
On an Anti-Ramsey Property of Ramanujan Graphs

P.E. Haxell1 and Y. Kohayakawa1,2

1Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, England

2Instituto de Matemática e Estat́ıstica, Universidade de São Paulo,
Caixa Postal 20570, 01452–990 São Paulo, SP, Brazil

Abstract. If G and H are graphs, we write G → H (respectively, G → TH) if for any proper

edge-colouring γ of G there is a subgraph H ′
⊂ G of G isomorphic to H (respectively, isomorphic

to a subdivision of H) such that γ is injective on E(H ′). Let us write Cℓ for the cycle of length ℓ.

Spencer (cf. Erdős [10]) asked whether for any g ≥ 3 there is a graph G = Gg such that (i) G has

girth g(G) at least g, and (ii) G → TC3. Recently, Rödl and Tuza [22] answered this question in

the affirmative by proving, using non-constructive methods, a result that implies that for any t ≥ 1

there is a graph G = Gt of girth t + 2 such that G → C2t+2. In particular, condition (ii) may

be strengthened to (iii) G → Cℓ for some ℓ = ℓ(G). For G = Gt above ℓ = ℓ(G) = 2t + 2 =

2g(G) − 2. Here, we show that suitable Ramanujan graphs constructed by Lubotzky, Phillips,

and Sarnak [18] are explicit examples of graphs G = Gg satisfying (i) and (iii) above. For

such graphs ℓ = ℓ(G) in (iii) may be taken to be roughly equal to (3/2)g(G), thus considerably

improving the value 2g(G)−2 given in the result of Rödl and Tuza. It is not known whether there

are graphs G of arbitrarily large girth for which (iii) holds with ℓ = ℓ(G) = g(G).

1. Introduction

In this note we shall consider proper edge-colourings of graphs, and we shall be concerned

with the existence of subgraphs whose edges are all coloured differently. To be more precise,

let a graph G be given, and suppose γ : E(G) → N is a proper edge-colouring of G. We
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shall say that a subgraph H ⊂ G of G is multicoloured with respect to the colouring γ if γ

is injective on E(H). A question raised by Spencer (see [10], p. 29) is as follows: are there

graphs G of arbitrarily large girth such that every proper edge-colouring of G admits a

multicoloured cycle?

Let G and H be graphs. We write G
mc−→
p
H if for any proper edge-colouring γ of G

there is a subgraph H ′ ⊂ G of G isomorphic to H such that γ is injective on E(H ′).

Recently, Rödl and Tuza [22] settled the above problem of Spencer in the affirmative, by

proving the following stronger statement. As customary, we denote the girth of a graph G

by g(G), and write Cℓ for a cycle of length ℓ ≥ 3.

Theorem 1. For every positive integer t, every real δ such that 0 < δ < 1/(2t+ 1), and

every n sufficiently large with respect to t and δ, there is a graph G = Gn of order n such

that (i) g(G) = t+ 2, and (ii) G
mc−→
p
Cℓ for all 2t+ 2 ≤ ℓ ≤ nδ.

Erdős [10] remarked that random methods should be suitable for tackling Spencer’s

problem, and indeed in [22] the result above is proved by probabilistic means. In fact, it is

shown that if p = nε−1 and ε = ε(t, δ) > 0 is appropriately chosen, then a graphG obtained

by suitably altering a random graph Gp ∈ G(n, p) almost surely satisfies (i) and (ii). No

explicit construction for a graph G as in Theorem 1 is given in [22].

Following [22], for a graph H, let us denote by t(H) the smallest possible girth for a

graph G satisfying G
mc−→
p
H. Formally, let t(H) = inf{g(G) : G

mc−→
p
H}. In the spirit of the

well-known works of Nešetřil and Rödl [20], in [22], Rödl and Tuza raise the following very

attractive problem.

Problem 2. Does t(H) = g(H) hold for every graph H?

As pointed out in [22], we do clearly have t(H) = g(H) if H is a forest or if H

contains a triangle. The complete bipartite graph K4,4 shows that t(C4) = 4. By con-

sidering the incidence graph of a projective plane, one may check that t(C6) = 6, and a

random construction involving projective planes gives that t(C5) = 5. Thus t(Cℓ) = ℓ

for 3 ≤ ℓ ≤ 6. (See Section 5 for details concerning these small cases of ℓ.) More gen-

erally, Theorem 1 gives that t(Cℓ) ≥ ⌊ℓ/2⌋ + 1 for all ℓ ≥ 4. Our main results here

significantly improve this estimate on t(Cℓ) for large even values of ℓ, and give explicit

graphs for Spencer’s original problem. Indeed, Theorems 7 and 11 below show that suit-
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able Ramanujan graphs X of Lubotzky, Phillips, and Sarnak [18] are as required. Roughly

speaking, we take a large enough bipartite d-regular X and show that X
mc−→
p
C2s for all s

varying from about (3/4)g(X) up to Ω(d). (See Theorem 7.) Then the asymptotic lower

bound for t(Cℓ) (ℓ even) that we obtain is t(C2s) ≥ (4/3 + o(1))s. When deducing this

bound, we shall arrive at a simple number-theoretic problem concerning the existence

of certain primes. Although this question can be dealt with in a standard manner, for

completeness we include a separate section, Section 4, dedicated to it.

The methods used in the proof of Theorem 7 are different from the methods used

by Rödl and Tuza; they are based on the eigenvalue method of Alon and Milman (see,

e.g. [4], Chapter 9, Section 2) and on the techniques used by Beck [6] to prove that the

size-Ramsey number of an ℓ-path is O(ℓ). The fact that Ramanujan graphs are ‘explicit

examples’ of extremal or nearly extremal graphs with respect to many problems is well

known, and our result gives another example of such a problem. This note was inspired

by the results of Alon and Chung [2], and of Friedman and Pippenger [12]. Let us also

mention that an extremal problem concerning the relation
mc−→
p

is studied in Babai [5], and

that the corresponding problem for uniform hypergraphs is considered in Lefmann [17].

Problem 2 is also related to canonical versions of Ramsey’s theorem, in the sense of Erdős

and Rado [11].

In the next section we state a few properties of the Ramanujan graphs constructed

by Lubotzky, Phillips, and Sarnak that we shall use, and we give some lemmas needed in

the proof of Theorem 7. Section 3 is devoted to the proof of Theorem 7, and in Section 4

we prove Theorem 11. In Section 5, which is included for completeness, we prove that

t(Cℓ) = ℓ for 3 ≤ ℓ ≤ 6. In the last section we give some generalisations of our results,

and we mention a related result.

Finally, we remark that appropriate modifications of our results here can be shown

to hold for the Ramanujan graphs Ym = Ym,p of Margulis [19]. However we have decided

to restrict ourselves to the graphs Xp,q because a more detailed analysis of these graphs

is available in the literature. Moreover, unfortunately, the use of the Ym does not seem to

give significantly better results.
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2. Auxiliary lemmas

Let p and q be two distinct primes such that p, q ≡ 1 (mod4), p ≤ q2, and p is not a

square in Z/qZ. Throughout this note, except for Section 6, we let G = Gp,q = Xp,q be

the Ramanujan graph of Lubotzky, Phillips, and Sarnak [18]. Thus G is a bipartite graph,

with bipartition V = V (G) = V0 ∪ V1, say. The order |G| of G is 2n = q(q2 − 1), and G is

a d-regular graph where d = p+ 1. We now recall three important results concerning the

graph G. Let us collect three important properties of G in the following lemma.

Lemma 3. Let G = Gp,q = Xp,q be as above. Then the following hold.

(i) The girth g(G) of G satisfies 4 logp(q/
√

2) ≤ g(G) < 4 logp(q
√

(2p)). In particular,

setting t = ⌈(2/3) logp(n/
√

2)⌉, we have d > p ≥ 2−1/3tn2/3t and g(G) ≥ 2t.

(ii) The eigenvalues of the adjacency matrix of G are ±λ0, . . . ,±λn−1, where 0 ≤ λn−1 ≤
· · · ≤ λ0 = d, and |λi| ≤ 2p1/2 = 2(d− 1)1/2 for all i 6= 0.

(iii) For any U ⊂ V0 and any W ⊂ V1, the number of edges e(U,W ) between U and W

satisfies
∣

∣e(U,W ) − (d/n)|U ||W |
∣

∣ ≤ 2{(d− 1)|U ||W |}1/2.

Property (ii), often called the Ramanujan property , is proved in [18], together with

the lower bound for g(G) in (i). The upper bound in (i) is a result of Biggs and Boshier [7].

Finally, we remark that the technique given in Alon and Spencer [4], Chapter 9, Section 2,

is enough to prove (iii).

For the rest of this note, we let ε = 2 × 10−6, and set ℓ = ⌈3t/2⌉ where t is as in

Lemma 3(i). Our aim is to show that if p and q are larger than a certain absolute constant,

t ≥ 2, and d ≥ 16ε−2ℓ, then G = Gp,q = Xp,q mc−→
p
C2s for all ℓ+ 1 ≤ s ≤ (εℓ/6)n1/ℓ + 1.

In what follows, several of the inequalities are claimed to hold for large enough values

of p and q only. We also assume that p and q are so that t ≥ 2. (For instance, we may

require that q ≥ 3p/2 to guarantee that t ≥ 2.) Note that, in particular, we have d ≥ d0 =

2−1/6n2/3t. Below, our indices will be taken modulo 2 so that, e.g. V0 = V2 = . . . , etc.

For convenience, we introduce the following simple definition. Let J be a bipartite

graph with a fixed bipartition, say V (J) = X∪Y , and let b and f be positive real numbers.

Then we shall say that J is a (b, f)-expander if for all U ⊂ X and U ⊂ Y such that |U | ≤ b

we have |ΓJ (U)| ≥ f |U |. Note that for a (b, f)-expander J if V (J) 6= ∅ and f > 1, then |X |,
|Y | > b.

If H is a graph and U , W ⊂ V (H) are disjoint sets of vertices, we write H[U,W ] for
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the bipartite subgraph ofH with vertex set U∪W and edge set EH(U,W ) = {uw ∈ E(H) :

u ∈ U, w ∈ W}. Also, if A, B ⊂ V (H), then e(A,B) = eH(A,B) denotes the number

of edges in H that have one endvertex in A and the other in B. As usual, we denote

the minimal degree minx∈H dH(x) of the graph H by δ(H). Recall G = Gp,q = Xp,q

has order 2n = q(q2 − 1). Throughout this note, we let r = n/2. Note that clearly

n = q(q2 − 1)/2 is even, and hence r is an integer. We are now ready to state and prove

our first lemma.

Lemma 4. Suppose d ≥ 3602. Let Sσ ⊂ Vσ with |Sσ| = r = n/2 (σ = 0, 1) be given.

Let H ⊂ G′ = G[S0, S1] be a spanning subgraph of G′ such that e(H) ≥ (1/3)e(G′). Then

there are sets S̄σ ⊂ Sσ (σ = 0, 1) such that if J = H[S̄0, S̄1], then (i) δ(J) ≥ d/18, and

(ii) J is an (r/10f, f)-expander for any 0 < f ≤ 360−2d. In particular, we have |S̄σ| ≥ n/20

(σ = 0, 1).

Proof. Let d′ = e(G′)/r be the average degree of G′ = G[S0, S1]. Note that as d ≥ 144,

we have d′ ≥ d/3. Let Z ⊂ S0 ∪ S1 be a minimal non-empty set satisfying e(H[Z]) ≥
(1/6)d′|Z|. Let S̄σ = Z ∩ Sσ (σ = 0, 1), and let J = H[S̄0, S̄1]. Then, for any X ⊂ Z,

we have eJ (X,Z) ≥ (1/6)d′|X |. Indeed, we have eJ (X,Z) = e(H[Z]) − e(H[Z \ X ]) ≥
(d′/6)|Z| − (d′/6)|Z \ X | = (d′/6)|X |. Noting that for x ∈ Z = V (J) we have dJ (x) =

eJ ({x}, Z), we see that δ(J) = minx∈J dJ (x) ≥ d′/6 ≥ d/18, which proves (i).

Now assume 0 < f ≤ 360−2d. We shall show that J is an (r/10f, f)-expander.

Suppose U ⊂ S̄σ, where σ = 0 or 1, and u = |U | ≤ r/10f . Let W = ΓJ (U) ⊂ S̄σ+1,

and set w = |W |. We claim that w ≥ fu. Suppose for a contradiction that w < fu.

Then du/18 ≤ d′u/6 ≤ eJ (U,Z) = eJ (U,W ) ≤ eG(U,W ) ≤ (d/n)uw + 2(duw)1/2 <

du/20 + 2(duw)1/2, and hence w ≥ 360−2du ≥ fu, which is a contradiction.

To see that |S̄σ| ≥ n/20 (σ = 0, 1), it suffices to note that f0 = 360−2d > 1. Indeed,

as J is an (r/10f, f)-expander for all 0 < f ≤ f0, we have |S̄σ| > r/10f (σ = 0, 1) for

all 1 < f ≤ f0. Letting f tend to 1, we conclude that |S̄σ| ≥ r/10 (σ = 0, 1).

We now let γ : E(G) → N be an arbitrary fixed proper edge-colouring of G = Gp,q.

Let Sσ ⊂ Vσ such that |Sσ| = r = n/2 (σ = 0, 1) be given. Also, let H ⊂ G′ = G[S0, S1]

be a spanning subgraph of G′ such that e(H) ≥ (1/3)e(G′). Suppose S̄σ ⊂ Sσ (σ = 0, 1)

are as in Lemma 4, and again let J = H[S̄0, S̄1].
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For tidiness, if P ⊂ G is a path, we write γ(P ) for γ(E(P )), and say that γ is injective

on P if it is injective on E(P ). We may now state and prove the key lemma needed in the

proof of our main result.

Lemma 5. Suppose ℓ ≤ ℓ′ ≤ εn1/ℓ. Let c0 ∈ N, and x ∈ S̄σ (σ = 0 or 1) be given.

Then there is a set T ⊂ S̄σ+ℓ′ such that (i) |T | ≥ εℓn, and (ii) for all y ∈ T there is an

x–y path Py of length ℓ′ in J with (a) c0 /∈ γ(Py), and (b) γ injective on Py.

Proof. First recall that the minimal degree δ(J) of J satisfies δ(J) ≥ d/18 ≥ 3ℓ′. Thus

clearly there is a path P0 ⊂ J in J , starting at x, of length ℓ′ − ℓ, such that (a) c0 /∈
γ(P0), and (b) γ is injective on P0. Suppose P0 is an x–x′ path, and note that x′ ∈ Sσ′ ,

where σ′ = σ + ℓ′ − ℓ. We now let d′0 = d0 if t is even, and let d′0 = 2−1/6n1/ℓ if t is odd.

Note that clearly d′0 ≤ d0 ≤ d.

Let N0 = {x′}. Let 1 ≤ i ≤ ℓ, and suppose that pairwise disjoint sets Nj ⊂ S̄0 ∪ S̄1

(0 ≤ j < i) have been defined so that, for every 0 ≤ j < i, we have

(i) Nj ⊂ Sσ′+j ,

(ii) |Nj | =
⌈

(

d′0/3 × 3602
)j

⌉

,

(iii) for all z ∈ Nj , there is an x′–z path Pz in J such that (a) V (P0) ∩ V (Pz) = {x′},
(b) |V (Pz) ∩Nk| = 1 (0 ≤ k ≤ j), and (c) P ′

z = P0Pz is an x–z path in J with c0 /∈
γ(P ′

z) and γ injective on P ′
z.

We shall now extend the sequence Nj (0 ≤ j < i) by defining Ni ⊂ S̄0 ∪ S̄1 suitably.

Let U = Ni−1, W = ΓJ (U), and f = d′0/3602. Note that |U | =
⌈

(

d′0/3 × 3602
)i−1

⌉

≤
r/10f , and hence |W | ≥ f |U |. Let W ′ = W ∩

(

V (P0) ∪
⋃i−1

j=0Nj

)

. Then we have

|W ′| ≤
⌈

1

2
(ℓ′ − ℓ+ 1)

⌉

+

i−2
∑

j=0

|Nj | ≤ ℓ′ − 1 + 2|Ni−2|.

For each z ∈ Ni−1, fix an x′–z path Pz ⊂ J as in (iii) above, and let P ′
z = P0Pz. Now let

W ′′ =
⋃

z∈Ni−1

{

w ∈ ΓJ (z) : γ(zw) ∈ {c0} ∪ γ(P ′
z)

}

.

Then |W ′′| ≤ ∑

z∈Ni−1
(1 + |γ(P ′

z)|) ≤ ℓ′|Ni−1|. Let N ′
i = W \ (W ′ ∪W ′′). Then

|N ′
i | ≥ |W | − (|W ′| + |W ′′|) ≥ |W | − (ℓ′ − 1 + 2|Ni−2| + ℓ′|Ni−1|)

≥ f |Ni−1| − 2ℓ′|Ni−1| ≥
d′0

3 × 3602
|Ni−1| ≥

(

d′0
3 × 3602

)i

.
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Let Ni ⊂ N ′
i be such that |Ni| =

⌈

(

d′0/3 × 3602
)i

⌉

. Note that then (i), (ii), and (iii) hold

for j = i. Thus by induction there are sets Nj (0 ≤ j ≤ ℓ) satisfying (i), (ii), and (iii) for

all 0 ≤ j ≤ ℓ. To finish the proof, let T = Nℓ.

3. The main result

As in the previous section, we let a proper edge-colouring γ : E(G) → N be fixed. Let

the partition of E = E(G) naturally induced by γ be E = E1 ∪ · · · ∪ Ek, where, say,

Ei = γ−1({i}) 6= ∅ (1 ≤ i ≤ k). For the rest of this section, let Vσ = S
(0)
σ ∪ S

(1)
σ ,

with |S(0)
σ | = |S(1)

σ | = r = n/2, be a fixed partition of Vσ (σ = 0, 1). Let G(i) = G[S
(i)
0 , S

(i)
1 ]

(i = 0, 1).

We shall use the following slightly non-standard notation. If H is a graph and F ⊂
E(H), we write H[F ] for the spanning subgraph of H with edge set F . The following

result is a simple technical lemma.

Lemma 6. Suppose d ≥ 108 log 3. Then there exists a partition [k] = C0 ∪ C1 of [k] =

{1, . . . , k} such that if we let H(i) = G(i)
[

E(G(i)) ∩ ⋃

j∈Ci
Ej

]

(i = 0, 1), then e(H(i)) ≥
(1/3)e(G(i)) (i = 0, 1).

Proof. Set a
(j)
i = |Ei∩E(G(j))| for 1 ≤ i ≤ k and j = 0, 1. Note that 0 ≤ a

(j)
i ≤ r. Put i ∈

[k] in C0 with probability 1/2, independently from all other j ∈ [k]. Let Xi = 1 if i ∈ C0

and Xi = 0 if i ∈ C1. Let H(i) (i = 0, 1) be as in the statement of our lemma. Then

clearly e(H(0)) =
∑

1≤i≤k a
(0)
i Xi. Let Yi = a

(0)
i Xi/r (1 ≤ i ≤ k), and set Y =

∑

1≤i≤k Yi.

Then, for any 0 ≤ δ ≤ 1, by Hoeffding’s inequality we have that P{Y ≤ (1 − δ)E(Y )} ≤
exp{−δ2E(Y )/2}. Note that E(Y ) = e(G(0))/2r ≥ d/6 ≥ 18 log 3, and therefore we have

that P{e(H(0)) ≤ (1/3)e(G(0))} ≤ 1/3. Similarly P{e(H(1)) ≤ (1/3)e(G(1))} ≤ 1/3, and

thus a partition as required does exist.

We are now ready to prove our main result.

Theorem 7. Let p and q be distinct primes such that p, q ≡ 1 (mod4), q2 ≥ p, and p

is not a square in Z/qZ. Let n = q(q2 − 1)/2, t = ⌈(2/3) logp(n/
√

2)⌉, ℓ = ⌈3t/2⌉,
and ε = 2 × 10−6. Suppose t ≥ 2, d = p + 1 ≥ 16ε−2ℓ, and let G = G2n = Xp,q. Then,
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if ℓ+ 1 ≤ s ≤ (εℓ/6)n1/ℓ + 1, we have G
mc−→
p
C2s.

Proof. Recall that a partition Vσ = S
(0)
σ ∪ S

(1)
σ with |S(0)

σ | = |S(1)
σ | = r = n/2 of Vσ

(σ = 0, 1) has been fixed. Let us now fix Ci and H(i) (i = 0, 1) as in Lemma 6. For

both i = 0, 1, we apply Lemma 4 to obtain S̄
(i)
σ ⊂ S

(i)
σ with |S̄(i)

σ | ≥ n/20 (σ = 0, 1) such

that J (i) = H(i)[S̄
(i)
0 , S̄

(i)
1 ] is an (r/10f, f)-expander for all 0 < f ≤ d/3602. Since |S̄(0)

0 |,
|S̄(1)

1 | ≥ n/20, we have eG(S̄
(0)
0 , S̄

(1)
1 ) > 0. Let x0x1 ∈ E(G) be such that x0 ∈ S̄

(0)
0

and x1 ∈ S̄
(1)
1 . Let c0 = γ(x0x1), and suppose ℓ ≤ ℓ′ ≤ (εℓ/6)n1/ℓ ≤ εn1/ℓ. We shall now

proceed to find a multicoloured 2s-cycle C2s ⊂ G where s = ℓ′ + 1.

We first apply Lemma 5 to J (i) (i = 0, 1) and obtain T (i) ⊂ S̄i+ℓ′ such that (i) |T (i)| =

a = ⌈εℓn⌉, and (ii) for all yi ∈ T (i), there is an xi–yi path Pyi
⊂ J (i) in J (i) of length ℓ′

with γ injective on Pyi
and c0 /∈ γ(Pyi

).

For each yi ∈ T (i) (i = 0, 1), fix an xi–yi path Pyi
⊂ J (i) as given in (ii) above. We

now notice that, since d ≥ 16ε−2ℓ, we have eG(T (0), T (1)) ≥ (d/n)a2 − 2d1/2a ≥ (d/2n)a2.

For i = 0, 1, let

Fi =
⋃

yi∈T (i)

{

yiz ∈ E(G) : z ∈ T (i+1), and γ(yiz) ∈ {c0} ∪ γ(Pyi
)
}

,

and set F = F0 ∪ F1. Then |F | ≤ (ℓ′ + 1)|T (0) ∪ T (1)| ≤ 2(ℓ′ + 1)a. Note that since ℓ ≥ 3

and d ≥ 16ε−2ℓ, we have εℓd ≥ 2× 1018. Thus ℓ′ + 1 ≤ (εℓ/6)n1/ℓ + 1 ≤ (εℓ/6)21/6d+ 1 <

(εℓ/4)d, and therefore |EG(T (0), T (1))\F | ≥ (d/2n)a2−2(ℓ′+1)a = a
(

εℓd/2 − 2(ℓ′ + 1)
)

>

0. Finally, suppose y0y1 ∈ EG(T (0), T (1)) \ F . Then, if Py0
= x0z1z2 . . . y0, Py1

=

x1z
′
1z

′
2 . . . y1, we have that C = x0z1z1 . . . y0y1 . . . z

′
2z

′
1x1x0 is a 2s-cycle in G and γ is

injective on E(C). This finishes the proof of the theorem.

Recall that for G as in Theorem 7 we have g(G) ≥ 2t, and in fact g(G) is roughly equal

to 2t (cf. Lemma 3(i)). Thus in the above result we have G
mc−→
p
C2s for 2s about (3/2)g(G).

Notice, in fact, that this means that the short multicoloured cycles guaranteed by Theo-

rem 7 are necessarily induced. Moreover, note that if ℓ is not too large, then the upper

bound for s in Theorem 7 is nearly of the same order as d = p + 1. Thus, since the

chromatic index of G is d, the restriction that s should not exceed (εℓ/6)n1/ℓ + 1 cannot

be essentially weakened.
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4. The existence of suitable primes

Theorem 7 states that X = Xp,q mc−→
p
C2s provided p, q, and s satisfy certain conditions.

For brevity, let us say that a pair (p, q) of primes is good if p, q ≡ 1 (mod4), q ≥ 2p, and p

is a quadratic non-residue modulo q. Note that a priori it is not clear that there is any

good pair (p, q) of primes that admits an integer s satisfying the conditions in Theorem 7.

Our first aim in this section is to present a simple result, Lemma 9, that implies that for

any even ℓ ≥ 18 there is a good pair (p, q) such that X = Xp,q mc−→
p
Cℓ (see Theorem 11).

Moreover, we shall see that we may further require the girth g(X) of X to be roughly as

large as (2/3)ℓ.

As usual, for an integer n ≥ 1, let ϕ(n) denote the number of integers 1 ≤ m ≤ n

coprime to n. Also, let Λ(n) = log p if n is a positive integer power of a prime p, and

let Λ(n) = 0 otherwise. Let a real x > 0 and integers h ≥ 2, a ≥ 1 be given. We put

ψ(x; h, a) =
∑

{Λ(n) : 2 ≤ n ≤ x, n ≡ a (modh)}.

A well-known number-theoretic result states that ψ(x; h, a) = (1+o(1))x/ϕ(h) as x→ ∞,

provided h and a are fixed and (a, h) = 1. In fact, the following refinement of Dirichlet’s

celebrated theorem on primes in arithmetic progressions is an easy consequence of the

above result. For fixed h and a with (a, h) = 1, we have π(x; h, a) = (1+ o(1))x/ϕ(h) logx

(x → ∞), where π(x; h, a) is the number of primes 2 ≤ p ≤ x with p ≡ a (modh). We

refer the reader to Davenport [9] for this and other related results from analytic number

theory.

Below, we shall be interested in the error term in the above asymptotic estimate

for ψ(x; h, a). Let us introduce some notation. We put E(x; h, a) = |ψ(x; h, a)− x/ϕ(h)|,
E(x, h) = max{E(x; h, a) : (a, h) = 1}, and E∗(x, h) = max{E(y, h) : 0 < y ≤ x}. The fol-

lowing beautiful and far-reaching result was proved by Bombieri [8] (see also Davenport [9],

§28).

Theorem 8. Let A > 0 be fixed. Then there is a constant C = C(A) such that,

for x1/2(log x)−A ≤ Q ≤ x1/2, we have
∑

2≤h≤QE
∗(x, h) ≤ Cx1/2Q(log x)5.

In particular, the above result implies that E∗(x, h) is a great deal smaller than x/ϕ(h)

for most h ≤ x1/2(log x)−A. Furthermore, clearly, Theorem 8 states that under the given

9



conditions the average error Ave2≤h≤QE
∗(x, h) is O

{

x1/2(log x)5
}

. We remark in pass-

ing that assuming the generalised Riemann hypothesis, one may prove that E(x, h) =

O
{

x1/2(log x)2
}

for x ≥ h (cf. §20 in [9]). Such a bound for E(x, h) would allow us to give

a more direct proof of the existence of appropriate good pairs of primes.

The main lemma of this section is Lemma 9. For its proof we shall need the following

simple result. For x > 0 put ψ2(x) =
∑

Λ(n), where the sum is extended over all 2 ≤
n = pk ≤ x with p a prime and k ≥ 2 an integer. Then, by the prime number theorem,

we have that ψ2(x) ≤ (2 + o(1))x1/2 as x→ ∞. Let us now turn to Lemma 9. Suppose a

set H = {hi ∈ N : i ≥ 1} of integers is fixed, and assume 2 ≤ h1 < h2 < · · · . Moreover,

let integers 1 ≤ ai < hi (i ≥ 1) be given.

Lemma 9. Suppose that for a constant ρ > 0 we have |H ∩ [n]| = (ρ + o(1))n/ logn

as n→ ∞. Let 0 < η < 1/2 and b > 0 be fixed. Then there is hi ∈ H and a prime q such

that hi ≥ b, q ≡ ai (modhi), and (hi/4)1/η/4 ≤ q ≤ (hi/4)1/η.

Proof. Let A = 7 in Theorem 8, and set C = C(7). Pick Q ≥ 2, and let x0 = x0(Q) be

such that Q = x
1/2
0 (log x0)

−7. Assume that Q is sufficiently large so that (i) 4xη
0 ≥ b,

(ii) log x0 ≥ (80C/ρ)2η, (iii) x
1/2−η
0 ≥ 60 × 2η, and (iv) ψ2(x0) ≤ 3x

1/2
0 . Now note that,

as x→ ∞,
N(x) =

∣

∣{h ∈ H : 4xη < h ≤ 4(2x)η}
∣

∣

= (4ρ+ o(1))
(2x)η

η log(2x)
− (4ρ+ o(1))

xη

η log x
,

which is, for large enough x, at least

4ρxη

η log x

(

23η/4 − 2η/4
)

≥ 2ρ(log 2)xη(log x)−1 ≥ ρxη(log x)−1.

Thus we may further assume that Q is sufficiently large to guarantee that N(x0) ≥
ρxη

0(log x0)
−1. Now, by Theorem 8, we clearly have that E∗(x0, h) ≥ (2C/ρ)x1−η

0 (log x0)
−1

holds for at most (ρ/2)xη
0(log x0)

−1 values of 2 ≤ h ≤ Q. Thus there is hi ∈ H

such that b ≤ 4xη
0 < hi ≤ 4(2x0)

η, and E∗(x0, hi) ≤ (2C/ρ)x1−η
0 (log x0)

−1. Hence we

have E(x0; hi, ai), E(x0/2; hi, ai) ≤ (2C/ρ)x1−η
0 (log x0)

−1. Therefore

ψ(x0; hi, ai) − ψ(x0/2; hi, ai) ≥
x0

2ϕ(hi)
− 4C

ρ
· x

1−η
0

log x0

≥ x0

10ϕ(hi)
+ ψ2(x0) > ψ2(x0),
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where for the second inequality we use (ii) and (iii) above. Thus there is a prime q such

that x0/2 < q ≤ x0 and q ≡ ai (modhi). Finally, note that (hi/4)1/η/4 ≤ x0/2 < q ≤
x0 ≤ (hi/4)1/η.

We now apply the above lemma to our particular set-up. For a, b ≥ 2, let ℓ(a, b) =

⌈(3/2)⌈(2/3) loga(n(b)/
√

2)⌉⌉, where n(b) = b(b2 − 1)/2. Note that in Theorem 7, we

have ℓ = ℓ(p, q).

Lemma 10. Let P ≥ 2 and ℓ0 ≥ 8 be given. Then (i) if ℓ0 ≡ 0 or 2 (mod3), there is

a good pair (p, q) of primes with p ≥ P and ℓ(p, q) = ℓ0, and (ii) if ℓ0 ≡ 1 (mod3), then

there is a good pair (p, q) of primes with p ≥ P and ℓ(p, q) = ℓ0 + 1.

Proof. (i) We may clearly assume that P ≥ 53. Let pi (i ≥ 1) be the ith prime congruent

to 1 modulo 4. Let hi = 4pi, and set H = {hi : i ≥ 1}. Note that H ∩ [n] = {hi =

4pi : pi ≤ n/4}, and so |H ∩ [n]| = π(n/4; 4, 1). Thus |H ∩ [n]| = (1/8 + o(1))n/ logn

as n → ∞. Now let 1 ≤ si < pi (i ≥ 1) be such that 4si ≡ 1 (mod pi), and let 1 ≤
ri < pi (i ≥ 1) be a quadratic non-residue modulo pi. Let 1 ≤ ai < hi (i ≥ 1) be such

that ai ≡ 4siri + pi (modhi). We now define 0 < η < 1/2 as follows. If ℓ0 ≡ 0 (mod 3),

we let η = 3/ℓ0, and if ℓ0 ≡ 2 (mod3), we let η = 6/(2ℓ0 − 1). Set b = 4P . Lemma 9 then

gives that, for some i ≥ 1 and some prime q, we have pi ≥ P , q ≡ 4siri + pi (mod4pi),

and (1/4)p
1/η
i ≤ q ≤ p

1/η
i . But then q ≡ 1 (mod4) and q is a quadratic non-residue

modulo pi. By the law of quadratic reciprocity, we have that pi is a quadratic non-residue

modulo q. Since η < 1/2, we may deduce from q ≥ (1/4)p
1/η
i that q ≥ 2pi. Thus (pi, q) is

good. Moreover, a simple but a little tedious calculation shows that indeed ℓ(pi, q) = ℓ0

(the assumption P ≥ 53 is used here). This finishes the proof of (i). Assertion (ii) follows

immediately from (i).

With Lemma 10 in hand, we may easily show that for any even L ≥ 18 there is a good

pair (p, q) such that Xp,q mc−→
p
CL.

Theorem 11. Suppose s ≥ 9 and L = 2s. Then there is a good pair (p, q) of primes

such that (i) X = Xp,q mc−→
p
CL, and (ii) g(X) ≥ (2/3)(L − 4) if s ≡ 0 or 1 (mod3)

and g(X) ≥ (2/3)(L− 2) otherwise.
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5. Very short multicoloured cycles

In the introduction we remarked that we have t(Cℓ) = ℓ for all 3 ≤ ℓ ≤ 6. For ℓ ∈ {3, 4}
this statement can be verified by considering the complete graph K14 and the complete

bipartite graph K4,4. Now, for ℓ = 6 we take a projective plane P of large order, and

consider its incidence bipartite graph, namely, the bipartite graph I = I(P) with vertex

classes V0, V1, where V0 = V0(P) is the set of points of P and V1 = V1(P) is the set of

lines of P, and with xy ∈ E(I) (x ∈ V0, y ∈ V1) if and only if x and y are incident in P.

By estimating the maximal possible number of non-multicoloured 6-cycles in a properly

edge-coloured I = I(P), we may verify that I
mc−→
p
C6 for a large enough P. Since g(I) = 6,

we conclude that t(C6) = 6.

For completeness, we check here that t(C5) = 5: using probabilistic methods we shall

‘construct’ a suitable graph G to verify this fact. Our method of proof might be of some

use to prove upper bounds for t(Cℓ) for large odd ℓ. Our random construction of G is

based again on large projective planes P.

The construction of G. Let P be a projective plane of order q, and let n = q2 + q + 1.

Thus I is a (q+1)-regular bipartite graph and we have |V0| = |V0(P)| = |V1| = |V1(P)| = n.

By considering random partitions, we may assume that V0 = A0 ∪ A1 ∪ A2, V1 = B1 ∪
B2 are partitions of V0 and V1 such that, for all i ∈ {0, 1, 2} and j ∈ {1, 2}, we have

(i) n/6 ≤ |Ai| ≤ n/2, n/3 ≤ |Bj| ≤ 2n/3, and (ii) |ΓI(x) ∩Bj | ≥ (q + 1)/3 for all x ∈ V0,

and |ΓI(y) ∩ Ai| ≥ (q + 1)/4 for all y ∈ V1.

We next define H ⊂ I by deleting the edges in EI(A1, B2) ∪EI(A2, B1) from I. Now

let p = ω/n, where ω = ω(n) = 4 logn. For all pairs (a1, a2) ∈ A1 ×A2, add the edge a1a2

to H independently with probability p, and let J be the resulting random graph. Our

aim now is to verify that, almost surely, we may delete some edges from EJ(A1, B1) ∪
EJ(A2, B2) ∪ EJ (A1, A2) from J in such a way that the resulting graph G is such that

(iii) |ΓG(y) ∩ Ai| ≥ (q + 1)/5 for all y ∈ V1, i ∈ {1, 2}, (iv) for any U ⊂ A1, W ⊂ A2

with |U |, |W | ≥ n/15, we have eG(U,W ) ≥ p|U ||W |/2, and (v) all vertices z ∈ A1 ∪ A2

have degree dG[A1,A2](z) = O(ω) in G[A1, A2].

Let us choose which edges from EJ(A1, B1) we shall delete. To this end, we first

concentrate our attention on a vertex y ∈ B1. Choose a maximum collection of edge-

disjoint quadrilaterals C4 ⊂ J [A1, A2 ∪ {y}] that contain y, and let Ey be the edges

incident to y present in this collection. The edges we delete from EJ(A1, B1) are the ones
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in E1 =
⋃

y∈B1
Ey. In exactly the same way, we define a set E2 ⊂ EJ (A2, B2) of edges

of J to be deleted from J .

Finally, let E12 ⊂ EJ(A1, A2) be the set of all the edges present in 4-cycles C4 ⊂
J [A1, A2]. Define now G to be the subgraph G = J − (E1 ∪E2 ∪E12) of J . It is quite easy

to check that (iii), (iv), and (v) above hold in G almost surely. Let us fix G satisfying

such conditions. This completes the ‘construction’ of G.

Claim. We have g(G) = 5 and G
mc−→
p
C5.

Proof of the Claim. It is immediate that g(G) ≥ 5. To verify the second assertion in

our claim, we use the counting argument of Rödl and Tuza [22], which applies very easily

here owing to our definition of G. It is easily seen that any vertex a0 ∈ A0 belongs

to Ω(ωn) cycles C5 ⊂ G, and hence the total number of copies of C5 in G is Ω(ωn2). Let

now γ : E(G) → N be a fixed proper edge-colouring of G, and let us count the number of

non-multicoloured C5 contained in G. Let us write a0b1a1a2b2 for a 5-cycle of G, where

naturally ai ∈ Ai and bj ∈ Bj (i ∈ {0, 1, 2}, j ∈ {1, 2}). How many such C5 have the

edges a0b1 and a2b2 of the same colour? For such cycles, the number of possibilities for a0b1

is O(n3/2) and for a0b2, given a0b1, is O(n1/2). Also, given a0b1 and a0b2, there is at most

one possibility for a2b2 as this edge must be incident to b2 and must have the same colour

as a0b1. Finally, there is at most one vertex a1 ∈ A1 with a1a2, a1b1 ∈ E(G). Thus the

total number of 5-cycles a0b1a1a2b2 in G with the edges a0b1, a2b2 of the same colour

is O(n2). Analysing a few more cases, one checks that the number of non-multicoloured

5-cycles in G is O(n2). Since the total number of 5-cycles in G is Ω(ωn2), we are done.

In view of our results for t(Cℓ) for ℓ even, the method above might apply to give

improved lower estimates for t(Cℓ) for large odd ℓ. This would be an interesting problem

to consider.

6. Some generalisations

The technique used in [22] to prove Theorem 1 gives two results of a more general nature.

Roughly speaking, these results assert the existence of graphs G of large girth satisfy-

ing G
mc−→
p
H for any very sparse graph H. Given a graph H, let m(H) = max{e(H ′)/|H ′|},

where the maximum is taken over all subgraphs H ′ ⊂ H of positive order. Using a simple
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‘decomposition’ result given in [22] (cf. the proof of Theorem 2 in [22]), and the methods of

Sections 2 and 3 above applied to the non-bipartite Ramanujan graphs Xp,q of Lubotzky,

Phillips, and Sarnak [18] (so here p is a quadratic residue modulo q), one may prove the

following result.

Theorem 12. Let t, h ≥ 3 be given. Then there exist primes p and q, a real µ > 0, and

an integer g ≥ 3 such that if G = Gt,h = Xp,q, then (i) g(G) ≥ t and (ii) G
mc−→
p
H for every

graph H with m(H) ≤ 1 + µ, g(H) ≥ g, and |H| ≤ h.

Theorem 12 above has as an immediate corollary Theorem 13 below. For two graphs G

and H, let us write G
mc−→
p
TH if for any proper edge-colouring γ of G, there is a sub-

graph H ′ ⊂ G of G that is a subdivision of H and such that γ is injective on E(H ′).

Theorem 13. Let t, k ≥ 3 be given. Then there exist primes p and q such that if G =

Gt,k = Xp,q, then (i) g(G) ≥ t and (ii) G
mc−→
p
TKk.

Note that this result settles a generalised version of Spencer’s original question. In-

deed, when k = 3 this theorem asserts the existence of graphs of arbitrarily large girth

that have the property that however they are properly edge-coloured, we may always find

a multicoloured cycle in them. Moreover, Theorem 13 tells us that suitable Ramanujan

graphs have this property. The existence of the graphs Gt,h and Gt,k as above was proved

in [22] by non-constructive means, and no explicit examples of such graphs were given.

Our aim in this section is to give a sketch of proof for Theorem 12.

We start with some preparation concerning the decomposition result given in [22]. Let

an integer s ≥ 1 be given. A sequence of graphs (Fk)m
0 is an s-decomposition series for a

graph H if K1 = F0 ⊂ · · · ⊂ Fm = H and, for all 1 ≤ k ≤ m, the graph Fk is obtained

from Fk−1 either by the addition of an isolated vertex or of a vertex of degree one, or else

by the addition of an x′–y′ path of order at least s, by joining x′ (respectively y′) to a

vertex x ∈ Fk−1 (respectively y ∈ Fk−1), where x and y are not necessarily distinct. Thus,

more precisely, we either have |Fk| = |Fk−1|+ 1, V (Fk) = V (Fk−1)∪ {x}, and dFk
(x) ≤ 1,

or else we have |Fk| ≥ |Fk−1| + s, for all w ∈ W = V (Fk) \ V (Fk−1) we have dFk
(w) = 2,

and W induces a path in Fk.

For sparse graphs of large girth, as shown by Rödl and Tuza [22], we have the following

simple result on the existence of decomposition series.
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Lemma 14. If a graph H is such that m(H) < 1 + 1/(3s− 1) and g(H) ≥ s+ 1, then H

admits an s-decomposition series.

To prove Theorem 12, in addition to Lemma 14 we need a somewhat cumbersome

technical lemma, namely Lemma 15 below. Before we can state that result, we need to

introduce a few definitions and some notation. Let us fix a non-bipartite Ramanujan

graph G = Gn = Xp,q, and recall that (†) the inequality in Lemma 3(iii) holds for

any two disjoint sets U , W ⊂ V (G) (cf. Alon and Spencer [4], Chapter 9, Section 2).

Suppose γ : E(G) → N is a fixed proper edge-colouring of G. Let m ≥ 1 be fixed, and

let V = V (G) = V0 ∪ · · · ∪ Vm be a partition of V such that n′ = |V1| = . . . = |Vm|
is even and ⌊n/2m⌋ ≤ n′ ≤ ⌊n/2m⌋ + 1. Also, for 1 ≤ k ≤ m, let Vk = Sk ∪ Tk be a

partition of Vk with |Sk| = |Tk|, and let G′
k = G[Sk, Tk] be the bipartite graph induced by

the vertex classes Sk and Tk in G. Now let N = C1 ∪ · · · ∪ Cm be a partition of N, and

let Gk = G′
k[γ−1(Ck)] (1 ≤ k ≤ m). Now, the argument used in the proof of Lemma 6

gives that there is a partition (Ck)m
1 of N such that e(Gk) ≥ (1/2m)e(G′

k) (1 ≤ k ≤ m),

provided d = p+ 1 is at least as large as a constant d0 = d0(m) depending only on m. In

the sequel, we assume that our partition (Ck)m
1 is as above. Moreover, from now on we

tacitly assume that d = p+ 1 is large enough with respect to m.

Lemma 15. Let m ≥ 1 be fixed. Then there are constants ci > 0 (0 ≤ i ≤ 3) depending

only on m satisfying the following property. For each i ∈ {0, 1} and 1 ≤ k ≤ m, there are

sets S
(i)
k ⊂ Sk, T

(i)
k ⊂ Tk, and a vertex x0 ∈ V0 such that S

(0)
k ∩S(1)

k = ∅ and T
(0)
k ∩T (1)

k = ∅
(1 ≤ k ≤ m) and such that the following holds. Let J

(i)
k = Gk[S

(i)
k , T

(i)
k ] (i ∈ {0, 1}, 1 ≤

k ≤ m). Then, for all 1 ≤ k ≤ m and i ∈ {0, 1}, we have

(i) |S(i)
k |, |T (i)

k | ≥ rk = cm−k
1 r, where r ≥ c0n,

(ii) |ΓG(x0) ∩ S(i)
k | ≥ d|S(i)

k |/2n and |ΓG(x0) ∩ T (i)
k | ≥ d|T (i)

k |/2n,

(iii) for all k < ℓ ≤ m, and ik, iℓ ∈ {0, 1}, if x ∈ J
(ik)
k then |ΓG(x) ∩ S(iℓ)

ℓ | ≥ d|S(iℓ)
ℓ |/2n

and |ΓG(x) ∩ T (iℓ)
ℓ | ≥ d|T (iℓ)

ℓ |/2n,

(iv) J
(i)
k is (c2rk/f, f)-expanding for all 0 < f ≤ c3d.

We only briefly describe a proof of Lemma 15. We start by applying the ‘bipartite

version’ of Szemerédi’s lemma for subgraphs of pseudo-random graphs (see [16]) to the

graphs Gk ⊂ G′
k, with an appropriately small ε = ε(m) > 0. This gives us sets S′

k ⊂ Sk,
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T ′
k ⊂ Tk (1 ≤ k ≤ m) with |S′

k| = |T ′
k| = Ω(n) for all k and such that Gk[S′

k, T
′
k] is

(ε, Gk, G
′
k)-regular and e(Gk[S′

k, T
′
k]) ≥ (1/3m)e(G′

k[S′
k, T

′
k]). (For the definition of these

terms, the reader is referred to [16].) We now define the sets S
(i)
k , T

(i)
k as required in the

lemma by reverse induction on k, and we define the vertex x0 last.

Let us first split S′
m and T ′

m into pairs of sets of cardinality as equal as possible,

say S′
m = Sm,0 ∪Sm,1 and T ′

m = Tm,0 ∪Tm,1. Applying the argument we used in the proof

of Lemma 4, we may find suitable sets S
(i)
m ⊂ Sm,i, T

(i)
m ⊂ Tm,i (i ∈ {0, 1}) as required. Now

we alter the sets S′
k, T ′

k (1 ≤ k < m) to guarantee (iii) in our lemma: we delete from S′
k∪T ′

k

any vertex x for which |ΓG(x)∩S(i)
m | < d|S(i)

m |/2n or |ΓG(x)∩T (i)
m | < d|T (i)

m |/2n for some i ∈
{0, 1}. Let S′′

k ⊂ S′
k, T ′′

k ⊂ T ′
k be the sets we obtain in this way, and then note that by (†)

we have |S′′
k | ≥ |S′

k|/2, |T ′′
k | ≥ |T ′

k|/2 (1 ≤ k < m). Moreover, by the (ε, Gk, G
′
k)-regularity

of Gk[S′
k, T

′
k] ⊂ G′

k[S′
k, T

′
k], we have e(Gk[S′′

k , T
′′
k ]) ≥ (1/6m)e(G′

k[S′′
k , T

′′
k ]) (1 ≤ k < m).

We now consider S′′
k , T ′′

k (1 ≤ k < m), and by induction find sets S
(i)
k , T

(i)
k (i ∈ {0, 1},

1 ≤ i < k) satisfying (i), (iii), and (iv) in Lemma 15. This completes the definition of the

sets S
(i)
k , T

(i)
k . The existence of a suitable vertex x0 ∈ V0 satisfying Lemma 15(ii) follows

from (†). Finally, we note that Theorem 12 follows from Lemmas 14 and 15.

Proof of Theorem 12 . Let t, h ≥ 3 be fixed, and note that we may clearly assume that t ≥ 4.

Let g = 4 + 3t and suppose µ < 1/(9t + 8) is a fixed real. Moreover, let p, q be primes

congruent to 1 modulo 4 with p a quadratic residue modulo q. Arguing in the same

way as in Section 4, we see that there are arbitrarily large primes p and q as above

satisfying the additional property that pt/2 ≤ q ≤ 2pt/2. Let us fix such a pair (p, q) with p

large enough with respect to h. From the properties of p and q above, we see that the

Ramanujan graph G = Gn = Xp,q of Lubotzky, Philips, and Sarnak [18] is non-bipartite,

has order n = q(q2−1)/2, has girth g(G) ≥ t, and is d-regular with d = p+1 ≥ 2−4/9n2/3t.

We claim that G will do in Theorem 12 for the given values of t and h.

Let H be a graph of order h with m(H) ≤ 1+µ and girth g(H) ≥ g. Let γ : E(G) → N

be a proper edge-colouring of G. We shall show that G admits a multicoloured copy of H

with respect to γ. To do so, let (Fk)m
0 be an s-decomposition series for H with s = 3t+ 3.

Also, fix partitions (Vk)m
0 and (Ck)m

1 as in the paragraph before Lemma 15, and apply

that lemma. Now, the argument used in the proof of Lemma 5 and Theorem 7, coupled

with a simple induction, successively gives that multicoloured copies of the graphs K1 =

F0 ⊂ F1 ⊂ · · · are present in G, and hence a multicoloured copy of H does appear in G,
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as required. We omit the details.

We close with a Ramsey type result. As customary, for graphs G and H and an

integer r ≥ 2, write G → (H)r if in any (not necessarily proper) edge-colouring of G

with r-colours we may find a monochromatic copy of H. By making use of Szemerédi’s

regularity lemma for subgraphs of pseudo-random graphs [16], one may prove the following

result (cf. [15]).

Theorem 16. Let r ≥ 2 be given. Then there are constants c0 = c0(r) > 0 and p0 = p0(r)

such that the following holds. Let p and q be two unequal primes such that p, q ≡ 1 (mod 4),

p ≤ q2, and p is a square in Z/qZ. Let t ≥ 3 be given. If p ≥ p0 and q ≥ q0 =

q0(r, p, t), where q0 = q0(r, p, t) depends only on r, p, and t, then G = Gn = Xp,q is

such that (i) e(G) = (p + 1)n/2, (ii) g(G) ≥ t, and (iii) G → (Cs)r for any integer s

with 4 log2 n+ 1 ≤ s ≤ c0n.

This result has a simple consequence concerning multicoloured cycles in edge-coloured

graphs. Let r ≥ 1 be given. Let us say that a (not necessarily proper) edge-colouring γ :

E(G) → N of a graph G is r-bounded if |γ−1({i})| ≤ r for all i ∈ N. Let us write G
mc−→
r
H if,

for any r-bounded edge-colouring of G, there is a multicoloured copy of H in G. Clearly,

if for two graphs G and H we have G → (H)r, then G
mc−→
r
H. Thus, Theorem 16 implies

that in r-bounded edge-colourings of Ramanujan graphs, we can always find very long

multicoloured cycles. This is of some interest in view of the remark in the last paragraph

of Section 3. For a related result, the reader is referred to Frieze and Reed [13], where it

is proved that, for some large constant A, any r-bounded edge-colouring of the complete

graph Kn admits a multicoloured Hamilton cycle, where r = r(n) = n/A logn. Hahn and

Thomassen [14] conjecture that the statement above holds for some r = r(n) = Ω(n).
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[10] Erdős, P., Some old and new problems in various branches of combinatorics, Cong.

Numerantium 23 (1979), 19–37.
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[16] Kohayakawa, Y., A version of Szemerédi’s regularity lemma for sparse pseudo-random

graphs, manuscript.

[17] Lefmann, H., On an anti-Ramsey type result, Pre-print 91–023, Universität Bielefeld,

1991.

[18] Lubotzky, A., Phillips, R., Sarnak, P., Ramanujan graphs, Combinatorica 8 (1988),

261–277.

[19] Margulis, G.A., Explicit group-theoretical constructions of combinatorial schemes and

their application to the design of expanders and superconcentrators, Problemy Peredachi

Informatsii 24 (1988), 51–60 (in Russian), English translation in Problems of Information

Transmission 24 (1988), 39–46.
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