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Abstract. In this note we present a new version of the well-known lemma of Szemerédi [17]

concerning regular partitions of graphs. Our result deals with subgraphs of pseudo-random graphs,

and hence may be used to partition sparse graphs that do no contain dense subgraphs.

1. Introduction

Our aim in this note is to give a simple extension of the beautiful regularity lemma of

Szemerédi [17]. As is well known, a version of this lemma for bipartite graphs was one

of the ingredients in Szemerédi’s celebrated proof [16] of the Erdős–Turán conjecture on

arithmetic progressions in dense subsets of integers. Furthermore, this bipartite version

was also used by Ruzsa and Szemerédi [15] to solve an extremal problem concerning set

systems.

The regularity lemma for generic graphs given in Szemerédi [17] has been used by many

authors, and it has proved to play a crucial rôle in extremal graph theory. A few papers

in which this lemma is important are Alon and Yuster [1], Bollobás, Erdős, Simonovits,

and Szemerédi [2], Chvátal, Rödl, Szemerédi, and Trotter [4], Chvátal and Szemerédi [5],
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Erdős, Frankl, and Rödl [6], Füredi [8], Rödl [12], and Rödl and Duke [14]. (We do not

attempt to compile an exhaustive list here.)

More recently, generalisations of Szemerédi’s lemma have been found and used by

several authors. We mention Chung [3], Frankl and Rödl [7], and Prömel and Steger [11].

The novelty in these generalisations resides in that Szemerédi’s result is extended to hy-

pergraphs. Our aim here is to present a generalisation of this lemma to sparse graphs.

Roughly speaking, we are concerned here in finding regular partitions of subgraphs of

pseudo-random graphs. We remark that this new version of the regularity lemma is used

in [9] and [10]. Moreover, we have been kindly informed that Professor Rödl [13] has also

observed that this version of the regularity lemma holds.

The necessary definitions and the statement of our result, Theorem 1, is given in

Section 2 below. We stress that our proof of Theorem 1, which we give in Section 3, is

simply an adaptation of Szemerédi’s original proof [17] to our context. Finally, we note that

suitable generalisations of Theorem 1 to subhypergraphs of pseudo-random hypergraphs

can be readily proved. Here, however, we restrict ourselves to the simplest case.

2. The regularity lemma for pseudo-random graphs

Let a graph G = Gn of order |G| = n be fixed. For U , W ⊂ V = V (G), we write E(U,W ) =

EG(U,W ) for the set of edges of G that have one endvertex in U and the other in W . We

set e(U,W ) = eG(U,W ) = |E(U,W )|. Now, let a partition P0 = (Vi)`
1 (` ≥ 1) of V

be fixed. For convenience, let us write (U,W ) ≺ P0 if U ∩W = ∅ and either ` = 1 or

else ` ≥ 2 and for some i 6= j (1 ≤ i, j ≤ `) we have U ⊂ Vi, W ⊂ Vj . We may now define

the pseudo-random property that we shall be interested in.

Suppose 0 ≤ η ≤ 1. We say that G is (P0, η)-uniform if, for some 0 ≤ p ≤ 1, we have

that for all U , W ⊂ V with (U,W ) ≺ P0 and |U |, |W | ≥ ηn, we have∣∣eG(U,W )− p|U ||W |
∣∣ ≤ ηp|U ||W |. (1)

We remark that the partition P0 is introduced to handle the case of `-partite graphs (` ≥ 2).

If ` = 1, that is if the partition P0 is trivial, then we are thinking of the case of ordinary

graphs. In this case, we shorten the term (P0, η)-uniform to η-uniform.

The prime example of an η-uniform graph is of course a random graph Gp. Note that

for η > 0 a random graph Gp ∈ G(n, p) with p = p(n) = C/n is almost surely η-uniform

provided C ≥ C0 = C0(η), where C0(η) depends only on η.
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Now let us go back to some definitions. Recall a graph G = Gn is fixed. Let H ⊂ G

be a spanning subgraph of G. For U , W ⊂ V , let

dH,G(U,W ) =
{
eH(U,W )/eG(U,W ) if eG(U,W ) > 0
0 if eG(U,W ) = 0.

Suppose ε > 0, U , W ⊂ V , and U ∩W = ∅. We say that the pair (U,W ) is (ε,H,G)-

regular , or simply ε-regular , if for all U ′ ⊂ U , W ′ ⊂W with |U ′| ≥ ε|U | and |W ′| ≥ ε|W |,
we have

|dH,G(U ′,W ′)− dH,G(U,W )| ≤ ε.

We say that a partition Q = (Ci)k
0 of V = V (G) is (ε, k)-equitable if |C0| ≤ εn, and |C1| =

. . . = |Ck|. Also, we say that C0 is the exceptional class of Q. When the value of ε is not

relevant, we refer to an (ε, k)-equitable partition as a k-equitable partition. Similarly, Q is

an equitable partition of V if it is a k-equitable partition for some k. If P and Q are two

equitable partitions of V , we say that Q refines P if every non-exceptional class of Q is

contained in some non-exceptional class of P . If P ′ is an arbitrary partition of V , then Q

refines P ′ if every non-exceptional class of Q is contained in some block of P ′. Finally,

we say that an (ε, k)-equitable partition Q = (Ci)k
0 of V is (ε,H,G)-regular , or simply

ε-regular , if at most ε
(
k
2

)
pairs (Ci, Cj) with 1 ≤ i < j ≤ k are not ε-regular. We can now

state the extension of Szemerédi’s lemma to subgraphs of (P0, η)-uniform graphs.

Theorem 1. Let ε > 0 and k0, ` ≥ 1 be fixed. Then there are constants η = η(ε, k0, `) > 0

andK0 = K0(ε, k0, `) ≥ k0 satisfying the following. For any (P0, η)-uniform graphG = Gn,

where P0 = (Vi)`
1 is a partition of V = V (G), if H ⊂ G is a spanning subgraph of G, then

there exists an (ε,H,G)-regular (ε, k)-equitable partition of V refining P0 with k0 ≤ k ≤
K0.

3. The proof of Theorem 1

We now proceed to give the proof Theorem 1. As in [17], the following ‘defect’ form of the

Cauchy–Schwarz inequality is used in the proof.

Lemma 2. Let y1, . . . , yv ≥ 0 be given. Suppose 0 ≤ ρ = u/v < 1, and
∑

1≤i≤u yi =

αρ
∑

1≤i≤v yi. Then ∑
1≤i≤v

y2
i ≥

1
v

(
1 + (α− 1)2

ρ

1− ρ

){ ∑
1≤i≤v

yi

}2

.
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We now fix G = Gn and put V = V (G). Also, we assume that P0 = (Vi)`
1 is a

fixed partition of V , and that G is (P0, η)-uniform for some 0 ≤ η ≤ 1. Moreover, we

let p = p(G) be as in (1).

Lemma 3. Let 0 < δ ≤ 10−2 be fixed. Let U , W ⊂ V (G) be such that (U,W ) ≺ P0,

and δ|U |, δ|W | ≥ ηn. If U∗ ⊂ U , W ∗ ⊂ W , |U∗| ≥ (1 − δ)|U |, and |W ∗| ≥ (1 − δ)|W |,
then

(i) |dH,G(U∗,W ∗)− dH,G(U,W )| ≤ 5δ,

(ii) |dH,G(U∗,W ∗)2 − dH,G(U,W )2| ≤ 9δ.

Proof. Note first that we have η ≤ δ, as ηn ≤ δ|U |, δ|W | ≤ δn. Let U∗, W ∗ be as given in

the lemma. We first check (i).

(i) We start by noticing that

dH,G(U∗,W ∗) ≥ eH(U,W )− 2(1 + η)pδ|U ||W |
eG(U,W )

≥ dH,G(U,W )− 2δ
1 + η

1− η
≥ dH,G(U,W )− 3δ.

Moreover,

dH,G(U∗,W ∗) ≤ eH(U,W )
eG(U∗,W ∗)

≤ eH(U,W )
(1− η)p|U∗||W ∗|

≤ eH(U,W )
(1− η)p(1− δ)2|U ||W |

≤ 1 + η

(1− η)(1− δ)2
dH,G(U,W ) ≤ dH,G(U,W ) + 5δ.

Thus (i) follows.

(ii) The argument here is similar. First

dH,G(U∗,W ∗) ≥
(
eH(U,W )− 2(1 + η)pδ|U ||W |

)2
eG(U,W )2

≥ dH,G(U,W )2 − 4(1 + η)pδ|U ||W |eH(U,W )
eG(U,W )(1− η)p|U ||W |

≥ dH,G(U,W )2 − 4δ
1 + δ

1− δ
≥ dH,G(U,W )2 − 5δ.

Secondly,

dH,G(U∗,W ∗)2 ≤ eH(U,W )2

eG(U∗,W ∗)2

≤ eH(U,W )2

(1− η)2p2|U∗|2|W ∗|2
≤ eH(U,W )2

(1− η)2(1− δ)4p2|U ||W |

≤
(

1 + η

(1− η)(1− δ)2

)2

dH,G(U,W )2 ≤ dH,G(U,W )2 + 9δ.
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Thus (ii) follows.

In the sequel, a constant 0 < ε ≤ 1/2 and a spanning subgraph H ⊂ G of G is

fixed. Also, we let P = (Ci)k
0 be an (ε, k)-equitable partition of V = V (G) refining P0,

where 4k ≥ ε−5. Moreover, we assume that η ≤ η0 = η0(k) = 1/k4k+1 and that n = |G| ≥
n0 = n0(k) = k41+2k.

We now define an equitable partition Q = Q(P ) of V = V (G) from P as follows. First,

for each (ε,H,G)-irregular pair (Cs, Ct) of P with 1 ≤ s < t ≤ k, we choose X = X(s, t) ⊂
Cs, Y = Y (s, t) ⊂ Ct such that (i) |X|, |Y | ≥ ε|Cs| = ε|Ct|, and (ii) |dH,G(X,Y ) −
dH,G(Cs, Ct)| ≥ ε. For fixed 1 ≤ s ≤ k, the sets X(s, t) in

{X = X(s, t) ⊂ Cs : 1 ≤ t ≤ k and (Cs, Ct) is not (ε,H,G)-regular}

define a natural partition of Cs into at most 2k−1 blocks. Let us call such blocks the

atoms of Cs. Now let q = 4k and set m = b|Cs|/qc (1 ≤ s ≤ k). Note that b|Cs|/mc = q

as |Cs| ≥ n/2k ≥ 2q2. Moreover, for later use, note that m ≥ ηn. We now let Q′ be a

partition of V = V (G) refining P such that (i) C0 is a block of Q′, (ii) all other blocks

of Q′ have cardinality m, except for possibly one, which has cardinality at most m − 1,

(iii) for all 1 ≤ s ≤ k, every atom A ⊂ Cs contains exactly b|A|/mc blocks of Q′, (iv) for

all 1 ≤ s ≤ k, the set Cs contains exactly q = b|Cs|/mc blocks of Q′.

Let C ′0 be the union of the blocks of Q′ that are not contained in any class Cs (1 ≤
s ≤ k), and let C ′i (1 ≤ i ≤ k′) be the remaining blocks of Q′. We are finally ready to

define our equitable partition Q = Q(P ): we let Q = (C ′i)
k′

1 .

Lemma 4. The partition Q = Q(P ) = (C ′i)
k′

0 defined from P as above is a k′-equitable

partition of V = V (G) refining P , where k′ = kq = k4k, and |C ′0| ≤ |C0|+ n4−k.

Proof. Clearly Q refines P . Moreover, clearly m = |C ′1| = . . . = |C ′k′ | and, for all 1 ≤ s ≤ k,

we have |C ′0| ≤ |C0|+ k(m− 1) ≤ |C0|+ k|Cs|/q ≤ |C0|+ n4−k.

In what follows, for 1 ≤ s ≤ k, we let Cs(i) (1 ≤ i ≤ q) be the classes of Q′ that are

contained in the class Cs of P . Also, for all 1 ≤ s ≤ k, we set C∗s =
⋃

1≤i≤q Cs(i). Now

let 1 ≤ s ≤ k be fixed. Note that |C∗s | ≥ |Cs| − (m− 1) ≥ |Cs| − q−1|Cs| ≥ |Cs|(1− q−1).

As q−1 ≤ 10−2 and q−1|Cs| ≥ m ≥ ηn, by Lemma 3 we have, for all 1 ≤ s < t ≤ k,

|dH,G(C∗s , C
∗
t )− dH,G(Cs, Ct)| ≤ 5q−1 (2)
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and

|dH,G(C∗s , C
∗
t )2 − dH,G(Cs, Ct)2| ≤ 9q−1 (3)

Similarly to [17], we define the index ind(R) of an equitable partition R = (Vi)r
0 of V =

V (G) to be

ind(R) =
2
r2

∑
1≤i<j≤`

dH,G(Vi, Vj)2.

Note that trivially 0 ≤ ind(R) < 1. Our aim now is to show that, for Q = Q(P ) defined

as above, we have ind(Q) ≥ ind(P ) + ε5/100. We start with the following lemma.

Lemma 5. Suppose 1 ≤ s < t ≤ k. Then

1
q2

q∑
i, j=1

dH,G(Cs(i), Ct(j))2 ≥ dH,G(Cs, Ct)2 −
ε5

100
.

Proof. By the (P0, η)-uniformity of G and the fact that (Cs, Ct) ≺ P0, we have

1
q2

∑
1≤i≤q

∑
1≤j≤q

dH,G(Cs(i), Ct(j)) =
1
q2

∑
i, j

eH(Cs(i), Ct(j))
eG(Cs(i), Ct(j))

≥
∑
i, j

eH(Cs(i), Ct(j))
(1 + η)q2p|Cs(i)||Ct(j)|

=
eH(C∗s , C

∗
t )

(1 + η)p|C∗s ||C∗t |

≥ 1− η
1 + η

dH,G(C∗s , C
∗
t ) ≥ dH,G(C∗s , C

∗
t )− 2η.

Thus, by the Cauchy–Schwarz inequality, we have

1
q2

∑
1≤i≤q

∑
1≤j≤q

dH,G(Cs(i), Ct(j))2 ≥ dH,G(C∗s , C
∗
t )2 − 4η.

Furthermore, by (3), we have dH,G(C∗s , C
∗
t )2 ≥ dH,G(Cs, Ct)2 − 9q−1. Since 9q−1 + 4η ≤

ε5/100, the lemma follows.

The inequality in Lemma 5 may be improved if (Cs, Ct) is an (ε,H,G)-irregular pair,

as shows the following result.

Lemma 6. Let 1 ≤ s < t ≤ k be such that (Cs, Ct) is not (ε,H,G)-regular. Then

1
q2

q∑
i, j=1

dH,G(Cs(i), Ct(j))2 ≥ dH,G(Cs, Ct)2 +
ε4

40
− ε5

100
.
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Proof. LetX = X(s, t) ⊂ Cs, Y = Y (s, t) ⊂ Ct be as in the definition ofQ. LetX∗ ⊂ X be

the maximal subset of X that is the union of blocks of Q, and similarly for Y ∗ ⊂ Y . With-

out loss of generality, we may assume that X∗ =
⋃

1≤i≤qs
Cs(i), and Y ∗ =

⋃
1≤j≤qt

Ct(j).

Note that |X∗| ≥ |X| − 2k−1(m − 1) ≥ |X|(1 − 2k−1m/|X|) ≥ |X|(1 − 2k−1/qε) =

|X|(1 − 1/ε2k+1), and similarly |Y ∗| ≥ |Y |(1 − 1/ε2k+1). However, we have 1/ε2k+1 ≤
10−2 and |X|/ε2k+1, |Y |/ε2k+1 ≥ ηn. Thus, by Lemma 3, we have |dH,G(X∗, Y ∗) −
dH,G(X,Y )| ≤ 5/ε2k+1. Moreover, by (2), we have |dH,G(C∗s , C

∗
t )− dH,G(Cs, Ct)| ≤ 5q−1.

Since |dH,G(X,Y )− dH,G(Cs, Ct)| ≥ ε and 5q−1 + 5/ε2k+1 ≤ ε/2, we have

|dH,G(X∗, Y ∗)− dH,G(C∗s , C
∗
t )| ≥ ε/2. (4)

For later reference, let us note that qsm = |X∗| ≥ |X| − 2k−1m ≥ ε|Cs| − 2k−1m ≥
εqm− 2k−1m, and hence qs ≥ εq− 2k−1 ≥ εq/2. Similarly, we have qt ≥ εq/2. Let us now

set yij = dH,G(Cs(i), Ct(j)) for i, j = 1, . . . , q. In the proof of Lemma 5 we checked that∑
1≤i≤q

∑
1≤j≤q

yij ≥
1− η
1 + η

q2dH,G(C∗s , C
∗
t ) ≥ (1− 2η)q2dH,G(C∗s , C

∗
t ).

Similarly, one has
∑

1≤i≤q

∑
1≤j≤q yij ≤ (1 + 3η)q2dH,G(C∗s , C

∗
t ),
∑

1≤i≤qs

∑
1≤j≤qt

yij ≥
(1 − 2η)qsqtdH,G(X∗, Y ∗), and

∑
1≤i≤qs

∑
1≤j≤qt

yij ≤ (1 + 3η)qsqtdH,G(X∗, Y ∗). Let us

set ρ = qsqt/q
2 ≥ ε2/4, and d∗s,t = dH,G(C∗s , C

∗
t ). We now note that by (4) we either have∑

1≤i≤qs

∑
1≤j≤qt

yij ≥
1− 2η
1 + 3η

· qsqt
q2

(
1 +

ε

2(d∗s,t)2

) ∑
1≤i≤q

∑
1≤j≤q

yij

≥ ρ
(

1 +
ε

3(d∗s,t)2

) ∑
1≤i≤q

∑
1≤j≤q

yij ,

or else ∑
1≤i≤qs

∑
1≤j≤qt

yij ≤
1 + 3η
1− 2η

· qsqt
q2

(
1− ε

2(d∗s,t)2

) ∑
1≤i≤q

∑
1≤j≤q

yij

≤ ρ
(

1− ε

3(d∗s,t)2

) ∑
1≤i≤q

∑
1≤j≤q

yij .

We may now apply Lemma 2 to conclude that∑
1≤i≤q

∑
1≤j≤q

y2
ij ≥

1
q2

(
1 +

ε2

9(d∗s,t)2
· ρ

1− ρ

){ ∑
1≤i≤q

∑
1≤j≤q

yij

}2

≥ 1
q2

(
1 +

ε2ρ

9(d∗s,t)2

){
q2(1− 2η)d∗s,t

}2

≥ q2(1− 4η)
(

(d∗s,t)
2 +

ε2ρ

9

)
≥ q2

(
(d∗s,t)

2 +
ε2ρ

10
− 4η

)
.
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Therefore

1
q2

∑
1≤i≤q

∑
1≤j≤q

dH,G(Cs(i), Ct(j))2 ≥ dH,G(C∗s , C
∗
t )2 +

ε2ρ

10
− 4η

≥ dH,G(Cs, Ct)2 +
ε4

40
− (9η−1 + 4η) ≥ dH,G(Cs, Ct)2 +

ε4

40
− ε5

100
,

as required.

We are now ready to prove the main lemma needed in the proof of Theorem 1.

Lemma 7. Suppose k ≥ 1 and 0 < ε ≤ 1/2 are such that 4k ≥ 1800ε−5. Let G = Gn

be a (P0, η)-uniform graph of order n ≥ n0 = n0(k) = k42k+1, where P0 = (Vi)`
1 is a

partition of V = V (G), and assume that η ≤ η0 = η0(k) = 1/k4k+1. Let H ⊂ G be a

spanning subgraph of G. If P = (Ci)k
0 is an (ε,H,G)-irregular (ε, k)-equitable partition

of V = V (G) refining P0, then there is a k′-equitable partition Q = (C ′i)
k′

0 of V such that

(i) Q refines P , (ii) k′ = k4k, (iii) |C ′0| ≤ |C0|+n4−k, and (iv) ind(Q) ≥ ind(P ) + ε5/100.

Proof. Let P be as in the lemma. We show that the k′-equitable partition Q = (C ′i)
k′

0

defined from P as above satisfies (i)–(iv). In view of Lemma 4, it only remains to check (iv).

By Lemmas 5 and 6, we have

ind(Q) =
2

(kq)2
∑

1≤i≤q

∑
1≤j≤q

dH,G(C ′i, C
′
j)2

≥ 2
k2

∑
1≤s<t≤k

1
q2

∑
1≤i≤q

∑
1≤j≤q

dH,G(Cs(i), Ct(j))2

≥ 2
k2

{ ∑
1≤s<t≤k

(
dH,G(Cs, Ct)2 −

ε5

100

)
+ ε

(
k

2

)
ε4

40

}

≥ ind(P )− ε5

100
+
ε5

50
≥ ind(P ) +

ε5

100
.

This completes the proof of the lemma.

Proof of Theorem 1 . Let ε > 0, k0 ≥ 1, and ` ≥ 1 be given. We may assume that ε ≤ 1/2.

Pick s ≥ 1 such that 4s/4` ≥ 1800ε−5, s ≥ max{2k0, 3`/ε}, and ε4s−1 ≥ 1. Let f(0) = s,

and put inductively f(t) = f(t − 1)4f(t−1) (t ≥ 1). Let t0 = b100ε−5c and set N =

max{n0(f(t)) : 0 ≤ t ≤ t0} = f(t0)42f(t0)+1, K0 = max{6`/ε,N}, and η = η(ε, k0, `) =
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min{η0(f(t)) : 0 ≤ t ≤ t0} = 1/4f(t0 + 1) > 0. We claim that η and K0 as defined above

will do.

To prove our claim, let G = Gn be a fixed (P0, η)-uniform graph, where P0 = (Vi)`
1

is a partition of V = V (G). Furthermore, let H ⊂ G be a spanning subgraph of G.

Note that we may clearly assume that n ≥ K0. Suppose t ≥ 0. Let us say that an

equitable partition P (t) = (Ci)k
0 of V is t-valid if (i) P (t) refines P0, (ii) s/4` ≤ k ≤ f(t),

(iii) ind{P (t)} ≥ tε5/100, and (iv) |C0| ≤ εn(1 − 2−(t+1)). We now verify that a 0-valid

partition P (0) of V does exist. Let m = dn/se, and let Q be a partition of V with all

blocks of cardinality m, except for possibly one, which has cardinality at most m− 1, and

moreover such that each Vi (1 ≤ i ≤ `) contains b|Vi|/mc blocks of Q. Grouping at most `

blocks of Q into a single block C0, we arrive at an equitable partition P (0) = (Ci)k
0 of V

that is 0-valid. Indeed, (i) is clear, and to check (ii) note that k ≤ n/m ≤ s = f(0), and

that there is 1 ≤ i ≤ ` such that |Vi| ≥ n/`, and so k ≥ b|Vi|/mc ≥ b(n/`)/dn/sec ≥
(1/2){(n/`)/(2n/s)} = s/4`. Also, (iii) is trivial and (iv) does follow, since |C0| < `m ≤
`dnε/3`e ≤ nε/2 as n ≥ K0 ≥ 6`/ε.

Now note that if there is a t-valid partition P (t) of V , then t ≤ t0 = b100ε−5c,
since ind{P (t)} ≤ 1. Suppose t is the maximal integer for which there is a t-valid parti-

tion P (t) of V . We claim that P (t) is (ε,H,G)-regular. Suppose to the contrary that P (t)

is not (ε,H,G)-regular. Then simply note that Lemma 7 gives a (t + 1)-valid equitable

partition P (t+1) = Q = Q(P (t)), contradicting the maximality of t. This completes the

proof of the theorem.
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[4] Chvátal, V., Rödl, V., Szemerédi, E., Trotter, W.T., The Ramsey number of a graph with

9



bounded degree, J. Combinatorial Theory (B) 34 (1983), 239–243.
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