerning the tree-universality of expanding graphs, or any simple ap-
plication of Szemerédi’s regularity lemma for sparse graphs (see Theorem 2.2 below),
gives Conjecture 1.1 for H a forest. The cases in which H = K3 and H = C4 are es-
sentially proved in Frankl and Rödl [3] and Füredi [4], respectively, in connection with
problems concerning the existence of some graphs with certain extremal properties. The
case for H = K4 was proved by Kohayakawa,  Luczak, and Rödl [10] and the case in
which H is a general cycle was settled by Haxell, Kohayakawa, and  Luczak [5, 6] (see
also Kohayakawa, Kreuter, and Steger [9]).

Our main result relates to Conjecture 1.1 in the following way: we deal with the case in
which H = Kl and q = q(n) � ((log n)4/n)1/(l−1). More precisely we prove the following.

Theorem 1.2. Let l ≥ 2, q = q(n) �
(
(log n)4/n

)1/(l−1), and let G(n, q) be the bino-
mial random graph model with edge probability q. Then for every 1/(l − 1) > δ > 0 a
graph G in G(n, q) satisfies the following property with probability 1 − o(1): If F is an
arbitrary, not necessarily induced subgraph of G with

|E(F )| ≥
(

1− 1
l − 1

+ δ

)
q

(
n

2

)
,

then F contains Kl, the complete graph on l vertices, as a subgraph. Moreover, there
exists a constant c = c(δ, l) such that F contains at least cq(l

2)nl copies of Kl.

In this paper we give a proof of Theorem 1.2.† In Section 5 we outline the proof of an
extension of this result, Theorem 1.2′ (the detailed proof is given in [14]).

Recall that a graph H with |V (H)| = h is d-degenerate if there exists an ordering
of the vertices v1, . . . , vh such that each vi (1 ≤ i ≤ h) has at most d neighbours in

† Very recently, Szabó and Vu [16] proved independently the same result under a slightly weaker as-
sumption; in fact, they proved Theorem 1.2 for q(n) � n−1/(l−3/2). Their proof is elegant. To obtain

the smaller lower bound for q, they make use of the fact that Conjecture 1.1 holds for H = K4 [10]

as the base of an induction; without using this result, their proof gives essentially the same condition
on q as ours. Their approach extends to several infinite families of graphs H (see [16, Section 4]); the
present proof extends to all graphs, and works for q(n) � ((log n)4/n)1/d, where d = d(H) is the

“degeneracy number” of the graph H; see Theorem 1.2′.
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{v1, . . . , vi−1} (for more details concerning d-degenerate graphs see [13, 15]). Since Kl is
clearly (l − 1)-degenerate and l-chromatic, the following result extends Theorem 1.2.

Theorem 1.2′. Let d be a positive integer, H a d-degenerate graph on h vertices,
q = q(n) �

(
(log n)4/n

)1/d, and G(n, q) the binomial random graph model with edge
probability q. Then for every 1/(χ(H) − 1) > δ > 0 a graph G in G(n, q) satisfies the
following property with probability 1− o(1): If F is an arbitrary, not necessarily induced
subgraph of G with

|E(F )| ≥
(

1− 1
χ(H)− 1

+ δ

)
q

(
n

2

)
,

then F contains H as a subgraph. Moreover, there exists a constant c = c(δ,H) such that
F contains at least cq|E(H)|nh copies of H.

This paper is organized as follows. In Section 2 we describe a sparse version of Sze-
merédi’s regularity lemma (Theorem 2.2) and we state the counting lemma (Lemma 2.3),
which are crucial in our proof of Theorem 1.2. We prove Theorem 1.2 in Section 3. Sec-
tion 4 is entirely devoted to the proof of Lemma 2.3. The proof of Lemma 2.3 relies on the
‘Pick-Up Lemma’ (Lemma 4.3) and on the ‘k-tuple lemma’ (Lemma 4.7). We give these
preliminary results in Section 4.1–4.2. In Section 4.3 we outline the proof of Lemma 2.3
in the case l = 4. Finally, the proof is given in Section 4.4. We discuss the case when H

is a d-degenerate graph and sketch the proof of Theorem 1.2′ in Section 5.
For a general remark about the notation we use throughout this paper see the remark

in Section 2.3.

Acknowledgement. The authors thank the referee for his or her detailed work.

2. Preliminary results

2.1. Preliminary definitions
Let a graph G = Gn of order |V (G)| = n be fixed. For U , W ⊂ V = V (G), we write

E(U,W ) = EG(U,W ) =
{
{u, w} ∈ E(G) : u ∈ U, w ∈ W

}
for the set of edges of G that have one end-vertex in U and the other in W . Notice
that each edge in U ∩ W occurs only once in E(U,W ). We set e(U,W ) = eG(U,W ) =
|E(U,W )|.

If G is a graph and V1, . . . , Vt ⊂ V (G) are disjoint sets of vertices, we write G[V1, . . . , Vt]
for the t-partite graph naturally induced by V1, . . . , Vt.

2.2. The regularity lemma for sparse graphs
Our aim in this section is to state a variant of the regularity lemma of Szemerédi [17].

Let a graph H = Hn = (V,E) of order |V | = n be fixed. Suppose ξ > 0, C > 1,
and 0 < q ≤ 1.

Definition 2.1 ((ξ, C)-bounded). For ξ > 0 and C > 1 we say that H = (V,E) is
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a (ξ, C)-bounded graph with respect to density q, if for all U , W ⊂ V , not necessarily
disjoint, with |U |, |W | ≥ ξ|V |, we have

eH(U,W ) ≤ Cq

(
|U ||W | −

(
|U ∩W |

2

))
.

For any two disjoint non-empty sets U , W ⊂ V , let

dH,q(U,W ) =
eH(U,W )
q|U ||W |

. (2)

We refer to dH,q(U,W ) as the q-density of the pair (U,W ) in H. When there is no danger
of confusion, we drop H from the subscript and write dq(U,W ).

Now suppose ε > 0, U , W ⊂ V , and U ∩ W = ∅. We say that the pair (U,W ) is
(ε, H, q)-regular, or simply (ε, q)-regular, if for all U ′ ⊂ U , W ′ ⊂ W with |U ′| ≥ ε|U |
and |W ′| ≥ ε|W | we have

|dH,q(U ′,W ′)− dH,q(U,W )| ≤ ε. (3)

Below, we shall sometimes use the expression ε-regular with respect to density q to mean
that (U,W ) is an (ε, q)-regular pair.

We say that a partition P = (Vi)t
0 of V = V (H) is (ε, t)-equitable if |V0| ≤ εn,

and |V1| = · · · = |Vt|. Also, we say that V0 is the exceptional class of P . When the value
of ε is not relevant, we refer to an (ε, t)-equitable partition as a t-equitable partition.
Similarly, P is an equitable partition of V if it is a t-equitable partition for some t.

We say that an (ε, t)-equitable partition P = (Vi)t
0 of V is (ε, H, q)-regular, or simply

(ε, q)-regular, if at most ε
(

t
2

)
pairs (Vi, Vj) with 1 ≤ i < j ≤ t are not (ε, q)-regular. We

may now state a version of Szemerédi’s regularity lemma for (ξ, C)-bounded graphs.

Theorem 2.2. For any given ε > 0, C > 1, and t0 ≥ 1, there exist constants ξ =
ξ(ε, C, t0) and T0 = T0(ε, C, t0) ≥ t0 such that any sufficiently large graph H that is
(ξ, C)-bounded with respect to density 0 < q ≤ 1 admits an (ε, H, q)-regular (ε, t)-equitable
partition of its vertex set with t0 ≤ t ≤ T0.

A simple modification of Szemerédi’s proof of his lemma gives Theorem 2.2. For ap-
plications of this variant of the regularity lemma and its proof, see [8, 12].

2.3. The counting lemma for complete subgraphs of random graphs
Let t ≥ l ≥ 2 be fixed integers and n a sufficiently large integer. Let α and ε be constants
greater than 0. Let G ∈ G(n, q) be the binomial random graph with edge probability
q = q(n), and suppose J is an l-partite subgraph of G with vertex classes V1, . . . , Vl. For
all 1 ≤ i < j ≤ l we denote by Jij the bipartite graph induced by Vi and Vj . Consider
the following assertions for J .

(I) |Vi| = m = n/t

(II) ql−1n � (log n)4

(III) Jij has T = pm2 edges where 1 > αq = p � 1/n, and
(IV) Jij is (ε, q)-regular.
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Remark. Strictly speaking, in (I) we should have, say, bm/tc, because m is an integer.
However, throughout this paper we will omit the floor and ceiling signs b c and d e,
since they have no significant effect on the arguments. Moreover, let us make a few more
comments about the notation that we shall use. For positive functions f(n) and g(n),
we write f(n) � g(n) to mean that limn→∞ g(n)/f(n) = 0. Unless otherwise stated,
we understand by o(1) a function approaching zero as the number of vertices of a given
random graph goes to infinity.

Finally, we observe that our logarithms are natural logarithms.

We are interested in the number of copies of complete graphs on l vertices in such a
subgraph J satisfying conditions (I)–(IV).

Lemma 2.3 (Counting lemma). For every α, σ > 0 and integer l ≥ 2 there exists
ε > 0 such that for every fixed integer t ≥ l a random graph G in G(n, q) satisfies the
following property with probability 1 − o(1): Every subgraph J ⊆ G satisfying conditions
(I)–(IV) contains at least

(1− σ)p(l
2)ml

copies of the complete graph Kl.

We will prove Lemma 2.3 later in Section 4.

3. The main result

In this section we will prove the main result of this paper, Theorem 1.2. This section is
organized as follows. First, we state two properties that hold for almost every G ∈ G(n, q).
Then, in Section 3.2, we prove a deterministic statement about the regularity of certain
subgraphs of an (ε, q)-regular α-dense t-partite graph. Finally, we prove Theorem 1.2.

3.1. Properties of almost all graphs
We start with a well known fact of random graph theory which follows easily from the
properties of the binomial distribution.

Fact 3.1. If G is a random graph in G(n, q), then

|E(G)| = (1 + o(1)) q

(
n

2

)
holds with probability 1− o(1).

The next property refers to Definition 2.1 and will enable us to apply Theorem 2.2.

Lemma 3.2. For every C > 1, ξ > 0 and q = q(n) � 1/n a random graph G in G(n, q)
is (ξ, C)-bounded with probability 1− o(1).
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We will apply the following one-sided estimate of a binomially distributed random
variable.

Lemma 3.3. Let X be a binomial distributed random variable in Bi(N, q) with expec-
tation EX = Nq and let C > 1 be a constant. Then

P(X ≥ CEX) ≤ exp(−τCEX),

where τ = log C − 1 + 1/C > 0 for C > 1 (recall that all logarithms are to base e, see the
remark in Section 2.3).

Proof. The proof is given in [7] (see Corollary 2.4).

Proof of Lemma 3.2. Let G ∈ G(n, q) and let U , W ⊆ V (G) be two not necessarily
disjoint sets such that |U |, |W | ≥ ξn. Clearly, e(U,W ) is a binomial random variable
with

E[e(U,W )] = q

(
|U ||W | −

(
|U ∩W |

2

))
.

Observe that E[e(U,W )] � n since q � 1/n. Set τ = log C − 1 + 1/C. Then Lemma 3.3
implies

P (e(U,W ) > CE[e(U,W )]) ≤ exp (−τCE[e(U,W )]) .

We now sum over all choices for U and W to deduce that

P(G is not (ξ, C)-bounded) ≤∑
|U |≥ξn

∑
|W |≥ξn

(
n

|U |

)(
n

|W |

)
exp (−τCE[e(U,W )])

≤ 4n exp (−τCE[e(U,W )]) = o(1),

since τC > 0 and E[e(U,W )] � n.

3.2. A deterministic subgraph lemma
The next lemma states that every (ε, q)-regular, bipartite graph with at least αqm2 edges
contains an (3ε, q)-regular subgraph with exactly αqm2 edges.

Lemma 3.4. For every ε > 0, α > 0, and C > 1 there exists m0 such that if H =
(U,W ; F ) is a bipartite graph satisfying

(i ) |U | = m1, |W | = m2 > m0,
(ii ) Cqm1m2 ≥ eH(U,W ) ≥ αqm1m2 for some function q = q(m0) � 1/m0, and

(iii ) H is (ε, q)-regular,

then there exists a subgraph H ′ = (U,W ; F ′) ⊆ H such that

(ii ′ ) eH′(U,W ) = αqm1m2 and
(iii ′ ) H ′ is (3ε, q)-regular.
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Proof. We select a set D of

|D| = eH(U,W )− αqm1m2

different edges in EH(U,W ) uniformly at random and fix H ′ = (U,W ; F \ D). We
naturally define the density in D with respect to q for sets U ′ ⊆ U and W ′ ⊆ W

by

dD,q(U ′,W ′) =
|EH(U ′,W ′) ∩D|

q|U ′||W ′|
. (4)

In order to check the (3ε, H ′, q)-regularity of (U,W ), it is enough to verify the inequality
corresponding to (3) for sets U ′ ⊆ U , W ′ ⊆ W such that |U ′| = 3εm1 and |W ′| = 3εm2.
Let (U ′,W ′) be such a pair. We distinguish three cases depending on |D| and eH(U ′,W ′).

Case 1 (|D| ≤ ε3qm1m2). The graph H is (ε, H, q)-regular and thus

dH,q(U ′,W ′) ≥ dH,q(U,W )− ε.

Since dH′,q(U ′,W ′) ≥ dH,q(U ′,W ′)− dD,q(U ′,W ′), we have

dH′,q(U ′,W ′) ≥ dH,q(U ′,W ′)− |D|
9ε2qm1m2

≥ dH,q(U,W )− 10
9

ε,

which implies that H ′ is (3ε, q)-regular.

Case 2 (eH(U ′,W ′) ≤ ε3qm1m2). Observe that eH(U ′,W ′) ≤ ε3qm1m2 implies

dH,q(U ′,W ′) ≤ ε

9
. (5)

H is (ε, H, q)-regular and thus

dH,q(U,W ) ≤ ε + dH,q(U ′,W ′) ≤ 10
9

ε. (6)

On the other hand, dH′,q(X, Y ) ≤ dH,q(X, Y ) for arbitrary X ⊆ U and Y ⊆ W , which
combined with (5) and (6) yields

|dH′,q(U,W )− dH′,q(U ′,W ′)| ≤ 10
9

ε +
ε

9
≤ 3ε.

Up to now, we have not used the fact that D is chosen at random. To deal with the
case that we are left with (that is, the case in which |D| > ε3qm1m2 and eH(U ′,W ′) >

ε3qm1m2), we will make use of this randomness. Before we start, we state the following
two-sided estimate for the hypergeometric distribution.

Lemma 3.5. Let sets B ⊆ U be fixed. Let |U | = u and |B| = b. Suppose we select a
d-set D uniformly at random from U . Then, for 3/2 ≥ λ > 0, we have

P
(∣∣∣∣|D ∩B| − bd

u

∣∣∣∣ ≥ λ
bd

u

)
≤ 2 exp

(
−λ2

3
bd

u

)
.

Proof. For the proof we refer to [7] (Theorem 2.10).
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We continue with the proof of Lemma 3.4.

Case 3 (|D| > ε3qm1m2 and eH(U ′,W ′) > ε3qm1m2). Recall that U ′ ⊆ U and
V ′ ⊆ V are such that |U ′| = 3εm1 and |V ′| = 3εm2. First, we verify that∣∣∣∣dD,q(U,W )

dH,q(U ′,W ′)
dH,q(U,W )

− dD,q(U ′,W ′)
∣∣∣∣ ≤ ε (7)

implies that

|dH′,q(U,W )− dH′,q(U ′,W ′)| ≤ 3ε. (8)

Indeed, straightforward calculation using the (ε, q)-regularity of H and (7) give

|dH′,q(U,W )− dH′,q(U ′,W ′)|
= |(dH,q(U,W )− dD,q(U,W ))− (dH,q(U ′,W ′)− dD,q(U ′,W ′))|
≤ ε + |dD,q(U,W )− dD,q(U ′,W ′)|

≤ ε +
∣∣∣∣dD,q(U,W )− dD,q(U,W )

dH,q(U ′,W ′)
dH,q(U,W )

∣∣∣∣
+
∣∣∣∣dD,q(U,W )

dH,q(U ′,W ′)
dH,q(U,W )

− dD,q(U ′,W ′)
∣∣∣∣

≤ ε +
dD,q(U,W )
dH,q(U,W )

|dH,q(U,W )− dH,q(U ′,W ′)|+ ε

≤ ε +
dD,q(U,W )
dH,q(U,W )

ε + ε

≤ 3ε.

Next, we will prove that (7) is unlikely to fail, because of the random choice of D. We
set

λ = min
{

9ε3

C
,

3
2

}
. (9)

Then the two-sided estimate in Lemma 3.5 gives that∣∣∣∣|D ∩ EH(U ′,W ′)| − eH(U ′,W ′)|D|
eH(U,W )

∣∣∣∣ < λ
eH(U ′,W ′)|D|

eH(U,W )

fails with probability

≤ 2 exp
(
−λ2

3
eH(U ′,W ′)|D|

eH(U,W )

)
. (10)

Since∣∣∣∣dD,q(U ′,W ′)− dD,q(U,W )
dH,q(U ′,W ′)
dH,q(U,W )

∣∣∣∣
=

1
9ε2qm1m2

∣∣∣∣|D ∩ EH(U ′,W ′)| − eH(U ′,W ′)|D|
eH(U,W )

∣∣∣∣ ,
and because of (ii) and (9), we have

λ
eH(U ′,W ′)
9qε2m1m2

|D|
eH(U,W )

≤ λ
eH(U ′,W ′)
9qε2m1m2

≤ λ
eH(U,W )
9qε2m1m2

≤ ε,
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we infer that (7) and consequently (8) fails with small probability given in (10).
We now sum over all possible choices for U ′ and W ′ and use the conditions of this case

(i.e. |D| > ε3qm1m2, eH(U ′,W ′) > ε3qm1m2) and (ii). We have that

P (H ′ is not (3ε, q)-regular) ≤ 2m1+m2 · 2 exp
(
−λ2ε6

3C
qm1m2

)
< 1

for m1, m2 sufficiently large, since q = q(m0) � 1/m0. This implies that, for m0 large
enough, there is a set D such that H ′ is (3ε, q)-regular, as required.

3.3. Proof of the main result
The proof of Theorem 1.2 is based on Lemma 2.3, which we prove later in Section 4. The
main idea is to “find” a regular subgraph J satisfying (I)–(IV) of the Counting Lemma,
in the arbitrary subgraph F with

|E(F )| ≥
(

1− 1
l − 1

+ δ

)
q

(
n

2

)
.

Proof of Theorem 1.2. Let l ≥ 2 and 1/(l − 1) > δ > 0 be fixed and suppose
q = q(n) � ((log n)4/n)1/(l−1). First we define some constants that will be used in the
proof.

We start by setting

α =
δ

8
, (11)

σ = 10−6. (12)

(As a matter of fact, our proof is not sensitive to the value of the constant σ; in fact, as
long as 0 < σ < 1, every choice works.) We want to use the Counting Lemma, Lemma 2.3,
in order to determine the value of ε. Set αCL = α and σCL = σ, then Lemma 2.3 yields
εCL. We set

ε = min
{

εCL

3
,

δ

80

}
(13)

and

C =
4 + δ

4
. (14)

We then apply the sparse regularity lemma (Theorem 2.2) with εSRL = ε, CSRL = C

and tSRL
0 = max{

√
8l2/δ, 40/δ}. Theorem 2.2 then gives ξSRL and we define

ξ = ξSRL.

Moreover, Theorem 2.2 yields

T SRL
0 ≥ t = tSRL ≥ tSRL

0 = max

{√
8l2

δ
,

40
δ

}
. (15)

For the rest of the proof all the constants defined above (α, σ, ε, C, ξ, and t) are fixed.
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Fact 3.1, Lemma 3.2, and Lemma 2.3 imply that a graph G in G(n, q) satisfies the
following properties (P1)–(P3) with probability 1− o(1):

(P1) |E(G)| ≥ (1 + o(1)) q
(
n
2

)
,

(P2) G is (ξ, C)-bounded, and
(P3) G satisfies the property considered in Lemma 2.3.

We will show that if a graph G satisfies (P1)–(P3), then any F ⊆ G with |E(F )| ≥
(1 − 1/(l − 1) + δ)q

(
n
2

)
contains at least cq(l

2)nl (for some constant c = c(δ, l)) copies of
Kl, and Theorem 1.2 will follow.

To achieve this, we first regularise F by applying Theorem 2.2 with εSRL = ε, CSRL = C

and tSRL
0 = max{

√
8l2/δ, 40/δ}. Consequently F admits an (ε, q)-regular (ε, t)-equitable

partition (Vi)t
0. We set m = n/t = |Vi| for i 6= 0.

Let Fcluster be the cluster graph of F with respect to (Vi)t
0 defined as follows

V (Fcluster) = {1, . . . , t},

E (Fcluster) =
{
{i, j} : (Vi, Vj) is (ε, q)-regular ∧ eF (Vi, Vj) ≥ αqm2

}
.

Our next aim is to apply the classical Turán theorem to guarantee the existence of a
Kl ⊆ Fcluster. For this we define a subgraph F ′ of F . Set

E(F ′) =
⋃
{EF (Vi, Vj) : {i, j} ∈ E(Fcluster)}

We now want to find a lower bound for |E(F ′)|. There are four possible reasons for an
edge e ∈ E(F ) not to be in E(F ′):

(R1) e has at least one vertex in V0,
(R2) e is contained in some vertex class Vi for 1 ≤ i ≤ t,
(R3) e is in E(Vi, Vj) for an (ε, q)-irregular pair (Vi, Vj), or
(R4) e is in E(Vi, Vj) for sparse a pair (i.e., e(Vi, Vj) < αqm2).

We bound the number of discarded edges of type (R1)–(R3) by applying that G is (ξ, C)-
bounded (Property (P2)):

# of edges of type (R1) ≤ Cqεn2,

# of edges of type (R2) ≤ Cq
(n

t

)2

· t,

# of edges of type (R3) ≤ Cq
(n

t

)2

· ε
(

t

2

)
.

Furthermore, we bound the number of discarded edges of type (R4), by

# of edges of type (R4) ≤ αq
(n

t

)2

·
(

t

2

)
.
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This, combined with n ≥ 2, (11), (13), (14), (15), and δ < 1 implies that

|E(F ) \ E(F ′)| ≤
(

C

(
ε +

1
t

+
ε

2

)
+

α

2

)
qn2

≤
(

C

(
2ε +

1
t

)
+

α

2

)
· 4q

(
n

2

)
≤

(
(4 + δ)

(
δ

40
+

δ

40

)
+

δ

4

)
q

(
n

2

)
≤ δ

2
q

(
n

2

)
,

and thus

|E(F ′)| ≥
(

1− 1
l − 1

+
δ

2

)
q

(
n

2

)
.

We use the last inequality and once again (P2) to achieve the desired lower bound for
|E(Fcluster)|. Indeed,

|E(Fcluster)| ≥
e(F ′)

Cq(n/t)2
=
(

1− 1
l − 1

+
δ

2

)(
1− 1

n

)(
1 +

δ

4

)−1
t2

2
,

and then, for n large enough (n > 16/δ2), by using t2 ≥ 8l2/δ, we deduce that

|E(Fcluster)| >

(
1− 1

l − 1
+

δ

2

)(
1− δ

4

)
t2

2

≥
(

1− 1
l − 1

+
δ

8

)
t2

2
(16)

≥
(

1− 1
l − 1

)
t2

2
+

l2

2
.

The last inequality implies, by Turán’s theorem [18], that there is a subgraph Kl in
Fcluster. Let {i1, . . . , il} be the vertex set of this Kl in Fcluster. Then we set J0 =
F [Vi1 , . . . , Vil

] ⊆ F . Now, every pair (Vij
, Vij′ ) for 1 ≤ j < j′ ≤ l satisfies the con-

ditions of Lemma 3.4 with εLem3.4 = ε and αLem3.4 = α. Thus there is a subgraph
J ⊆ J0 ⊆ F that is (3ε, q)-regular and eJ(Vij

, Vi′j
) = αqm2. Since ε ≤ εCL/3 and J satis-

fies conditions (I)–(IV) of the Counting Lemma, Lemma 2.3, with the constants chosen
above (αCL = α, σCL = σ, and εCL ≥ 3ε), there are at least

(1− σ)p(l
2)ml =

(1− σ)α(l
2)

tl
q(l

2)nl ≥ (1− σ)α(l
2)(

T SRL
0

)l q(l
2)nl

different copies of Kl in J ⊆ F . Observe that α, σ and T0 depend on δ and l but not on
n. Consequently, there are c(δ, l)q(l

2)nl � 1 (where c(δ, l) = (1− σ)α(l
2)/
(
T SRL

0

)l) copies
of Kl in F , as required by Theorem 1.2.

4. The counting lemma

Our aim in this section is to prove Lemma 2.3. In order to do this, we will need two
lemmas. We introduce these in the first two subsections. Then, in Section 4.3, we will
illustrate the proof of the Counting lemma on the particular case l = 4. Finally, we give
the proof of Lemma 2.3 in Section 4.4.
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4.1. The pick-up lemma
Before we state the ‘Pick-Up Lemma’, Lemma 4.3, let us state a simple one-sided estimate
for the hypergeometric distribution, which will be useful in the proof of Lemma 4.3.

Lemma 4.1 (A hypergeometric tail lemma). Let b, d, and u be positive integers
and suppose we select a d-set D uniformly at random from a set U of cardinality u.
Suppose also that we are given a fixed b-set B ⊆ U . Then we have for λ > 0

P
(
|D ∩B| ≥ λ

bd

u

)
≤
( e

λ

)λbd/u

. (17)

Proof. For the proof we refer the reader to [11].

We now state and prove the Pick-Up Lemma. Let k ≥ 2 be a fixed integer and let
m be sufficiently large. Let V1, . . . , Vk be pairwise disjoint sets all of size m and let B
be a subset of V1 × · · · × Vk. For 1 > p = p(m) � 1/m set T = pm2 and consider the
probability space

Ω =
(

V1 × Vk

T

)
× · · · ×

(
Vk−1 × Vk

T

)
,

where
(
Vi×Vk

T

)
denotes the family of all subsets of Vi × Vk of size T , and all the R =

(R1, . . . , Rk−1) ∈ Ω are equiprobable, i.e., have probability(
m2

T

)−(k−1)

.

For every R = (R1, . . . , Rk−1) ∈ Ω the degree with respect to Ri (1 ≤ i < k) of a vertex
vk in Vk is

dRi
(vk) = |{vi ∈ Vi : (vi, vk) ∈ Ri}|. (18)

Definition 4.2 (Π(ζ, µ, K)). For ζ, µ, K with 1 > ζ, µ > 0 and K > 0, we say that
property Π(ζ, µ, K) holds for R = (R1, . . . , Rk−1) ∈ Ω if

Ṽk = Ṽk(K) = {vk ∈ Vk : dRi
(vk) ≤ Kpm, ∀1 ≤ i ≤ k − 1}

and

B(R) = {b = (v1, . . . , vk) ∈ B : vk ∈ Ṽk ∧ (vj , vk) ∈ Rj , ∀ 1 ≤ j ≤ k − 1}

satisfy the inequalities

|Ṽk| ≥ (1− µ)m, (19)

|B(R)| ≤ ζpk−1mk. (20)

We think of B(R) as the members of B that have been picked-up by the random
element R ∈ Ω. We will be interested in the probability that the property Π(ζ, µ, K) fails
for a fixed B in the uniform probability space Ω.
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Lemma 4.3 (Pick-Up Lemma). For every β, ζ and µ with 1 > β, ζ, µ > 0 there
exist 1 > η = η(β, ζ, µ) > 0, K = K(β, µ) > 0 and m0 such that if m ≥ m0 and

|B| ≤ ηmk, (21)

then

P(Π(ζ, µ, K) fails for R ∈ Ω) ≤ β(k−1)T . (22)

For the proof we need a few definitions. Suppose β and µ are given. We define

θ =
1
2
βk−1, (23)

K = max
{

3(k − 1) log 1/θ

µ
, e2

}
. (24)

Since p � 1/m the definition of K ≥ 3(k − 1) log(1/θ)/µ implies that

(k − 1)
(

m

µm/(k − 1)

)
exp

(
−µTK log K

2(k − 1)

)
≤ θT (25)

holds for m sufficiently large.
Using the definition of dRi in (18) we construct for each i = 1, . . . , k− 1 a subset of Vk

by putting

V
(i)
k = {vk ∈ V

(i−1)
k : dRi

(vk) ≤ Kpm},

where V
(0)
k = Vk. Observe that Vk = V

(0)
k ⊇ V

(1)
k ⊇ · · · ⊇ V

(k−1)
k = Ṽk. In the view of

Lemma 4.3 we define the following “bad” events in Ω.

Definition 4.4 (Ai, B). For each i = 0, . . . , k − 1 and K, µ > 0, ζ > 0, let Ai =
Ai(µ,K), B = B(ζ, K) ⊆ Ω be the events

Ai : |V (i)
k | <

(
1− iµ/(k − 1)

)
m,

B : |B(R)| > ζpk−1mk.

Observe that the definition of V
(0)
k = Vk implies

P(A0) = 0. (26)

We restate Lemma 4.3 by using the notation introduced in Definition 4.4.

Lemma 4.3′ (Pick-up Lemma, event version). For every β, ζ and µ with 1 >

β, ζ, µ > 0 there exist 1 > η = η(β, ζ, µ) > 0, K = K(β, µ) > 0 and m0 such that if
m ≥ m0 and

|B| ≤ ηmk, (27)

then

P(Ak−1(µ,K) ∨B(ζ, K)) ≤ β(k−1)T . (28)
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We need some more preparation before we prove Lemma 4.3′. Suppose β, ζ, µ are given
by Lemma 4.3′ and θ, K are fixed by (23) and (24). For each i = 1, . . . , k−1 we consider
the set Bi ⊆ B consisting of those k-tuples b ∈ B which were partially “picked up” by
edges of R1, . . . , Ri. For technical reasons we consider only those k-tuples containing
vertices vk ∈ V

(i−1)
k , i.e., with dRj (vk) ≤ Kpm for j = 1, . . . , i− 1. More formally, we let

Bi = {b = (v1, . . . , vk) ∈ B : vk ∈ V
(i−1)
k ∧ (vj , vk) ∈ Rj , ∀ 1 ≤ j ≤ i}.

We also set B0 = B.
The definitions of Ṽk = V

(k−1)
k ⊆ V

(k−2)
k and Bk−1 imply

B(R) ⊆ Bk−1. (29)

(Equality may fail in (29) because we may have V
(k−2)
k \V (k−1)

k 6= ∅.) For each i = k, . . . , 1
define ζi−1 by

ζk−1 = ζ,

ζi−1 =
k − 1− (i− 1)µ

4(k − 1)Ki−1
ζ2
i θ4Ki−1/ζi . (30)

Furthermore, consider for each i = 0, . . . , k− 1 the event Bi = Bi(ζi,K) ⊆ Ω defined by

Bi : |Bi| > ζip
imk. (31)

In order to prove Lemma 4.3′ we need two more claims, which we will prove later.

Claim 4.5. For all 1 ≤ i ≤ k − 1, we have

P(Ai) = P
(
|V (i)

k | <
(

1− iµ

k − 1

)
m

)
≤ θT .

Claim 4.6. For all 1 ≤ i ≤ k − 1, we have

P(Bi | ¬Ai−1 ∧ ¬Bi−1) ≤ θT .

Assuming Claims 4.5 and 4.6, we may easily prove Lemma 4.3′.

Proof of Lemma 4.3′. Set η = ζ0 where ζ0 is given by (30). The definition of B0 = B
and (27) implies |B0| ≤ ζ0m

k and consequently by the definition of the event B0 in (31)

P(B0) = 0. (32)

Because of (29) and ζk−1 = ζ in (30) we have

P(B) ≤ P(Bk−1). (33)

Using the formal identity

P(Bi) = P(Bi ∧ (¬Ai−1 ∧ ¬Bi−1)) + P(Bi ∧ (Ai−1 ∨Bi−1)),

we observe that

P(Bi) ≤ P(Bi | ¬Ai−1 ∧ ¬Bi−1) + P(Ai−1) + P(Bi−1) (34)
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for each i = 1, . . . , k − 1. It follows by applying (33) and (34) that

P(Ak−1 ∨B) ≤ P(Ak−1) + P(Bk−1)

≤ P(Ak−1) +
k−1∑
i=1

(
P(Bi | ¬Ai−1 ∧ ¬Bi−1) + P(Ai−1)

)
+ P(B0).

Claims 4.5 and 4.6, and (26), (32) and (23) finally imply

P(Ak−1 ∨B) ≤ 2(k − 1)θT ≤ 2(k − 1)
(

βk−1

2

)T

≤ β(k−1)T

for m sufficiently large, as required.

We now prove Claim 4.5 and then Claim 4.6.

Proof of Claim 4.5. Fix a set V ∗ ⊆ Vk of size µm/(k − 1). For a fixed j (1 ≤ j ≤ i)
assume that dRj

(vk) > Kpm for every vk in V ∗. This clearly implies the event

Ej(V ∗) : |Rj ∩ (Vj × V ∗)| > Kpm
µm

k − 1
= K

µT

k − 1
. (35)

The T pairs of Rj are chosen uniformly in Vj × Vk, so the hypergeometric tail lemma,
Lemma 4.1, applies, and using the fact that e ≤ K1/2 by (24) we get

P (Ej(V ∗)) ≤
( e

K

)KµT/(k−1)

≤ exp
(
−µTK log K

2(k − 1)

)
. (36)

Set Ej =
∨

Ej(V ∗), where the union is taken over all V ∗ ⊆ Vk of size µm/(k− 1). Then

P(Ej) ≤
(

m

µm/(k − 1)

)
exp

(
−µTK log K

2(k − 1)

)
(37)

holds for each j = 1, . . . , i, and this implies

P

(
i∨

j=1

Ej

)
≤ i

(
m

µm/(k − 1)

)
exp

(
−µTK log K

2(k − 1)

)
.

Finally, the fact that Ai ⊆
∨i

j=1 Ej and the choice of K with (25) gives that

P(Ai) ≤ i

(
m

µm/(k − 1)

)
exp

(
−µTK log K

2(k − 1)

)
≤ θT ,

as required.

Proof of Claim 4.6. Recall β, ζ and µ are given by Lemma 4.3′ and θ, K and ζi are
fixed by (23), (24) and (30). In order to prove Claim 4.6 we fix i (1 ≤ i ≤ k − 1) and we
assume ¬Ai−1 and ¬Bi−1 occur. This means by Definition 4.4 and (31) that

|V (i−1)
k | ≥

(
1− (i− 1)µ

k − 1

)
m =

(
k − 1− (i− 1)µ

k − 1

)
m, (38)

|Bi−1| ≤ ζi−1p
i−1mk. (39)
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We have to show that

|Bi| ≤ ζip
imk (40)

holds for R in the uniform probability space Ω with probability ≥ 1− θT .
First we define the auxiliary constant

Li =
(

1
θ

)4Ki−1/ζi

. (41)

The definition of θ in (23) and the facts that 0 < ζi < 1 for each i = 1, . . . , k − 1 and
K > 1 imply that

Li ≥
(

2
βk−1

)4

> e2 (42)

holds.
We define the degree of a pair in Vi × V

(i−1)
k with respect to Bi−1 by

dBi−1(wi, wk) =
∣∣∣{b = (v1, . . . , vk) ∈ Bi−1 : vi = wi and vk = wk}

∣∣∣.
We can bound the value of the average degree by (38) and (39):

avg
{

dBi−1(vi, vk) : (vi, vk) ∈ Vi × V
(i−1)
k

}
=

|Bi−1|
m|V (i−1)

k |
(43)

≤ k − 1
k − 1− (i− 1)µ

ζi−1p
i−1mk−2.

We also can bound ∆Bi−1(Vi, V
(i−1)
k ) = max{dBi−1(vi, vk) : (vi, vk) ∈ Vi × V

(i−1)
k } by

the following observation. Let (vi, vk) be an arbitrary element in Vi × V
(i−1)
k . Then, by

the definition of V
(i−1)
k , we have

dBi−1(vi, vk) ≤ dR1(vk) · . . . · dRi−1(vk) ·mk−2−(i−1) ≤ (Kpm)i−1mk−i−1. (44)

Inequality (44) implies

∆Bi−1

(
Vi, V

(i−1)
k

)
≤ Ki−1pi−1mk−2. (45)

Let F be the set of pairs of “high degree”. More precisely, set

F =
{

(vi, vk) ∈ Vi × V
(i−1)
k : dBi−1 >

ζi

2
pi−1mk−2

}
.

A simple averaging argument applying (43) yields

|F | ≤ 2(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi
|Vi||V (i−1)

k | ≤ 2(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi
m2. (46)
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On the other hand, if we set F̄ = Vi×V
(i−1)
k \F then the definition of F and (45) imply

|Bi| =
∑

(vi,vk)∈Ri∩F̄

dBi−1(vi, vk) +
∑

(vi,vk)∈Ri∩F

dBi−1(vi, vk)

≤ ζi

2
pi−1mk−2|Ri ∩ F̄ | + Ki−1pi−1mk−2|Ri ∩ F |

≤ ζi

2
pi−1mk−2T + Ki−1pi−1mk−2|Ri ∩ F |

=
(

ζi

2
+

Ki−1

T
|Ri ∩ F |

)
pimk. (47)

Next we prove that

P
(
|Ri ∩ F | > ζiT

2Ki−1

)
≤ θT , (48)

which, together with (47), yields our claim, namely, that

P
(
|Bi| > ζip

imk
)
≤ θT . (49)

We now prove inequality (48). Without loss of generality we assume equality holds in (46).
Then the hypergeometric tail lemma, Lemma 4.1, implies that

P
(
|Ri ∩ F | > Li

|F |T
m2

)
= P

(
|Ri ∩ F | > Li

2(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi
T

)

≤
(

e
Li

)Li
2(k−1)ζi−1

(k−1−(i−1)µ)ζi
T

(50)

≤ exp
(
−Li(log Li)(k − 1)ζi−1T

(k − 1− (i− 1)µ)ζi

)
,

where in the last inequality we used that Li ≥ e2 (see (42)). The definitions of ζi−1 and
Li in (30) and (41) yield

Li(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi
=

Liζi

4Ki−1
θ4Ki−1/ζi =

ζi

4Ki−1
.

We use the last inequality to derive

Li(log Li)(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi
= log

1
θ
,

Li
2(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi
=

ζi

2Ki−1
,

which, combined with inequality (50), gives (48).

4.2. The k-tuple lemma for subgraphs of random graphs
Let G ∈ G(n, q) be the binomial random graph with edge probability q = q(n), and
suppose H = (U,W ; F ) is a bipartite, not necessarily induced subgraph of G with |U | =
m1 and |W | = m2. Furthermore, denote the density of H by p = e(H)/m1m2.

We now consider subsets of W of fixed cardinality k ≥ 1, and classify them according
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to the size of their joint neighbourhood in H. For this purpose we define

B(k)(U,W ; γ) =
{
b = {v1, . . . , vk} ∈ W :

∣∣dH
U (b)− pkm1

∣∣ ≥ γpkm1

}
,

where dH
U (b) denotes the size of the joint neighbourhood of b in H, that is,

dH
U (b) =

∣∣∣∣∣
k⋂

i=1

ΓH(vi)

∣∣∣∣∣ .
The following lemma states that in a typical G ∈ G(n, q) the set B(k)(U,W ; γ) is “small”
for any sufficiently large (ε, q)-regular subgraph H = (U,W ; F ) of a dense enough random
graph G. Recall that if G is a graph and U , W ⊂ V (G) are two disjoint sets of vertices,
then G[U,W ] denotes the bipartite graph naturally induced by (U,W ).

Lemma 4.7 (The k-tuple lemma). For any constants α > 0, γ > 0, η > 0, and k ≥ 1
and function m0 = m0(n) such that qkm0 � (log n)4, there exists a constant ε > 0 for
which the random graph G ∈ G(n, q) satisfies the following property with probability
1− o(1): If for a bipartite subgraph H = (U,W ; F ) of G the conditions

(i ) e(H) ≥ αe(G[U,W ]),
(ii ) H is (ε, q)-regular,

(iii ) |U | = m1 ≥ m0 and |W | = m2 ≥ m0

apply, then

|B(k)(U,W ; γ)| ≤ η

(
m2

k

)
(51)

also applies.

Proof. The proof of Lemma 4.7 is given in [11].

4.3. Outline of the proof of the counting lemma for l = 4
The proof of the Lemma 2.3 contains some technical definitions. In order to make the
reading more comprehensible, we first informally illustrate the basic ideas of the proof
for the case l = 4, before we give the proof for a general l ≥ 2 in Section 4.4.

Consider the following situation: Let V1, V2, V3, and V4 be pairwise disjoint sets of
vertices of size m. Let J be a 4-partite graph with vertex set V (J) = V1 ∪ V2 ∪ V3 ∪ V4.
We think of J as a not necessarily induced subgraph of a random graph in G(n, q) with
T = pm2 edges between each Vi and Vj (1 ≤ i < j ≤ 4), where p = αq. We will describe
a situation in which we will be able to assert that J contains the “right” number of K4’s.
Here and everywhere below by the “right” number we mean “as expected in a random
graph of density p”; notice that, for the number of K4’s, this means ∼ p6m4. Observe
that, however, J is a not necessarily induced subgraph of a graph in G(n, q), and this
makes our task hard. As it turns out, it will be more convenient to imagine that J is
generated in l− 1 = 3 stages. First we choose the edges from V4 to V1 ∪V2 ∪V3. Then we
choose the edges from V3 to V1∪V2, and in the third stage we disclose the edges between
V2 and V1.

The key idea of the proof is to consider “bad” tuples, which we create in every stage.
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“bad” 3-tuples

(b)(a)

discarded
vertices

3-tuple
neighbours v3 such that
(v1, v2, v3) is not a “bad” 3-tuple

approxiametly expected number of joint(i)

(ii)

Pair (v1, v2) is good if it has:“picked-up”

V3

V1

V2
v2

v3

v1

Ṽ3

Figure 1

After we chose the edges from V4 to the other vertex classes, we define “bad” 3-tuples
in V1 × V2 × V3: a 3-tuple is “bad” if its joint neighbourhood in V4 is much smaller
than expected. Then, with the right choice of constants, Proposition 4.11 for k = 3
and J = J [V4, V1 ∪ V2 ∪ V3] will ensure that there are not too many “bad” 3-tuples.
(Proposition 4.11 is a corollary of the the k-tuple lemma, Lemma 4.7.)

We next generate the edges between V3 and V1 ∪ V2. We want to define “bad” pairs in
V1 × V2. Here it becomes slightly more complicated to distinguish “bad” from “good”.
This is because there are two things that might go wrong for a pair in V1 × V2. First of
all, again the joint neighbourhood (now in V3) of a pair in V1 × V2 might be too small.
On the other hand, it could have the right number of joint neighbours in V3, but many
of these neighbours “complete” the pair to a “bad” 3-tuple. Here the Pick-Up Lemma
comes into play for k = 3 (see Proposition 4.10): this lemma will ensure that, given the
set of “bad” 3-tuples (which was already defined in the first stage) is small, we will not
“pick-up” too many of these (see Figure 1(a)), while choosing the edges between V3 and
V1 ∪V2. (We say that a triple (v1, v2, v3) has been picked-up if (v1, v3) and (v2, v3) are in
the edge set generated between V3 and V1 ∪ V2.)

Here the situation complicates somewhat. The Pick-Up Lemma forces us to discard a
small portion (less or equal µPU fraction) of vertices in V3. Thus, in order to avoid the
first type of “badness” (too small joint neighbourhood) as a 2-tuple in V1 × V2 it is not
enough to have the right number of joint neighbours in V3; we need the right number
of joint neighbours in Ṽ3, which is V3 without the µPUm vertices (at most) we lose by
applying the Pick-Up Lemma (see Figure 1(b)). This will be ensured by the the k-tuple
lemma (to be more precise, Proposition 4.11), now for k = 2 and J = J [Ṽ3, V1 ∪ V2].

Later, in the general case, we will refer to the set of “bad” i-tuples in V1 × · · · × Vi
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as Bi (see Definition 4.8 below). We define Bi as the union of the sets B(a)
i and B(b)

i ,
defined as follows. We put in B(a)

i the i-tuples that are “bad” because they have a joint
neighbourhood in Ṽi+1 that is too small; the set B(b)

i is defined as the set of i-tuples in
V1 × · · · × Vi that “bad” because they extend to too many “bad” (i + 1)-tuples (i.e.,
(i + 1)-tuples in Bi+1).

As described above, we define Bi (i = l − 1, . . . , 1) by reverse induction, starting
with Bl−1, and going down to B1. With the right choice of constants, there will not be
too many “bad” vertices in V1.

Having ensured that most of the m vertices in V1 are not “bad” (i.e., do not belong to
B1) we are now able to count the number of K4’s. We will use the following deterministic
argument, which will later be formalized in Lemma 4.13. Consider a vertex v1 in V1 that is
not “bad”. This vertex has approximately the expected number of neighbours in Ṽ2 (i.e.,
∼ pm), and not too many of these neighbours constitute, together with v1, a “bad” 2-
tuple. In other words, this means that v1 extends to ∼ pm copies of K2 in (V1×V2) \B2.
This implies that each such K2 has the right number of joint neighbours in Ṽ3 (i.e.,
∼ p2m), and consequently extends to the right number of K3’s in (V1 × V2 × V3) \ B3.
Repeating the last argument, each of these K3’s extends into ∼ p3m different copies of
K4. Since we have ensured that most of the m vertices in V1 are not “bad”, we have
∼ m · pm · p2m · p3m = p(4

2)m4 copies of K4.

4.4. Proof of the counting lemma
In this section we will prove Lemma 2.3. In the section ‘Concepts and Constants’, we
introduce the key definitions and describe the logic of all important constants which will
appear later in the proof. Afterwards we prove two technical propositions in the section
‘Tools’. These propositions correspond to the lemmas in Sections 4.1 and 4.2, and their
use will give a short proof of the Counting Lemma, to be presented in the section ‘Main
proof’.

Concepts and constants. Let t ≥ l ≥ 2 be fixed integers and let n be sufficiently
large. Let α and ε be positive constants. Let G ∈ G(n, q) be the binomial random graph
with edge probability q = q(n), and suppose J is an l-partite subgraph of G with vertex
classes V1, . . . , Vl. For all 1 ≤ i < j ≤ l we denote by Jij the bipartite graph induced by
Vi and Vj . Consider the following assertions for J .

(I) |Vi| = m = n/t for all 1 ≤ i ≤ l,
(II) ql−1n � (log n)4,

(III) Jij (1 ≤ i < j ≤ l) has T = pm2 edges, where 1 > αq = p � 1/n, and
(IV) Jij (1 ≤ i < j ≤ l) is (ε, q)-regular.

Let σ > 0 be given. We define the constants

γ = µ = ν =
1
3

(
1− (1− σ)1/l

)
, (52)

and, for 1 ≤ i ≤ l − 2, we put

βi+1 =
(

1
2

(α

e

)(l
2)−(i

2)
)1/i

. (53)
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In order to prove Lemma 2.3 we need some definitions. These definitions always depend
on a fixed subgraph J of our random graph G ∈ G(n, q) satisfying (I)–(IV). However,
we will drop references to J because we want to simplify the notation (e.g., we write Vi

instead of V J
i ). Also, for each i = 1, . . . , l we denote V1 × · · · × Vi by Wi.

In the proof we consider for a fixed J sets of “bad” i-tuples Bi ⊆ Wi (1 ≤ i ≤ l − 1).
We define these sets recursively from Bl−1 to B1. As mentioned above in the discussion
of the l = 4 case, there are two reasons that make a given i-tuple in Wi “bad”. First
of all, its joint neighbourhood in Vi+1 might be too small (see the definition of B(a)

i in
Definition 4.8) and, secondly, it could extend into too many “bad” (i + 1)-tuples in Bi+1

(see the definition of B(b)
i in Definition 4.8). Note that the “bad” (i + 1)-tuples have

already been defined, as we are using reverse induction in these definitions.
Next we apply the Pick-Up Lemma for k = i + 1 (1 ≤ i ≤ l − 2) with µPU

i+1 = µ and
βPU

i+1 = βi+1 (and yet unspecified ζPU
i+1). As a result we obtain KPU

i+1 = KPU
i+1(βPU

i+1, µ
PU
i+1)

and the set

Ṽi+1 = Ṽ PU
i+1(KPU

i+1) ⊆ Vi+1

of undiscarded vertices with

|Ṽi+1| ≥ (1− µ)m.

We need a few more definitions before we define Bi, B(a)
i and B(b)

i (recursively for
i = l− 1, . . . , 1). Let Γ̃i+1(b) be the joint neighbourhood of b = (v1, . . . , vi) ∈ Wi in Ṽi+1

with respect to J , more precisely

Γ̃i+1(b) = {w ∈ Ṽi+1 : (vj , w) ∈ E(Jj,i+1), ∀ 1 ≤ j ≤ i}.

For a fixed set B ⊆ Wi+1 and b = (v1, . . . , vi) ∈ Wi we denote the degree dB(b) of b in B
with respect to J by

dB(b) =
∣∣∣{w ∈ Γ̃i+1(b) : (v1, . . . , vi, w) ∈ B

}∣∣∣ .
Next we define (still for a fixed J) the sets of “bad” i-tuples Bi = Bi(γ, µ, ν) ⊆ Wi

mentioned earlier. Although we do not apply the Pick-Up Lemma for k = l, for the sake
of convenience we consider the neighbourhood of elements in Wl−1 in Ṽl, instead of in Vl.

Definition 4.8 (Bl−1, B(a)
i , B(b)

i , Bi). Let γ, µ, ν be given by (52). We define recur-
sively the following sets of “bad” tuples for i = l − 1, . . . , 1:

Bl−1 = Bl−1(γ, µ) =
{

b ∈ Wl−1 :
∣∣∣Γ̃l(b)

∣∣∣ < (1− γ − µ)pl−1m
}

,

B(a)
i = B(a)

i (γ, µ) =
{

b ∈ Wi :
∣∣∣Γ̃i+1(b)

∣∣∣ < (1− γ − µ)pim
}

,

B(b)
i = B(b)

i (ν) =
{
b ∈ Wi : dBi+1(b) ≥ νpim

}
,

Bi = Bi(γ, µ, ν) = B(a)
i (γ, µ) ∪ B(b)

i (ν).

We also consider “bad” events in G(n, q) defined on the basis of the size of the sets
Bl−1(γ, µ), B(a)

i (γ, µ), B(b)
i (ν), and Bi(γ, µ, ν) defined above. In the following definition

we mean by J an arbitrary subgraph of G ∈ G(n, q) satisfying conditions (I)–(IV).
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Definition 4.9. Let γ, µ, ν be given by (52) and let ηi > 0 (i = l − 1, . . . , 1) be fixed.
We define the events

Xl−1(γ, µ, ηl−1) : ∃ J ⊆ G s.t. |Bl−1| > (ηl−1/2)ml−1,

X
(a)
i (γ, µ, ηi) : ∃ J ⊆ G s.t.

∣∣∣B(a)
i

∣∣∣ > (ηi/2)mi,

X
(b)
i (γ, µ, ν, ηi, ηi+1) : ∃ J ⊆ G s.t. |Bi+1| ≤ ηi+1m

i+1 ∧ |B(b)
i | > (ηi/2)mi,

Xi(γ, µ, ν, ηi, ηi+1) = X
(a)
i (γ, µ, ηi) ∨ X

(b)
i (γ, µ, ν, ηi, ηi+1).

For simplicity, we let

X
(a)
l−1 = Xl−1 = Xl−1(γ, µ, ηl−1),

X
(a)
i = X

(a)
i (γ, µ, ηi) for i = 1, . . . , l − 1,

X
(b)
i = X

(b)
i (γ, µ, ν, ηi, ηi+1) for i = 1, . . . , l − 2,

and

Xi = Xi(γ, µ, ν, ηi, ηi+1) for i = 1, . . . , l − 1.

Owing to the special role of X1 later in the proof, we let

Xbad = Xbad(γ, µ, ν, η1, η2) = X1(γ, µ, ν, η1, η2).

We will now describe the remaining constants used in the proof. Notice that α and
σ were given and we have already fixed γ, µ, and ν in (52) and βi for 2 ≤ i ≤ l − 1
in (53). The (yet unspecified) parameters ηi and ε will be determined by Propositions 4.10
and 4.11. First we set η1 = ν. Then Proposition 4.10 (PUi+1) inductively describes
ηi+1 = ηi+1(βi+1, γ, µ, ν, ηi) for i = 1, . . . , l − 2 such that P(X(b)

i ) = o(1). Finally, for
i = 1, . . . , l−1, Proposition 4.11 (TLi) implies the choice for εi = εi(α, γ, µ, ηi) such that
P(X(a)

i ) = o(1). We set

ε = min{εi : i = 1, . . . , l − 1}.
A diagram illustrating the definition scheme for the constants above is given in Figure 2.

α, σ, γ, µ, ν, β2, . . . , βl−1y
η1 = ν

PU2−−−−−→ η2 −−−−−→ · · · −−−−−→ ηi
PUi+1−−−−−→ ηi+1 −−−−−→ · · ·

PUl−1−−−−−→ ηl−1yTL1

y yTLi

y yTLl−1

ε1 ε2 . . . εi εi+1 . . . εl−1︸ ︷︷ ︸
ε = min εi

Figure 2 Flowchart of the constants

Thus, ε is defined for any given α and σ, as claimed in Lemma 2.3. From now on, these
constants are fixed for the rest of the proof of Lemma 2.3.
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Tools. We need some auxiliary results before we prove Lemma 2.3. For this purpose we
state variants of the Pick-Up Lemma, Lemma 4.3, and of the k-tuple lemma, Lemma 4.7,
in the form that we apply these later. These variants will be referred to as (PUi+1)
and (TLi).

The next proposition follows from Lemma 4.3 for k = i + 1 (1 ≤ i ≤ l − 2).

Proposition 4.10 (PUi+1). Fix 1 ≤ i ≤ l − 2. Let α, σ > 0 be arbitrary, let γ, µ, ν

and βi+1 be given by (52) and (53), and let ηi be defined as stated in Section 4.4 (see
Figure 2). Then there exists ηi+1 = ηi+1(βi+1, γ, µ, ν, ηi) > 0 such that for every t ≥ l a
random graph G in G(n, q) satisfies the following property with probability 1− o(1): If J

is a subgraph of G satisfying (I)–(IV) and Bi+1(γ, µ, ν) ⊆ Wi+1 is such that

|Bi+1(γ, µ, ν)| ≤ ηi+1m
i+1, (54)

then the number of i-tuples b in Wi with

dBi+1(b) ≥ νpim

is less than
ηi

2
mi,

which means ∣∣∣B(b)
i (ν)

∣∣∣ ≤ ηi

2
mi. (55)

Furthermore,

|Ṽi+1| ≥ (1− µ)m

holds.

We restate Proposition 4.10, by using the events X
(b)
i from Definition 4.9. Observe

that inequalities (54) and (55) correspond to X
(b)
i , so that P(X(b)

i ) = o(1) is equivalent
to the first part of Proposition 4.10′.

Proposition 4.10′ (PUi+1). Fix 1 ≤ i ≤ l − 2. Let α, σ > 0 be arbitrary, let γ, µ,
ν and βi+1 be given by (52) and (53), and let ηi be defined as stated in Section 4.4 (see
Figure 2). Then there exists ηi+1 = ηi+1(βi+1, γ, µ, ν, ηi) > 0 such that for every t ≥ l

P
(
X

(b)
i (γ, µ, ν, ηi, ηi+1)

)
= o(1)

and

P
(
|Ṽi+1| < (1− µ)m

)
= o(1).

Proof. We apply Lemma 4.3 for k = i + 1 and with the following choice of βPU, ζPU,
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µPU:

βPU = βi+1, (56)

ζPU =
ηiν

2
, (57)

µPU = µ. (58)

Lemma 4.3 then gives ηPU, from which we define the constant ηi+1 we are looking for by
putting

ηi+1 = ηPU.

We assume inequality (54) holds. In other words, the number of the “bad” (i + 1)-tuples
in Wi+1 is

|Bi+1| ≤ ηi+1m
i+1 = ηPUmi+1. (59)

On the other hand, if we assume that (55) does not hold (i.e., the event X
(b)
i occurs),

then the number of (i + 1)-tuples in Bi+1 that have been “picked-up” has to exceed
ηi

2
mi · νpim = ζPUpimi+1. (60)

The Pick-Up Lemma bounds the number of these configurations in(
V1 × Vi+1

T

)
× · · · ×

(
Vi × Vi+1

T

)
by (

βPU
)iT · (m2

T

)i

= (βi+1)iT

(
m2

T

)i

. (61)

We now estimate the number of all possible graphs J satisfying (I)–(IV) for which (59)
holds but the number of members in Bi+1 that have been “picked-up” exceeds (60).
There are fewer than

(
n
m

)l different ways to fix the l vertex classes of J . Furthermore,
observe that Bi+1 is determined by all the edges in Jjj′ (i < j′ ≤ l, 1 ≤ j < j′ ≤ l, which

gives
(

l
2

)
−
(
i+1
2

)
different pairs jj′). Thus we have at most

(
m2

T

)(l
2)−(i+1

2 )
possibilities to

determine Bi+1. This, combined with (61), (III), and (53), yields that

P
(
X

(b)
i

)
≤
(

n

m

)l(
m2

T

)(l
2)−(i+1

2 )
· (βi+1)iT

(
m2

T

)i

· q((l
2)−(i

2))T

≤ 2nl

(
em2q

T

)((l
2)−(i

2))T

(βi+1)iT ≤ 2nl

(( e
α

)(l
2)−(i

2)
(βi+1)i

)T

≤ 2nl−T .

Since l is fixed and T � m = n/t, we have

P
(
X

(b)
i

)
= o(1).

Note that the set Ṽi+1 was determined by the application of the Pick-Up Lemma.
Therefore, the second assertion in Proposition 4.10′ also follows from the proof above.
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The following is an easy consequence of Lemma 4.7 for k = i (1 ≤ i ≤ l − 1).

Proposition 4.11 (TLi). Fix 1 ≤ i ≤ l−1. Let α, σ > 0 be arbitrary, let γ, µ be given
by (52), and let ηi be defined as stated in Section 4.4 (see Figure 2). Then there exists
εi = εi(α, γ, µ, ηi) > 0 such that for every t ≥ l a random graph G in G(n, q) satisfies the
following property with probability 1− o(1): If ε ≤ εi and J is a subgraph of G satisfying
(I)–(IV), then the number of i-tuples b in Wi with∣∣∣Γ̃i+1(b)

∣∣∣ < (1− γ − µ)pim

is less than
ηi

2
mi,

which means that ∣∣∣B(a)
i (γ, µ)

∣∣∣ ≤ ηi

2
mi. (62)

We can reformulate Proposition 4.11 in a shorter way by using the event X
(a)
i (see

Definition 4.9).

Proposition 4.11′ (TLi). Fix 1 ≤ i ≤ l − 1. Let α, σ > 0 be arbitrary, let γ, µ be
given by (52) and let ηi be defined as stated in Section 4.4 (see Figure 2). Then there
exists εi = εi(α, γ, µ, ηi) > 0 such that for every t ≥ l and ε ≤ εi

P
(
X

(a)
i (γ, µ, ηi)

)
= o(1).

Proof. We apply the k-tuple lemma, Lemma 4.7, with k = i, αTL = α/3, γTL = γ and

ηTL = ηi/(2ii). (63)

The k-tuple lemma gives an εTL and we set εi = min{
(
εTL
)3

, α/2, 1/27}. Let ε ≤ εi

and J be a subgraph of G ∈ G(n, q) satisfying (I)–(IV). Set U = Ṽi+1 and W =
⋃i

j=1 Vj .
By (IV), the graph Jjj′ (1 ≤ j < j′ ≤ i) is (ε, q)-regular. A straightforward argument
(using ε ≤ 1/27 and Lemma 3.2 for C = 3/2) shows that with probability 1 − o(1) the
subgraph J [U,W ] is at least ( 3

√
ε, q)-regular and therefore (εTL, q)-regular, which yields

condition (ii) of Lemma 4.7. Moreover, with probability 1− o(1) we have, say,

|E(G[U,W ])| ≤ 3
2
q(1− µ)km2,

and using the regularity of J we see that

|E(J [U,W ])| ≥ (α− ε)q(1− µ)km2,

which by our choice of ε gives condition (i) of Lemma 4.7. Finally, with assertion (II)
for J all assumptions of the k-tuple lemma are satisfied for J [U,W ].

Therefore, the k-tuple lemma implies that, with probability 1− o(1), we have∣∣∣{b ∈ Wi :
∣∣∣Γ̃i+1(b)

∣∣∣ ≤ (1− γ)pi(1− µ)m
}∣∣∣ ≤ ηTL

(
im

i

)
.
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The choice of ηTL in (63) gives∣∣∣{b ∈ Wi :
∣∣∣Γ̃i+1(b)

∣∣∣ ≤ (1− γ − µ + γµ)pim
}∣∣∣ ≤ ηi

2
mi,

and hence (62) holds with probability 1− o(1), by the simple observation that∣∣∣Γ̃i+1(b)
∣∣∣ ≤ (1− γ − µ)pim implies

∣∣∣Γ̃i+1(b)
∣∣∣ ≤ (1− γ − µ + γµ)pim.

Main proof. Our proof of the Counting Lemma, Lemma 2.3, follows immediately from
Lemmas 4.12 and 4.13 below. Lemma 4.12 is a probabilistic statement and asserts that
the probability of the event Xbad ⊆ G(n, q) is o(1). On the other hand, Lemma 4.13
is deterministic and claims that if a graph G is not in Xbad and J is a not necessarily
induced subgraph of G satisfying (I)–(IV), then J contains the right number of copies
of Kl. We apply the technical propositions from the last section in the proof of the
probabilistic Lemma 4.12 below.

Lemma 4.12. For arbitrary α and σ > 0, let γ, µ, ν be given by (52), and let ε and ηi

(i = 2, . . . , l− 1) be defined as stated in Section 4.4. Let G be a random graph in G(n, q).
Then

P(G ∈ Xbad(γ, µ, ν)) = o(1).

Proof. Formal logic implies

Xbad ⊆ X
(a)
1 ∨ (X(b)

1 ∧ ¬X2) ∨ X
(a)
2 ∨ (X(b)

2 ∧ ¬X3)

∨
... ∨

...
∨ X

(a)
l−2 ∨ (X(b)

l−2 ∧ ¬Xl−1) ∨ Xl−1,

and thus, by Propositions 4.10 and 4.11 (notice Xl−1 = X
(a)
l−1 by Definition 4.9), we have

P (Xbad) ≤
l−2∑
i=1

(
P(X(a)

i ) + P(X(b)
i )
)

+ P(Xl−1) = o(1).

Lemma 4.13. For arbitrary α and σ > 0, let γ, µ, ν be given by (52), and let ε and
ηi (i = 2, . . . , l− 1) be defined as stated in Section 4.4. Then every subgraph J of a graph
G 6∈ Xbad(γ, µ, ν) satisfying conditions (I)–(IV) contains at least

(1− σ)p(l
2)ml

copies of Kl.

Proof. We shall prove by induction on i that the following statement holds for all
1 ≤ i ≤ l:
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(Si) Let J be a subgraph of G 6∈ Xbad such that (I)–(IV) apply. Then there are at least
(1−γ−µ− ν)ip(i

2)mi different i-tuples in Wi \Bi that induce a Ki in J [V1, . . . , Vi].

Suppose i = 1. Note that ¬Xbad implies that |V1 ∩ B1| ≤ η1m = νm. Therefore V1 \ B1

contains at least (1− ν)m ≥ (1− γ − µ− ν)p0m1 copies of K1.
We now proceed to the induction step. Assume i ≥ 2 and (Si−1) holds. Therefore,

Wi−1 \ Bi−1 contains at least (1 − γ − µ − ν)i−1p(i−1
2 )mi−1 different (i − 1)-tuples b =

(v1, . . . , vi−1), each constituting the vertex set of a Ki−1 in J [V1, . . . , Vi−1]. For every
b ∈ Wi−1 \ Bi−1, we have

(i) |Γ̃i(b)| ≥ (1− γ − µ)pi−1m, and
(ii) dBi(b) < νpi−1m.

Therefore, every such b extends to at least (1 − γ − µ − ν)pi−1m different b′ ∈ Wi \ Bi

that correspond to a Ki ⊆ J [V1, . . . , Vi]. This implies (Si), and hence our induction is
complete.

Assertion (Sl) and the choice of γ, µ, and ν in (52) give at least

(1− γ − µ− ν)lp(l
2)ml = (1− σ)p(l

2)ml

copies of Kl in J .

Clearly, Lemmas 4.12 and 4.13 together imply the Counting Lemma, Lemma 2.3.

5. The d-degenerate case

In this section we describe how the proof of Theorem 1.2 extends to the proof of Theo-
rem 1.2′. The detailed proof of Theorem 1.2′ is given in [14]. First we outline the proof
of Theorem 1.2′, assuming a counterpart for the Counting Lemma, Lemma 2.3, which
we state below.

Let d be an integer and H a d-degenerate graph on h vertices. Let t ≥ h ≥ 2 be fixed
integers and let n be sufficiently large. Let α and ε be constants greater than 0. Suppose
J is an h-partite subgraph of G with vertex classes V1, . . . , Vh satisfying the following
conditions:

(I′) |Vi| = m = n/t for all i,
(II′) qdn � (log n)4,

(III′) for all 1 ≤ i < j ≤ h,

|E(Jij)| =

{
T = pm2 if {wi, wj} ∈ E(H)

0 if {wi, wj} 6∈ E(H),

where 1 > αq = p � 1/n, and
(IV′) Jij (1 ≤ i < j ≤ h) is (ε, q)-regular.

We now state the appropriate counting lemma for the d-degenerate case.

Lemma 2.3′ (Counting lemma, d-degenerate case). For every α, σ > 0, integer
d and d-degenerate graph H on h vertices, there exists ε > 0 such that for every t ≥ h a
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random graph G in G(n, q) satisfies the following property with probability 1−o(1): Every
subgraph J ⊆ G satisfying conditions (I ′)–(IV ′) contains at least

(1− σ)p|E(H)|mh

copies of H.

Sketch of the proof of Theorem 1.2′. Let d be a fixed positive integer and suppose
H is a d-degenerate graph of order h. Let the vertices of H be ordered w1, . . . , wh such
that each wi has at most d neighbours in {w1, . . . , wi−1}.

At first, we follow the proof of Theorem 1.2 and observe that, by (16), the Erdős–
Stone–Simonovits theorem (see (1)) implies that Fcluster contains at least one copy of
H if we choose tSRL

0 big enough. This yields, in the same way as in the original proof,
that F contains an h-partite (εLem2.3′ , q)-regular graph J with |E(Jij)| = αLem2.3′qm2

if {wi, wj} ∈ E(H) and E(Jij) = ∅ if {wi, wj} 6∈ E(H). For 1 ≤ i ≤ h, we identify the
vertex class Vi in J with the vertex wi ∈ V (H).

We then apply Lemma 2.3′ with appropriate αLem2.3′ and 0 < σ < 1 to deduce
Theorem 1.2′.

Finally, we outline of the proof of Lemma 2.3′.

Sketch of the proof of Lemma 2.3′. We prove Lemma 2.3′ in the same way as
Lemma 2.3. Observe that conditions (I) and (IV) are unchanged in Lemma 2.3′. Condi-
tions (III) and (III′) state that J is a “blown-up” copy of the subgraph we are considering,
namely, Kl and H, respectively. The main difference is between (II) and (II′).

The crucial part of the proof of the original counting lemma is the definition of “bad”
tuples in Definition 4.8. Recall that the proof of Lemma 2.3 used the Pick-Up Lemma
(Lemma 4.3). There we had to discard a small portion of the vertices of Vi (of high
degree to some Vj , j < i) to obtain Ṽi ⊆ Vi. For 1 ≤ i ≤ |V (Kl)|, we considered two
types of “bad” (i− 1)-tuples in Wi−1 = V1 × · · · × Vi−1. The first type, the ones put in
B(a)

i−1, was determined by the size of their joint neighbourhood in Ṽi. On the other hand,
an (i − 1)-tuple in Wi−1 was bad ‘of the second type’, and was put in B(b)

i−1, if it was
contained in too many “bad” i-tuples in Bi.

We use the property that H is d-degenerate to change the definition of B(a)
i . In the

proof of Lemma 2.3 we wanted to extend inductively each Ki−1 in Wi−1 that is not
“bad” to the right number of copies of Ki in Wi \Bi. For this purpose we had to consider
the joint neighbourhood of all vertices in the (i− 1)-tuple. The graph H is d-degenerate,
and we fixed an ordering w1, . . . , wh of V (H) so that each wi has at most d neighbours
in {w1, . . . , wi−1}. This implies that it is sufficient to consider the joint neighbourhood
of at most d elements of the (i− 1)-tuple to determine its “badness”, or its membership
in B(a)

i−1. For i = 1, . . . , h, we define the index sets Ii consisting of the the indices of the
neighbours of wi in {w1, . . . , wi−1}. Also, for a fixed (i− 1)-tuple (v1, . . . , vi−1) ∈ Wi−1,
we consider the joint neighbourhood of

⋂
Γ(vj) ∩ Ṽi =:

⋂
Γ̃(vj), where the intersection
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is taken over j ∈ Ii. More precisely, we define B(a)
i as follows:

Ii = {j ∈ [i− 1] : {wj , wi} ∈ E(H)},

B(a)
i−1(γ, µ) =

(v1, . . . , vi−1) ∈ Wi−1 :
∣∣∣∣ ⋂

j∈Ii

Γ̃i(vj)
∣∣∣∣ < (1− γ − µ)p|Ii|m

 .

Obviously,

|Ii| ≤ d for 1 ≤ i ≤ h (64)

holds. The definition of B(b)
i remains almost unchanged; again, for some B ⊆ Wi+1 and

b = (v1, . . . , vi) ∈ Wi, we set dB(b) = |{w ∈ Γ̃i+1 : (v1, . . . , vi, w) ∈ B}| and we only
adjust the exponent of p:

B(b)
i = B(b)

i (ν) =
{

b ∈ Wi : dBi+1(b) ≥ νp|Ii|m
}

.

Then we define the corresponding events exactly as in Definition 4.9.
The proof of Lemma 2.3 consists of two propositions (Propositions 4.10 and 4.11) and

two lemmas (Lemmas 4.12 and 4.13). We now discuss the proofs of the corresponding
results with the new definition for the families B(a)

i and B(b)
i under (I′)–(IV′) instead

of (I)–(IV), and with Kl replaced by an arbitrary d-degenerate graph H. We define the
following constants, slightly different compared to the ones in the original proof (see (52)
and (53)):

γ = µ = ν =
1
3

(
1− (1− σ)1/h

)
, (65)

and, for 1 ≤ i ≤ l − 2 and |Ii+1| > 0,

βi+1 =
(

1
2

(α

e

)∑h
j=i |Ij |

)1/|Ii+1|

. (66)

The other constants are defined in the same way as described in Section 4.4 (see Figure 2,
with l replaced by h).

We now discuss the proofs of the results that correspond to Propositions 4.10 and 4.11
and Lemmas 4.12 and 4.13.

Proposition 4.10. The proof is an application of the Pick-Up Lemma, Lemma 4.3, for
k = i + 1. The Pick-Up Lemma does not require condition (II). It is already valid for
q(n) � 1/n, which is still guaranteed by (II′). It is easy to see that X

(b)
i is impossible if

we set ηi+1 = ηiν/2 and if |Ii+1| = 0. If |Ii+1| > 0, then essentially the same calculation
with the new βi+1 defined in (66) gives the proposition. We apply the Pick-Up Lemma
for the space

∏
j∈Ii+1

(
Vj×Vi+1

T

)
and the projection of Bi+1 onto

∏
j∈Ii+1

Vj × Vi+1.

Proposition 4.11. The proof is a straightforward application of the k-tuple lemma,
Lemma 4.7. In the original proof we apply the k-tuple lemma for k = i (1 ≤ i ≤ l − 1)
and we needed condition (II) (namely, ql−1n � (log n)4) for i = l − 1. Here, the new
definition of B(a)

i−1 from above comes into play. Inequality (64) ensures that we consider at
most the joint neighbourhood of d vertices. This means that we apply the k-tuple lemma
for k ≤ d and thus condition (II′) (namely, qdn � (log n)4) is sufficient.
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Lemma 4.12. For the proof we only apply Propositions 4.10 and 4.11. In order to adjust
the proof, we simply replace l by h.

Lemma 4.13. This lemma is a deterministic statement. It is not affected by the change
from (II) to (II′), but the induction there is formulated in such a way that it relies on
the structure (symmetries) of Kl. We fix this and reformulate (Si) to

(S ′i) Let J be a subgraph of G 6∈ Xbad such that (I′)–(IV′) apply. Then there are at least
(1−γ−µ−ν)ip

∑i
j=1 |Ij |mi different i-tuples inWi\Bi which induce a H[{w1, . . . , wi}]

in J [V1, . . . , Vi].

Thus, the induction works exactly the same way and (S ′h) implies the result, by our
choice of the constants in (65) (there we again replace l with h and

(
l
2

)
with |E(H)|).

References

[1] B. Bollobás, Extremal graph theory, Academic Press Inc. [Harcourt Brace Jovanovich Pub-
lishers], London, 1978. 1

[2] , Random graphs, second ed., Cambridge University Press, Cambridge, 2001. 1
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[7] S. Janson, T.  Luczak, and A. Ruciński, Random graphs, Wiley-Interscience, New York,

2000. 3.1, 3.2
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