The Regularity Lemma of Szemerédi for Sparse Graphs

Y. Kohayakawa
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, England
Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 20570, 01452-990 São Paulo, SP, Brazil

Abstract

In this note we present a new version of the well-known lemma of Szemerédi [17] concerning regular partitions of graphs. Our result deals with subgraphs of pseudo-random graphs, and hence may be used to partition sparse graphs that do no contain dense subgraphs.

1. Introduction

Our aim in this note is to give a simple extension of the beautiful regularity lemma of Szemerédi [17]. As is well known, a version of this lemma for bipartite graphs was one of the ingredients in Szemerédi's celebrated proof [16] of the Erdős-Turán conjecture on arithmetic progressions in dense subsets of integers. Furthermore, this bipartite version was also used by Ruzsa and Szemerédi [15] to solve an extremal problem concerning set systems.

The regularity lemma for generic graphs given in Szemerédi [17] has been used by many authors, and it has proved to play a crucial rôle in extremal graph theory. A few papers in which this lemma is important are Alon and Yuster [1], Bollobás, Erdős, Simonovits, and Szemerédi [2], Chvátal, Rödl, Szemerédi, and Trotter [4], Chvátal and Szemerédi [5],

Erdős, Frankl, and Rödl [6], Füredi [8], Rödl [12], and Rödl and Duke [14]. (We do not attempt to compile an exhaustive list here.)

More recently, generalisations of Szemerédi's lemma have been found and used by several authors. We mention Chung [3], Frankl and Rödl [7], and Prömel and Steger [11]. The novelty in these generalisations resides in that Szemerédi's result is extended to hypergraphs. Our aim here is to present a generalisation of this lemma to sparse graphs. Roughly speaking, we are concerned here in finding regular partitions of subgraphs of pseudo-random graphs. We remark that this new version of the regularity lemma is used in [9] and [10]. Moreover, we have been kindly informed that Professor Rödl [13] has also observed that this version of the regularity lemma holds.

The necessary definitions and the statement of our result, Theorem 1, is given in Section 2 below. We stress that our proof of Theorem 1, which we give in Section 3, is simply an adaptation of Szemerédi's original proof [17] to our context. Finally, we note that suitable generalisations of Theorem 1 to subhypergraphs of pseudo-random hypergraphs can be readily proved. Here, however, we restrict ourselves to the simplest case.

2. The regularity lemma for pseudo-random graphs

Let a graph $G=G^{n}$ of order $|G|=n$ be fixed. For $U, W \subset V=V(G)$, we write $E(U, W)=$ $E_{G}(U, W)$ for the set of edges of G that have one endvertex in U and the other in W. We set $e(U, W)=e_{G}(U, W)=|E(U, W)|$. Now, let a partition $P_{0}=\left(V_{i}\right)_{1}^{\ell}(\ell \geq 1)$ of V be fixed. For convenience, let us write $(U, W) \prec P_{0}$ if $U \cap W=\emptyset$ and either $\ell=1$ or else $\ell \geq 2$ and for some $i \neq j(1 \leq i, j \leq \ell)$ we have $U \subset V_{i}, W \subset V_{j}$. We may now define the pseudo-random property that we shall be interested in.

Suppose $0 \leq \eta \leq 1$. We say that G is (P_{0}, η)-uniform if, for some $0 \leq p \leq 1$, we have that for all $U, W \subset V$ with $(U, W) \prec P_{0}$ and $|U|,|W| \geq \eta n$, we have

$$
\begin{equation*}
\left|e_{G}(U, W)-p\right| U||W|| \leq \eta p|U||W| . \tag{1}
\end{equation*}
$$

We remark that the partition P_{0} is introduced to handle the case of ℓ-partite graphs $(\ell \geq 2)$. If $\ell=1$, that is if the partition P_{0} is trivial, then we are thinking of the case of ordinary graphs. In this case, we shorten the term $\left(P_{0}, \eta\right)$-uniform to η-uniform.

The prime example of an η-uniform graph is of course a random graph G_{p}. Note that for $\eta>0$ a random graph $G_{p} \in \mathcal{G}(n, p)$ with $p=p(n)=C / n$ is almost surely η-uniform provided $C \geq C_{0}=C_{0}(\eta)$, where $C_{0}(\eta)$ depends only on η.

Now let us go back to some definitions. Recall a graph $G=G^{n}$ is fixed. Let $H \subset G$ be a spanning subgraph of G. For $U, W \subset V$, let

$$
d_{H, G}(U, W)= \begin{cases}e_{H}(U, W) / e_{G}(U, W) & \text { if } e_{G}(U, W)>0 \\ 0 & \text { if } e_{G}(U, W)=0\end{cases}
$$

Suppose $\varepsilon>0, U, W \subset V$, and $U \cap W=\emptyset$. We say that the pair (U, W) is (ε, H, G) regular, or simply ε-regular, if for all $U^{\prime} \subset U, W^{\prime} \subset W$ with $\left|U^{\prime}\right| \geq \varepsilon|U|$ and $\left|W^{\prime}\right| \geq \varepsilon|W|$, we have

$$
\left|d_{H, G}\left(U^{\prime}, W^{\prime}\right)-d_{H, G}(U, W)\right| \leq \varepsilon
$$

We say that a partition $Q=\left(C_{i}\right)_{0}^{k}$ of $V=V(G)$ is (ε, k)-equitable if $\left|C_{0}\right| \leq \varepsilon n$, and $\left|C_{1}\right|=$ $\ldots=\left|C_{k}\right|$. Also, we say that C_{0} is the exceptional class of Q. When the value of ε is not relevant, we refer to an (ε, k)-equitable partition as a k-equitable partition. Similarly, Q is an equitable partition of V if it is a k-equitable partition for some k. If P and Q are two equitable partitions of V, we say that Q refines P if every non-exceptional class of Q is contained in some non-exceptional class of P. If P^{\prime} is an arbitrary partition of V, then Q refines P^{\prime} if every non-exceptional class of Q is contained in some block of P^{\prime}. Finally, we say that an (ε, k)-equitable partition $Q=\left(C_{i}\right)_{0}^{k}$ of V is (ε, H, G)-regular, or simply ε-regular, if at most $\varepsilon\binom{k}{2}$ pairs $\left(C_{i}, C_{j}\right)$ with $1 \leq i<j \leq k$ are not ε-regular. We can now state the extension of Szemerédi's lemma to subgraphs of $\left(P_{0}, \eta\right)$-uniform graphs.

Theorem 1. Let $\varepsilon>0$ and $k_{0}, \ell \geq 1$ be fixed. Then there are constants $\eta=\eta\left(\varepsilon, k_{0}, \ell\right)>0$ and $K_{0}=K_{0}\left(\varepsilon, k_{0}, \ell\right) \geq k_{0}$ satisfying the following. For any $\left(P_{0}, \eta\right)$-uniform graph $G=G^{n}$, where $P_{0}=\left(V_{i}\right)_{1}^{\ell}$ is a partition of $V=V(G)$, if $H \subset G$ is a spanning subgraph of G, then there exists an (ε, H, G)-regular (ε, k)-equitable partition of V refining P_{0} with $k_{0} \leq k \leq$ K_{0}.

3. The proof of Theorem 1

We now proceed to give the proof Theorem 1. As in [17], the following 'defect' form of the Cauchy-Schwarz inequality is used in the proof.

Lemma 2. Let $y_{1}, \ldots, y_{v} \geq 0$ be given. Suppose $0 \leq \rho=u / v<1$, and $\sum_{1 \leq i \leq u} y_{i}=$ $\alpha \rho \sum_{1 \leq i \leq v} y_{i}$. Then

$$
\sum_{1 \leq i \leq v} y_{i}^{2} \geq \frac{1}{v}\left(1+(\alpha-1)^{2} \frac{\rho}{1-\rho}\right)\left\{\sum_{1 \leq i \leq v} y_{i}\right\}^{2}
$$

We now fix $G=G^{n}$ and put $V=V(G)$. Also, we assume that $P_{0}=\left(V_{i}\right)_{1}^{\ell}$ is a fixed partition of V, and that G is $\left(P_{0}, \eta\right)$-uniform for some $0 \leq \eta \leq 1$. Moreover, we let $p=p(G)$ be as in (1).

Lemma 3. Let $0<\delta \leq 10^{-2}$ be fixed. Let U, $W \subset V(G)$ be such that $(U, W) \prec P_{0}$, and $\delta|U|, \delta|W| \geq \eta n$. If $U^{*} \subset U, W^{*} \subset W,\left|U^{*}\right| \geq(1-\delta)|U|$, and $\left|W^{*}\right| \geq(1-\delta)|W|$, then
(i) $\left|d_{H, G}\left(U^{*}, W^{*}\right)-d_{H, G}(U, W)\right| \leq 5 \delta$,
(ii) $\left|d_{H, G}\left(U^{*}, W^{*}\right)^{2}-d_{H, G}(U, W)^{2}\right| \leq 9 \delta$.

Proof. Note first that we have $\eta \leq \delta$, as $\eta n \leq \delta|U|, \delta|W| \leq \delta n$. Let U^{*}, W^{*} be as given in the lemma. We first check (i).
(i) We start by noticing that

$$
\begin{aligned}
d_{H, G}\left(U^{*}, W^{*}\right) \geq \frac{e_{H}(U, W)-2(1+\eta) p \delta|U||W|}{e_{G}(U, W)} \\
\geq d_{H, G}(U, W)-2 \delta \frac{1+\eta}{1-\eta} \geq d_{H, G}(U, W)-3 \delta
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
d_{H, G}\left(U^{*}, W^{*}\right) \leq \frac{e_{H}(U, W)}{e_{G}\left(U^{*}, W^{*}\right)} \leq & \frac{e_{H}(U, W)}{(1-\eta) p\left|U^{*}\right|\left|W^{*}\right|} \leq \frac{e_{H}(U, W)}{(1-\eta) p(1-\delta)^{2}|U||W|} \\
& \leq \frac{1+\eta}{(1-\eta)(1-\delta)^{2}} d_{H, G}(U, W) \leq d_{H, G}(U, W)+5 \delta
\end{aligned}
$$

Thus (i) follows.
(ii) The argument here is similar. First

$$
\begin{aligned}
d_{H, G}\left(U^{*}, W^{*}\right) & \geq \frac{\left(e_{H}(U, W)-2(1+\eta) p \delta|U||W|\right)^{2}}{e_{G}(U, W)^{2}} \\
& \geq d_{H, G}(U, W)^{2}-\frac{4(1+\eta) p \delta|U||W| e_{H}(U, W)}{e_{G}(U, W)(1-\eta) p|U||W|} \\
& \geq d_{H, G}(U, W)^{2}-4 \delta \frac{1+\delta}{1-\delta} \geq d_{H, G}(U, W)^{2}-5 \delta
\end{aligned}
$$

Secondly,

$$
\begin{aligned}
d_{H, G}\left(U^{*}, W^{*}\right)^{2} & \leq \frac{e_{H}(U, W)^{2}}{e_{G}\left(U^{*}, W^{*}\right)^{2}} \\
& \leq \frac{e_{H}(U, W)^{2}}{(1-\eta)^{2} p^{2}\left|U^{*}\right|^{2}\left|W^{*}\right|^{2}} \leq \frac{e_{H}(U, W)^{2}}{(1-\eta)^{2}(1-\delta)^{4} p^{2}|U||W|} \\
& \leq\left(\frac{1+\eta}{(1-\eta)(1-\delta)^{2}}\right)^{2} d_{H, G}(U, W)^{2} \leq d_{H, G}(U, W)^{2}+9 \delta
\end{aligned}
$$

Thus (ii) follows.

In the sequel, a constant $0<\varepsilon \leq 1 / 2$ and a spanning subgraph $H \subset G$ of G is fixed. Also, we let $P=\left(C_{i}\right)_{0}^{k}$ be an (ε, k)-equitable partition of $V=V(G)$ refining P_{0}, where $4^{k} \geq \varepsilon^{-5}$. Moreover, we assume that $\eta \leq \eta_{0}=\eta_{0}(k)=1 / k 4^{k+1}$ and that $n=|G| \geq$ $n_{0}=n_{0}(k)=k 4^{1+2 k}$.

We now define an equitable partition $Q=Q(P)$ of $V=V(G)$ from P as follows. First, for each (ε, H, G)-irregular pair $\left(C_{s}, C_{t}\right)$ of P with $1 \leq s<t \leq k$, we choose $X=X(s, t) \subset$ $C_{s}, Y=Y(s, t) \subset C_{t}$ such that (i) $|X|,|Y| \geq \varepsilon\left|C_{s}\right|=\varepsilon\left|C_{t}\right|$, and (ii) $\mid d_{H, G}(X, Y)-$ $d_{H, G}\left(C_{s}, C_{t}\right) \mid \geq \varepsilon$. For fixed $1 \leq s \leq k$, the sets $X(s, t)$ in

$$
\left\{X=X(s, t) \subset C_{s}: 1 \leq t \leq k \text { and }\left(C_{s}, C_{t}\right) \text { is not }(\varepsilon, H, G) \text {-regular }\right\}
$$

define a natural partition of C_{s} into at most 2^{k-1} blocks. Let us call such blocks the atoms of C_{s}. Now let $q=4^{k}$ and set $m=\left\lfloor\left|C_{s}\right| / q\right\rfloor(1 \leq s \leq k)$. Note that $\left\lfloor\left|C_{s}\right| / m\right\rfloor=q$ as $\left|C_{s}\right| \geq n / 2 k \geq 2 q^{2}$. Moreover, for later use, note that $m \geq \eta n$. We now let Q^{\prime} be a partition of $V=V(G)$ refining P such that (i) C_{0} is a block of $Q^{\prime},(i i)$ all other blocks of Q^{\prime} have cardinality m, except for possibly one, which has cardinality at most $m-1$, (iii) for all $1 \leq s \leq k$, every atom $A \subset C_{s}$ contains exactly $\lfloor|A| / m\rfloor$ blocks of $Q^{\prime},(i v)$ for all $1 \leq s \leq k$, the set C_{s} contains exactly $q=\left\lfloor\left|C_{s}\right| / m\right\rfloor$ blocks of Q^{\prime}.

Let C_{0}^{\prime} be the union of the blocks of Q^{\prime} that are not contained in any class $C_{s}(1 \leq$ $s \leq k)$, and let $C_{i}^{\prime}\left(1 \leq i \leq k^{\prime}\right)$ be the remaining blocks of Q^{\prime}. We are finally ready to define our equitable partition $Q=Q(P)$: we let $Q=\left(C_{i}^{\prime}\right)_{1}^{k^{\prime}}$.

Lemma 4. The partition $Q=Q(P)=\left(C_{i}^{\prime}\right)_{0}^{k^{\prime}}$ defined from P as above is a k^{\prime}-equitable partition of $V=V(G)$ refining P, where $k^{\prime}=k q=k 4^{k}$, and $\left|C_{0}^{\prime}\right| \leq\left|C_{0}\right|+n 4^{-k}$.

Proof. Clearly Q refines P. Moreover, clearly $m=\left|C_{1}^{\prime}\right|=\ldots=\left|C_{k^{\prime}}^{\prime}\right|$ and, for all $1 \leq s \leq k$, we have $\left|C_{0}^{\prime}\right| \leq\left|C_{0}\right|+k(m-1) \leq\left|C_{0}\right|+k\left|C_{s}\right| / q \leq\left|C_{0}\right|+n 4^{-k}$.

In what follows, for $1 \leq s \leq k$, we let $C_{s}(i)(1 \leq i \leq q)$ be the classes of Q^{\prime} that are contained in the class C_{s} of P. Also, for all $1 \leq s \leq k$, we set $C_{s}^{*}=\bigcup_{1 \leq i \leq q} C_{s}(i)$. Now let $1 \leq s \leq k$ be fixed. Note that $\left|C_{s}^{*}\right| \geq\left|C_{s}\right|-(m-1) \geq\left|C_{s}\right|-q^{-1}\left|C_{s}\right| \geq\left|C_{s}\right|\left(1-q^{-1}\right)$. As $q^{-1} \leq 10^{-2}$ and $q^{-1}\left|C_{s}\right| \geq m \geq \eta n$, by Lemma 3 we have, for all $1 \leq s<t \leq k$,

$$
\begin{equation*}
\left|d_{H, G}\left(C_{s}^{*}, C_{t}^{*}\right)-d_{H, G}\left(C_{s}, C_{t}\right)\right| \leq 5 q^{-1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|d_{H, G}\left(C_{s}^{*}, C_{t}^{*}\right)^{2}-d_{H, G}\left(C_{s}, C_{t}\right)^{2}\right| \leq 9 q^{-1} \tag{3}
\end{equation*}
$$

Similarly to [17], we define the index $\operatorname{ind}(R)$ of an equitable partition $R=\left(V_{i}\right)_{0}^{r}$ of $V=$ $V(G)$ to be

$$
\operatorname{ind}(R)=\frac{2}{r^{2}} \sum_{1 \leq i<j \leq \ell} d_{H, G}\left(V_{i}, V_{j}\right)^{2}
$$

Note that trivially $0 \leq \operatorname{ind}(R)<1$. Our aim now is to show that, for $Q=Q(P)$ defined as above, we have $\operatorname{ind}(Q) \geq \operatorname{ind}(P)+\varepsilon^{5} / 100$. We start with the following lemma.

Lemma 5. Suppose $1 \leq s<t \leq k$. Then

$$
\frac{1}{q^{2}} \sum_{i, j=1}^{q} d_{H, G}\left(C_{s}(i), C_{t}(j)\right)^{2} \geq d_{H, G}\left(C_{s}, C_{t}\right)^{2}-\frac{\varepsilon^{5}}{100}
$$

Proof. By the $\left(P_{0}, \eta\right)$-uniformity of G and the fact that $\left(C_{s}, C_{t}\right) \prec P_{0}$, we have

$$
\begin{aligned}
\frac{1}{q^{2}} \sum_{1 \leq i \leq q} \sum_{1 \leq j \leq q} d_{H, G} & \left(C_{s}(i), C_{t}(j)\right)=\frac{1}{q^{2}} \sum_{i, j} \frac{e_{H}\left(C_{s}(i), C_{t}(j)\right)}{e_{G}\left(C_{s}(i), C_{t}(j)\right)} \\
& \geq \sum_{i, j} \frac{e_{H}\left(C_{s}(i), C_{t}(j)\right)}{(1+\eta) q^{2} p\left|C_{s}(i)\right|\left|C_{t}(j)\right|}=\frac{e_{H}\left(C_{s}^{*}, C_{t}^{*}\right)}{(1+\eta) p\left|C_{s}^{*}\right|\left|C_{t}^{*}\right|} \\
& \geq \frac{1-\eta}{1+\eta} d_{H, G}\left(C_{s}^{*}, C_{t}^{*}\right) \geq d_{H, G}\left(C_{s}^{*}, C_{t}^{*}\right)-2 \eta
\end{aligned}
$$

Thus, by the Cauchy-Schwarz inequality, we have

$$
\frac{1}{q^{2}} \sum_{1 \leq i \leq q} \sum_{1 \leq j \leq q} d_{H, G}\left(C_{s}(i), C_{t}(j)\right)^{2} \geq d_{H, G}\left(C_{s}^{*}, C_{t}^{*}\right)^{2}-4 \eta
$$

Furthermore, by (3), we have $d_{H, G}\left(C_{s}^{*}, C_{t}^{*}\right)^{2} \geq d_{H, G}\left(C_{s}, C_{t}\right)^{2}-9 q^{-1}$. Since $9 q^{-1}+4 \eta \leq$ $\varepsilon^{5} / 100$, the lemma follows.

The inequality in Lemma 5 may be improved if $\left(C_{s}, C_{t}\right)$ is an (ε, H, G)-irregular pair, as shows the following result.

Lemma 6. Let $1 \leq s<t \leq k$ be such that $\left(C_{s}, C_{t}\right)$ is not ($\left.\varepsilon, H, G\right)$-regular. Then

$$
\frac{1}{q^{2}} \sum_{i, j=1}^{q} d_{H, G}\left(C_{s}(i), C_{t}(j)\right)^{2} \geq d_{H, G}\left(C_{s}, C_{t}\right)^{2}+\frac{\varepsilon^{4}}{40}-\frac{\varepsilon^{5}}{100}
$$

Proof. Let $X=X(s, t) \subset C_{s}, Y=Y(s, t) \subset C_{t}$ be as in the definition of Q. Let $X^{*} \subset X$ be the maximal subset of X that is the union of blocks of Q, and similarly for $Y^{*} \subset Y$. Without loss of generality, we may assume that $X^{*}=\bigcup_{1 \leq i \leq q_{s}} C_{s}(i)$, and $Y^{*}=\bigcup_{1 \leq j \leq q_{t}} C_{t}(j)$. Note that $\left|X^{*}\right| \geq|X|-2^{k-1}(m-1) \geq|X|\left(1-2^{k-1} m /|X|\right) \geq|X|\left(1-2^{k-1} / q \varepsilon\right)=$ $|X|\left(1-1 / \varepsilon 2^{k+1}\right)$, and similarly $\left|Y^{*}\right| \geq|Y|\left(1-1 / \varepsilon 2^{k+1}\right)$. However, we have $1 / \varepsilon 2^{k+1} \leq$ 10^{-2} and $|X| / \varepsilon 2^{k+1},|Y| / \varepsilon 2^{k+1} \geq \eta n$. Thus, by Lemma 3, we have $\mid d_{H, G}\left(X^{*}, Y^{*}\right)-$ $d_{H, G}(X, Y) \mid \leq 5 / \varepsilon 2^{k+1}$. Moreover, by (2), we have $\left|d_{H, G}\left(C_{s}^{*}, C_{t}^{*}\right)-d_{H, G}\left(C_{s}, C_{t}\right)\right| \leq 5 q^{-1}$. Since $\left|d_{H, G}(X, Y)-d_{H, G}\left(C_{s}, C_{t}\right)\right| \geq \varepsilon$ and $5 q^{-1}+5 / \varepsilon 2^{k+1} \leq \varepsilon / 2$, we have

$$
\begin{equation*}
\left|d_{H, G}\left(X^{*}, Y^{*}\right)-d_{H, G}\left(C_{s}^{*}, C_{t}^{*}\right)\right| \geq \varepsilon / 2 \tag{4}
\end{equation*}
$$

For later reference, let us note that $q_{s} m=\left|X^{*}\right| \geq|X|-2^{k-1} m \geq \varepsilon\left|C_{s}\right|-2^{k-1} m \geq$ $\varepsilon q m-2^{k-1} m$, and hence $q_{s} \geq \varepsilon q-2^{k-1} \geq \varepsilon q / 2$. Similarly, we have $q_{t} \geq \varepsilon q / 2$. Let us now set $y_{i j}=d_{H, G}\left(C_{s}(i), C_{t}(j)\right)$ for $i, j=1, \ldots, q$. In the proof of Lemma 5 we checked that

$$
\sum_{1 \leq i \leq q} \sum_{1 \leq j \leq q} y_{i j} \geq \frac{1-\eta}{1+\eta} q^{2} d_{H, G}\left(C_{s}^{*}, C_{t}^{*}\right) \geq(1-2 \eta) q^{2} d_{H, G}\left(C_{s}^{*}, C_{t}^{*}\right)
$$

Similarly, one has $\sum_{1 \leq i \leq q} \sum_{1 \leq j \leq q} y_{i j} \leq(1+3 \eta) q^{2} d_{H, G}\left(C_{s}^{*}, C_{t}^{*}\right), \sum_{1 \leq i \leq q_{s}} \sum_{1 \leq j \leq q_{t}} y_{i j} \geq$ $(1-2 \eta) q_{s} q_{t} d_{H, G}\left(X^{*}, Y^{*}\right)$, and $\sum_{1 \leq i \leq q_{s}} \sum_{1 \leq j \leq q_{t}} y_{i j} \leq(1+3 \eta) q_{s} q_{t} d_{H, G}\left(X^{*}, Y^{*}\right)$. Let us set $\rho=q_{s} q_{t} / q^{2} \geq \varepsilon^{2} / 4$, and $d_{s, t}^{*}=d_{H, G}\left(C_{s}^{*}, C_{t}^{*}\right)$. We now note that by (4) we either have

$$
\begin{aligned}
\sum_{1 \leq i \leq q_{s}} \sum_{1 \leq j \leq q_{t}} y_{i j} \geq \frac{1-2 \eta}{1+3 \eta} \cdot \frac{q_{s} q_{t}}{q^{2}} & \left(1+\frac{\varepsilon}{2\left(d_{s, t}^{*}\right)^{2}}\right) \sum_{1 \leq i \leq q} \sum_{1 \leq j \leq q} y_{i j} \\
& \geq \rho\left(1+\frac{\varepsilon}{3\left(d_{s, t}^{*}\right)^{2}}\right) \sum_{1 \leq i \leq q} \sum_{1 \leq j \leq q} y_{i j}
\end{aligned}
$$

or else

$$
\begin{aligned}
\sum_{1 \leq i \leq q_{s}} \sum_{1 \leq j \leq q_{t}} y_{i j} \leq \frac{1+3 \eta}{1-2 \eta} \cdot \frac{q_{s} q_{t}}{q^{2}} & \left(1-\frac{\varepsilon}{2\left(d_{s, t}^{*}\right)^{2}}\right) \sum_{1 \leq i \leq q} \sum_{1 \leq j \leq q} y_{i j} \\
& \leq \rho\left(1-\frac{\varepsilon}{3\left(d_{s, t}^{*}\right)^{2}}\right) \sum_{1 \leq i \leq q} \sum_{1 \leq j \leq q} y_{i j}
\end{aligned}
$$

We may now apply Lemma 2 to conclude that

$$
\begin{aligned}
& \sum_{1 \leq i \leq q} \sum_{1 \leq j \leq q} y_{i j}^{2} \geq \frac{1}{q^{2}}\left(1+\frac{\varepsilon^{2}}{9\left(d_{s, t}^{*}\right)^{2}} \cdot \frac{\rho}{1-\rho}\right)\left\{\sum_{1 \leq i \leq q} \sum_{1 \leq j \leq q} y_{i j}\right\}^{2} \\
& \geq \frac{1}{q^{2}}\left(1+\frac{\varepsilon^{2} \rho}{9\left(d_{s, t}^{*}\right)^{2}}\right)\left\{q^{2}(1-2 \eta) d_{s, t}^{*}\right\}^{2} \\
& \geq q^{2}(1-4 \eta)\left(\left(d_{s, t}^{*}\right)^{2}+\frac{\varepsilon^{2} \rho}{9}\right) \geq q^{2}\left(\left(d_{s, t}^{*}\right)^{2}+\frac{\varepsilon^{2} \rho}{10}-4 \eta\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \frac{1}{q^{2}} \sum_{1 \leq i \leq q} \sum_{1 \leq j \leq q} d_{H, G}\left(C_{s}(i), C_{t}(j)\right)^{2} \geq d_{H, G}\left(C_{s}^{*}, C_{t}^{*}\right)^{2}+\frac{\varepsilon^{2} \rho}{10}-4 \eta \\
& \quad \geq d_{H, G}\left(C_{s}, C_{t}\right)^{2}+\frac{\varepsilon^{4}}{40}-\left(9 \eta^{-1}+4 \eta\right) \geq d_{H, G}\left(C_{s}, C_{t}\right)^{2}+\frac{\varepsilon^{4}}{40}-\frac{\varepsilon^{5}}{100}
\end{aligned}
$$

as required.

We are now ready to prove the main lemma needed in the proof of Theorem 1.
Lemma 7. Suppose $k \geq 1$ and $0<\varepsilon \leq 1 / 2$ are such that $4^{k} \geq 1800 \varepsilon^{-5}$. Let $G=G^{n}$ be a $\left(P_{0}, \eta\right)$-uniform graph of order $n \geq n_{0}=n_{0}(k)=k 4^{2 k+1}$, where $P_{0}=\left(V_{i}\right)_{1}^{\ell}$ is a partition of $V=V(G)$, and assume that $\eta \leq \eta_{0}=\eta_{0}(k)=1 / k 4^{k+1}$. Let $H \subset G$ be a spanning subgraph of G. If $P=\left(C_{i}\right)_{0}^{k}$ is an (ε, H, G)-irregular (ε, k)-equitable partition of $V=V(G)$ refining P_{0}, then there is a k^{\prime}-equitable partition $Q=\left(C_{i}^{\prime}\right)_{0}^{k^{\prime}}$ of V such that (i) Q refines P, (ii) $k^{\prime}=k 4^{k}$, (iii) $\left|C_{0}^{\prime}\right| \leq\left|C_{0}\right|+n 4^{-k}$, and (iv) $\operatorname{ind}(Q) \geq \operatorname{ind}(P)+\varepsilon^{5} / 100$.

Proof. Let P be as in the lemma. We show that the k^{\prime}-equitable partition $Q=\left(C_{i}^{\prime}\right)_{0}^{k^{\prime}}$ defined from P as above satisfies $(i)-(i v)$. In view of Lemma 4 , it only remains to check $(i v)$. By Lemmas 5 and 6, we have

$$
\begin{aligned}
& \operatorname{ind}(Q)=\frac{2}{(k q)^{2}} \sum_{1 \leq i \leq q} \sum_{1 \leq j \leq q} d_{H, G}\left(C_{i}^{\prime}, C_{j}^{\prime}\right)^{2} \\
& \geq \geq \frac{2}{k^{2}} \sum_{1 \leq s<t \leq k} \frac{1}{q^{2}} \sum_{1 \leq i \leq q} \sum_{1 \leq j \leq q} d_{H, G}\left(C_{s}(i), C_{t}(j)\right)^{2} \\
& \geq \geq \frac{2}{k^{2}}\left\{\sum_{1 \leq s<t \leq k}\left(d_{H, G}\left(C_{s}, C_{t}\right)^{2}-\frac{\varepsilon^{5}}{100}\right)+\varepsilon\binom{k}{2} \frac{\varepsilon^{4}}{40}\right\} \\
& \quad \geq \operatorname{ind}(P)-\frac{\varepsilon^{5}}{100}+\frac{\varepsilon^{5}}{50} \geq \operatorname{ind}(P)+\frac{\varepsilon^{5}}{100} .
\end{aligned}
$$

This completes the proof of the lemma.

Proof of Theorem 1. Let $\varepsilon>0, k_{0} \geq 1$, and $\ell \geq 1$ be given. We may assume that $\varepsilon \leq 1 / 2$. Pick $s \geq 1$ such that $4^{s / 4 \ell} \geq 1800 \varepsilon^{-5}, s \geq \max \left\{2 k_{0}, 3 \ell / \varepsilon\right\}$, and $\varepsilon 4^{s-1} \geq 1$. Let $f(0)=s$, and put inductively $f(t)=f(t-1) 4^{f(t-1)}(t \geq 1)$. Let $t_{0}=\left\lfloor 100 \varepsilon^{-5}\right\rfloor$ and set $N=$ $\max \left\{n_{0}(f(t)): 0 \leq t \leq t_{0}\right\}=f\left(t_{0}\right) 4^{2 f\left(t_{0}\right)+1}, K_{0}=\max \{6 \ell / \varepsilon, N\}$, and $\eta=\eta\left(\varepsilon, k_{0}, \ell\right)=$
$\min \left\{\eta_{0}(f(t)): 0 \leq t \leq t_{0}\right\}=1 / 4 f\left(t_{0}+1\right)>0$. We claim that η and K_{0} as defined above will do.

To prove our claim, let $G=G^{n}$ be a fixed $\left(P_{0}, \eta\right)$-uniform graph, where $P_{0}=\left(V_{i}\right)_{1}^{\ell}$ is a partition of $V=V(G)$. Furthermore, let $H \subset G$ be a spanning subgraph of G. Note that we may clearly assume that $n \geq K_{0}$. Suppose $t \geq 0$. Let us say that an equitable partition $P^{(t)}=\left(C_{i}\right)_{0}^{k}$ of V is t-valid if $(i) P^{(t)}$ refines P_{0}, (ii) $s / 4 \ell \leq k \leq f(t)$, (iii) $\operatorname{ind}\left\{P^{(t)}\right\} \geq t \varepsilon^{5} / 100$, and (iv) $\left|C_{0}\right| \leq \varepsilon n\left(1-2^{-(t+1)}\right)$. We now verify that a 0 -valid partition $P^{(0)}$ of V does exist. Let $m=\lceil n / s\rceil$, and let Q be a partition of V with all blocks of cardinality m, except for possibly one, which has cardinality at most $m-1$, and moreover such that each $V_{i}(1 \leq i \leq \ell)$ contains $\left\lfloor\left|V_{i}\right| / m\right\rfloor$ blocks of Q. Grouping at most ℓ blocks of Q into a single block C_{0}, we arrive at an equitable partition $P^{(0)}=\left(C_{i}\right)_{0}^{k}$ of V that is 0 -valid. Indeed, (i) is clear, and to check (ii) note that $k \leq n / m \leq s=f(0)$, and that there is $1 \leq i \leq \ell$ such that $\left|V_{i}\right| \geq n / \ell$, and so $k \geq\left\lfloor\left|V_{i}\right| / m\right\rfloor \geq\lfloor(n / \ell) /\lceil n / s\rceil\rfloor \geq$ $(1 / 2)\{(n / \ell) /(2 n / s)\}=s / 4 \ell$. Also, ($i i i$) is trivial and (iv) does follow, since $\left|C_{0}\right|<\ell m \leq$ $\ell\lceil n \varepsilon / 3 \ell\rceil \leq n \varepsilon / 2$ as $n \geq K_{0} \geq 6 \ell / \varepsilon$.

Now note that if there is a t-valid partition $P^{(t)}$ of V, then $t \leq t_{0}=\left\lfloor 100 \varepsilon^{-5}\right\rfloor$, since $\operatorname{ind}\left\{P^{(t)}\right\} \leq 1$. Suppose t is the maximal integer for which there is a t-valid partition $P^{(t)}$ of V. We claim that $P^{(t)}$ is (ε, H, G)-regular. Suppose to the contrary that $P^{(t)}$ is not (ε, H, G)-regular. Then simply note that Lemma 7 gives a $(t+1)$-valid equitable partition $P^{(t+1)}=Q=Q\left(P^{(t)}\right)$, contradicting the maximality of t. This completes the proof of the theorem.

Acknowledgements. The author was supported by Churchill College, Cambridge, where he was a Junior Research Fellow while this work was being done.

References

[1] Alon, N., Yuster, R., Almost H-factors in dense graphs, Graphs and Combinatorics 8 (1992), 95-102.
[2] Bollobás, B., Erdős, P., Simonovits, M., Szemerédi, E., Extremal graphs without large forbidden subgraphs, in Advances in Graph Theory (Bollobás, B., ed.), Annals of Discrete Mathematics 3, North-Holland, Amsterdam 1978, pp. 29-41.
[3] Chung, F.R.K., Regularity lemmas for hypergraphs and quasi-randomness, Random Structures and Algorithms 2 (1991), 241-252.
[4] Chvátal, V., Rödl, V., Szemerédi, E., Trotter, W.T., The Ramsey number of a graph with
bounded degree, J. Combinatorial Theory (B) 34 (1983), 239-243.
[5] Chvátal, V., Szemerédi, E., On the Erdős-Stone theorem, J. London Math. Soc. 23 (1981), 207-214.
[6] Erdős, P., Frankl, P., Rödl, V., The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs and Combinatorics 2 (1986), 113-121.
[7] Frankl, P., Rödl, V., The uniformity lemma for hypergraphs, Graphs and Combinatorics 8 (1992), 309-312.
[8] Füredi, Z., The maximum number of edges in a minimal graph of diamter 2, J. Graph Theory 16 (1992), 81-98.
[9] Haxell, P.E., Kohayakawa, Y., On an anti-Ramsey property of Ramanujan graphs, in preparation.
[10] Haxell, P.E., Kohayakawa, Y., Ramsey and Turán type results for cycles in pseudorandom graphs, in preparation.
[11] Prömel, H.-J., Steger, A., Excluding induced subgraphs III: a general asymptotic, Random Structures and Algorithms 3 (1992), 19-31.
[12] Rödl, V., On universality of graphs with uniformly distributed edges, Discrete Math. 59 (1986), 125-143.
[13] Rödl, V., Personal communication, August, 1993.
[14] Rödl, V., Duke, R.A., On graphs with small subgraphs of large chromatic number, Graphs and Combinatorics 1 (1985), 91-96.
[15] Ruzsa, I.Z., Szemerédi, E., Triple systems with no six points carrying three triangles, Coll. Math. Soc. János Bolyai 18 (1978), 939-945.
[16] Szemerédi, E., On a set containing no k elements in arithmetic progression, Acta Arithmetica XXVII (1975), 199-245.
[17] Szemerédi, E., Regular partitions of graphs, in Problèmes Combinatoires et Théorie des Graphes, Proc. Colloque Inter. CNRS (Bermond, J.-C., Fournier, J.-C., Las Vergnas, M., Sotteau, D., eds), CNRS, Paris 1978, pp. 399-401.

