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Abstract. For a graph H and an integer r ≥ 2, the induced r-size-Ramsey number

of H is defined to be the smallest integer m for which there exists a graph G with m
edges with the following property: however one colours the edges of G with r colours,

there always exists a monochromatic induced subgraph H′ of G that is isomorphic

to H. This is a concept closely related to the classical r-size-Ramsey number of Erdős,
Faudree, Rousseau, and Schelp, and to the r-induced Ramsey number, a natural

concept that appears in problems and conjectures due to, among others, Graham

and Rödl and Trotter. Here, we prove a result that implies that the r-size-Ramsey
number of the cycle C` (` ≥ 3) is at most cr` for some constant cr that depends only

on r. Thus we settle, in a rather strong sense, a conjecture of Graham and Rödl,

which states that the above holds for the path P ` of order `, and also generalise a
result of Bollobás, Burr, and MG that states that the r-size-Ramsey number of the

cycle C` is linear in `. Our method of proof is heavily based on random graphs and

on a variant of the well-known regularity lemma of Szemerédi.

§0. Introduction

In this article we are concerned with a basic problem in Ramsey theory: we shall
show that there are very sparse graphs that have the Ramsey property with respect
to long induced cycles. Before we make this precise, we give some background and
terminology.

Let G and H be graphs and r a positive integer. Let us put [r] = {1, . . . , r}.
We write G → (H)r if, for any r-colouring χ : E(G) → [r] of the edges of G,
there is a monochromatic copy of H in G, that is, for some subgraph H ′ ⊂ G of G
isomorphic to H, we have that χ is constant on E(H ′). If we are further guaranteed

to find an induced monochromatic copy of H in G, we write G
ind−→(H)r. The well-

known theorem of Ramsey implies that for any given graph H and any r ≥ 2, we
have G → (H)r if G is a sufficiently large complete graph. On the other hand, a
classical result proved independently by Deuber [9], Erdős, Hajnal, and Pósa [11],
and Rödl [19] states that, for any graph H and any r ≥ 1, there is a graph G such

that G
ind−→(H)r.

For a graph G, we write |G| for its order , that is, the number of vertices
in G, and we write e(G) for its size, the number of edges in G. Let Kn be
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the complete graph of order n. Now, for a graph H and a positive integer r,
let r(H, r) = min{|G| : G → (H)r}, and let re(H, r) = min{e(G) : G → (H)r}.
Thus Ramsey’s theorem guarantees that r(H, r), re(H, r) <∞ for any H and any r.

Similarly, replacing the → relation by the
ind−→ relation in the definitions above, we

obtain rind(H, r) and rinde (H, r). The result of Deuber, Erdős, Hajnal, Pósa, and
Rödl gives that rind(H, r), rinde (H, r) <∞ for any H and any r ≥ 1. We call r(H, r)
the r-Ramsey number of H, and re(H, r) the r-size-Ramsey number of H (cf. [10]).
We refer to the induced analogues of these parameters as the induced r-Ramsey
number and as the induced r-size-Ramsey number of H. For simplicity, in the
basic case in which the number r of colours is 2, we omit this parameter from our
notation.

Many problems in Ramsey theory involve the functions r, rind, re and rinde .
Undoubtedly, the best-known of these problems concerns the order of growth of the
standard Ramsey number R(n, n) = r(Kn). A celebrated problem of Erdős asks
whether limn→∞R(n, n)1/n exists, and, if it does exist, what the value is. (See for
instance [1, Appendix B].)

We now turn to the specific problems that we shall deal with here. Let P `

be the path of order `. Settling a problem of Erdős, Beck [2] proved the rather
striking result that, for any fixed positive integer r, there is a constant cr such
that re(P

`, r) ≤ cr` for any ` ≥ 1. This result suggests the following two problems.
Graham and Rödl [12] raised the natural question whether such a linear upper
bound also holds for rind(P `, r) for any fixed r. Moreover, writing C` for the cycle
of order `, the result of Beck naturally suggests investigating whether re(C

`, r) is
also linear in `. Our main result here settles these two questions in the affirmative.
We prove that rinde (C`, r) ≤ cr` for some constant cr that depends only on r.

We in fact prove more. Theorem 10 below states that, for any fixed r ≥ 2 and
any n ≥ 1, there is a graph G = Gr = Gnr of order n and size e(G) = O(n) satisfying
the following property: for any r-edge-colouring of G, there is a colour c such that,
for any ` with B log n ≤ ` ≤ bn, there is a monochromatic induced `-cycle C` in G
of colour c. Here, B = B(r) > 0 and b = b(r) > 0 are two real constants that

depend only on r. In particular, for any ` as above, we have G
ind−→(C`)r.

Note that Theorem 10 is an intrinsically Ramsey-theoretical result. Let us in-
troduce some notation to make this precise. Suppose G and H are graphs and γ
is a real number with 0 ≤ γ ≤ 1. We write G →γ H if any subgraph J ⊂ G

with e(J) ≥ γe(G) contains a copy of H. Moreover, let us write G
ind−→
γ
H if J above

necessarily contains an induced copy of H. It is easy to see that, owing to the

odd cycles, the immediate analogues of Theorem 10 for the relations →γ and
ind−→
γ

cannot hold for γ ≤ 1/2. If we restrict our attention to even cycles we may however
prove a result analogous to Theorem 10. This ‘density’, rather than ‘partition’,
type result is given in §4 (see Theorem 24). To guarantee all cycles in a range as
in Theorem 10, we need to have γ > 1/2. This result is given in Theorem 25.

Our method is based on random graphs, and on a variant of the powerful lemma
of Szemerédi concerning regular partitions of graphs. Part of the method was
developed in [17] to deal with induced cycles in random graphs. Our variant of
Szemerédi’s lemma, given in Section 2.1 below, asserts the existence of regular
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partitions for subgraphs of pseudo-random graphs. We remark that this lemma
was independently observed in [16] and by Rödl [20]. An overview of the proof of
Theorem 10 is given in §1 below.

We close by mentioning a few related problems and results. Theorem 10 immedi-
ately implies that re(C

`, r) = O(`) for any fixed r, a result proved by Bollobás, Burr,
and an MG1 [6]. Our proof of Theorem 10 may be considerably simplified to give a
direct proof of this result. In [2] and [3], Beck investigated re(H, r) for the case in
which H is a tree. Further results on the size-Ramsey number of trees may be found
in [13] and in [15]. Beck [3] has also studied the induced size-Ramsey number of
trees. It is proved in [3] that rinde (T, r) = O{|T |3(log |T |)4} for any tree T and any
fixed r, and it is also observed that there is a tree T0 with rinde (T0, 2) = Ω(|T0|2).
Finally, we remark that the estimation of rind(H) presents very interesting and
challenging problems.

A problem of Graham and Rödl [12] asks whether rind(H) ≤ exp{c|H|} for any
graph H and some absolute constant c > 0. The best results so far are due to Rödl,
who has proved that this is indeed the case for bipartite graphs H, and that for
general graphs one at least has that rind(H) ≤ exp{exp{|H|1+o(1)}} as |H| → ∞
(cf. [12]). On the other hand, Trotter has asked whether if we consider graphs H
of bounded maximal degree, then rind(H) is of polynomial order in |H| (see [12]).
It is worth noting that, for such graphs H, the Ramsey number r(H) is indeed
linear in |H|, as proved by Chvátal, Rödl, Szemerédi, and Trotter [8]. (See also [4]
and [7].)

§1. Sketch of the Method of Proof

In this section we outline the proof of the following result: for any fixed r ≥ 2 and
any integer n ≥ 1, there is a graph G = Gr = Gnr of order n and size e(G) = O(n)

with the property that G
ind−→(C`)r for any B log n ≤ ` ≤ bn, where B = B(r) > 0

and b = b(r) > 0 are constants that depend only on r.

Here and in the sequel, Gn will always denote a graph of order n. Throughout
this section we let an integer r ≥ 2 be fixed. Let an integer n ≥ 1 be given. It
is enough to prove the existence of G = Gnr as above for large enough n. Hence
we may and shall assume in the sequel that n is greater than a suitably large
constant n0 = n0(r) that depends only on r. We consider a binomial random
graph G′ = Gp ∈ G(N, p) where p = p(N) = D/N and D is a constant that is
very large with respect to r. Thus, G′ = Gp has vertex set {1, . . . , N}, say, and an
edge ij (1 ≤ i < j ≤ N) is present in G′ with probability p, independently of all
other edges. We fix a typical element G′ ∈ G(N, p), and delete from G′ all vertices
that have ‘large’ degree and all edges that belong to ‘short’ cycles. Let G be the
resulting graph. (Here we choose N a little larger than n so that we may further
require G to have order n.) We claim that this deterministic graph G will do.

To prove this claim, fix an arbitrary r-edge-colouring of G. Now, by invoking
the variant of Szemerédi’s regularity lemma mentioned in the introduction, we may
choose a colour i for which the argument below works. The conditions that we
require on this colour i and the general set-up on which the rest of the proof is

1Mysterious gentleman
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based are hard to describe briefly. Thus, let us assume for now that this colour has
somehow been chosen. Let J be the spanning subgraph of G whose edges are the
edges of G coloured i.

We first need to show that J contains a short induced cycle C that is also induced
in G. It turns out that we may guarantee the existence of such a cycle C of length
logarithmic in n. We now assume that we are given an induced `-cycle C0 in J
that is also induced in G, where ` is neither too small nor too large. In the rest
of the proof we show that we may ‘enlarge’ this cycle C0 to an induced (` + 1)-
cycle C ′ of J that is also induced in G. Provided we succeed in showing that this
process may be carried out for reasonably short and reasonably long cycles C0, we
are done. More precisely, it suffices to show that this is indeed possible for ` in the
range c log n ≤ ` ≤ n/c for some constant c = cr > 0.

The ‘enlarging’ procedure is as follows: we simply find in C0 a segment of length L
that may be replaced by a path of length L + 1 to give the required cycle C ′.
Here L = Θ(log n) is to be chosen suitably. Not all segments of C0 admit a path
as above. Thus we need to try several possibilities before we find a good segment.

We first fix two vertices x
(1)
0 , x

(2)
0 that determine a segment of length L in C0.

In the main iterative part of our ‘enlarging’ algorithm (cf. Section 3.2), we look for

suitable sets of vertices X
(σ)
0 , . . . , X

(σ)
k (σ ∈ {1, 2}). These X

(σ)
i grow geometrically

with i, X
(σ)
0 = {x(σ)0 }, and |X(σ)

k | = Ω(n) (σ ∈ {1, 2}). Moreover, they have

the following further property: for any x(1) ∈ X
(1)
k , x(2) ∈ X

(2)
k , we may find

vertices x
(σ)
i ∈ X

(σ)
i (1 ≤ i ≤ k, σ ∈ {1, 2}) for which x

(1)
k = x(1), x

(2)
k = x(2),

the paths P (σ) = x
(σ)
0 . . . x

(σ)
k (σ ∈ {1, 2}) are induced paths of J , and (*) the only

edges induced in G by V (C0) ∪ {x(σ)i : 1 ≤ i ≤ k, σ ∈ {1, 2}} are the ` + 2k edges

in E(C0) ∪ E(P (1)) ∪ E(P (2)).

However, for a given pair (x
(1)
0 , x

(2)
0 ), we may fail to find such sets X

(σ)
i . In such

a case, we find a set Q ⊂ V (G) of vertices of G that together with V (C0) (and some
other vertices) induce a ‘dense’ subgraph in G, i.e. a subgraph with many edges. We

successively search for the sets X
(σ)
i starting with many distinct pairs (x

(1)
0 , x

(2)
0 ),

and show that we eventually succeed in finding the X
(σ)
i for some pair (x

(1)
0 , x

(2)
0 )

(see Lemma 17). Roughly speaking, we use the fact that, if we were to fail starting

from many such pairs (x
(1)
0 , x

(2)
0 ), we would be able to find in G a subgraph that is

far too dense for a subgraph of a random graph.

The argument above guarantees |X(σ)
k | = Ω(n) (σ ∈ {1, 2}), but the constant in

the Ω-notation is quite small. In the second part of the ‘enlarging’ algorithm, we

extend the sequences X
(σ)
0 , . . . , X

(σ)
k (σ ∈ {1, 2}). We define X

(σ)
k+1, . . . , X

(σ)
k1

with

the X
(σ)
i again growing geometrically with i, and with |X(σ)

k1
| ≥ cn, where c > 0

is to be chosen suitably. To define such sets X
(σ)
i (k < i ≤ k1, σ ∈ {1, 2}),

roughly speaking, we weaken property (*). Namely, we require that for any x(1) ∈
X

(1)
k1

, x(2) ∈ X
(2)
k2

, we may find vertices x
(σ)
i ∈ X

(σ)
i (1 ≤ i ≤ k, σ ∈ {1, 2}) for

which x
(1)
k1

= x(1), x
(2)
k1

= x(2), P (σ) = x
(σ)
0 . . . x

(σ)
k1

is a path in J (σ ∈ {1, 2}), and

(†) the only edges induced in G by V (C0) ∪ {x(σ)i : 1 ≤ i ≤ k1, σ ∈ {1, 2}} are the

ones in E(C0) ∪ E(P (1)) ∪ E(P (2)), except for possibly some edges e incident to
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vertices in
⋃
X

(σ)
k′ , where the union ranges over σ ∈ {1, 2}, k0 < k′ ≤ k1, and k0

satisfies k1 − k0 = O(1).

Picking c large enough, we may guarantee that there is anX
(1)
k1

–X
(2)
k1

edge x(1)x(2)

in J . This edge together with P (1) and P (2) give the path of length L+ 1 that we
use to construct C ′. The fact that C ′ is an induced cycle in G follows from (†) and
the fact that G has large girth. (The edges e mentioned in (†) do not occur in C ′

as they would give short cycles in G.)

Let us give an outline of the contents of the following sections. The method used
to choose the colour i in the argument above is given in Section 2.1. In Section 2.2
we compile the results concerning random graphs that we shall need. In Section 2.3
we give the construction of the graph G = Gnr sketched above. There we also state
our first main result, Theorem 10. In §3 we give the proof of Theorem 10. In §4 we
state two related results.

§2. Preliminary Results

2.1. Szemerédi’s Lemma. Let a graph G = Gn of order |G| = n be fixed.
For U , W ⊂ V = V (G) with U ∩ W = ∅, we write E(U,W ) = EG(U,W ) for
the set of edges of G that have one endvertex in U and the other in W . We
set e(U,W ) = eG(U,W ) = |E(U,W )|. The following notion will be needed in the
sequel. Suppose 0 ≤ η ≤ 1 and 0 ≤ p ≤ 1. We say that G is η-uniform with
density p if, for all U , W ⊂ V with U ∩W = ∅ and |U |, |W | ≥ ηn, we have∣∣eG(U,W )− p|U ||W |

∣∣ ≤ ηp|U ||W |.
Now let H ⊂ G be a spanning subgraph of G. For U , W ⊂ V with U ∩W = ∅,

let

dH,G(U,W ) =

{
eH(U,W )/eG(U,W ) if eG(U,W ) > 0

0 if eG(U,W ) = 0.

Suppose ε > 0, U , W ⊂ V , and U ∩ W = ∅. We say that the pair (U,W ) is
(ε,H,G)-regular , or simply ε-regular , if for all U ′ ⊂ U , W ′ ⊂ W with |U ′| ≥ ε|U |
and |W ′| ≥ ε|W |, we have

|dH,G(U ′,W ′)− dH,G(U,W )| ≤ ε.

Now let r ≥ 1 spanning subgraphs H1, . . . ,Hr ⊂ G of G be given. The pair (U,W )
is said to be (ε,H1, . . . ,Hr, G)-regular if it is (ε,Hi, G)-regular for all 1 ≤ i ≤ r.

We say that a partition P = (Vi)
k
0 of V = V (G) is (ε, k)-equitable if |V0| ≤ εn,

and |V1| = . . . = |Vk|. Also, we say that V0 is the exceptional class of P . When
the value of ε is not relevant, we refer to an (ε, k)-equitable partition as a k-
equitable partition. Similarly, P is an equitable partition of V if it is a k-equitable
partition for some k. Finally, we say that an (ε, k)-equitable partition P = (Vi)

k
0

of V is (ε,H1, . . . ,Hr, G)-regular , or simply ε-regular , if at most ε
(
k
2

)
pairs (Vi, Vj)

with 1 ≤ i < j ≤ k are not (ε,H1, . . . ,Hr, G)-regular. We can now state the
extension of Szemerédi’s lemma to subgraphs of η-uniform graphs.
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Lemma 1. For given ε > 0 and k0, r ≥ 1, there are constants η = η(ε, k0, r) > 0
and K0 = K0(ε, k0, r) ≥ k0 that depend only on ε, k0, and r for which the following
holds. If G is an η-uniform graph and H1, . . . ,Hr ⊂ G are r spanning subgraphs
of G, then there is an (ε,H1, . . . ,Hr, G)-regular (ε, k)-equitable partition of V =
V (G) with k0 ≤ k ≤ K0. �

Lemma 1 has been observed independently by Rödl [20] and Kohayakawa [16].
We shall not give a proof of this result here since, once the set-up is clear, natural
modifications to the proof in [21] of Szemerédi’s original lemma give Lemma 1.

Now suppose H ⊂ G is a spanning subgraph of a graph G. Let V1, V2, V3 ⊂ V (G)
be three pairwise disjoint sets of vertices, and let ε > 0 be given. In the sequel,
we say that the triple (V1, V2, V3) is an (ε,H,G)-regular triple if all pairs (Vi, Vj)
with 1 ≤ i < j ≤ 3 are (ε,H,G)-regular.

Lemma 2. Let 0 < ε ≤ 1/5 and 0 < ρ ≤ 1 be given, and suppose 0 < η ≤ ε/8.
Let G = Gn be an η-uniform graph, and let J ⊂ G be a spanning subgraph of G.
Suppose (V1, V2, V3) is an (ε, J,G)-regular triple with di,j = dJ,G(Vi, Vj) ≥ ρ for
all 1 ≤ i < j ≤ 3. Moreover, assume |Vi| ≥ (η/ε)n for i ∈ {1, 2, 3}. Then there are
sets V̄i ⊂ Vi (i ∈ {1, 2, 3}) such that∣∣ΓJ(x) ∩ V̄j

∣∣ ≥ (1− 5ε/ρ)di,jeG(Vi, Vj)/|Vi| (1)

for all x ∈ V̄i and j 6= i (i, j ∈ {1, 2, 3}). Moreover, |V̄i| ≥ (1 − 2ε)|Vi| for
all i ∈ {1, 2, 3} and, in particular, (V̄1, V̄2, V̄3) is (2ε, J,G)-regular.

Proof. We first define three sequences of sets Vi = V
(0)
i ⊃ V (1)

i ⊃ · · · (i ∈ {1, 2, 3})
and a sequence of vertices x0, x1, . . . by induction as follows. Put V

(0)
i = Vi

for i ∈ {1, 2, 3}. Now let s ≥ 1 and assume V
(0)
i ⊃ · · · ⊃ V

(s−1)
i (i ∈ {1, 2, 3})

and x0, . . . , xs−2 already defined. If |V (s−1)
i | ≤ (1−2ε)|Vi| for some i ∈ {1, 2, 3}, ter-

minate the sequences. Otherwise, if putting (V̄1, V̄2, V̄3) = (V
(s−1)
1 , V

(s−1)
2 , V

(s−1)
3 )

condition (1) holds for all x ∈ V̄i and all j 6= i (i, j ∈ {1, 2, 3}), then terminate

the sequences. However, if putting (V̄1, V̄2, V̄3) = (V
(s−1)
1 , V

(s−1)
2 , V

(s−1)
3 ) condi-

tion (1) fails for some xs−1 ∈ V (s−1)
is−1

and js−1 6= is−1 (is−1, js−1 ∈ {1, 2, 3}), then

put V
(s)
is−1

= V
(s−1)
is−1

\{xs−1} and V
(s)
i = V

(s−1)
i for i 6= is−1. This completes the def-

inition of the V
(s)
i and of the xs. Suppose we have obtained the sequences

(
V

(s)
i

)t
i=1

(i ∈ {1, 2, 3}). We claim that |V (t)
i | ≥ (1− 2ε)|Vi| for i ∈ {1, 2, 3}.

Assume the contrary, and suppose without loss of generality that |V (t)
1 | ≤ (1 −

2ε)|V1| and |V (t)
i | > (1 − 2ε)|Vi| for i = 2, 3. Then, for any x ∈ V1 \ V (t)

1 , there
are s = sx and j = jx ∈ {2, 3} such that x = xs−1 and∣∣ΓJ(x) ∩ V (t)

j

∣∣ ≤ ∣∣ΓJ(x) ∩ V (s−1)
j

∣∣ < (1− 5ε/ρ)d1,jeG(V1, Vj)/|V1|.

We may assume that there is a set U ⊂ V1 \ V (t)
1 with |U | ≥ |V1 \ V (t)

1 |/2 ≥ ε|V1|
such that, for all x ∈ U , we have |ΓJ(x) ∩ V (t)

2 | ≤ (1 − 5ε/ρ)d1,2eG(V1, V2)/|V1|.
Then

eJ(U, V
(t)
2 ) =

∑
x∈U

∣∣ΓJ(x) ∩ V (t)
2

∣∣ ≤ (1− 5ε/ρ)d1,2|U |eG(V1, V2)/|V1|,
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and hence

dJ,G(U, V
(t)
2 ) ≤ (1− 5ε/ρ)d1,2

|U |
|V1|
· eG(V1, V2)

eG(U, V
(t)
2 )

.

By the η-uniformity of G, we have

eG(U, V
(t)
2 ) ≥ p|U ||V (t)

2 | − ηp|U ||V
(t)
2 | ≥ p(1− η)(1− 2ε)|U ||V2|,

and
eG(V1, V2) ≤ p(1 + η)|V1||V2|.

Therefore

dJ,G(U, V
(t)
2 ) ≤

{
1− 5ε

ρ

}
1 + η

1− η
· d1,2

1− 2ε
<

{
1− 5ε

ρ
+ 4ε

}
d1,2 ≤ d1,2 − ε,

which is a contradiction, as |U | ≥ ε|V1|, |V (t)
2 | ≥ (1 − 2ε)|V2| ≥ ε|V2|, and (V1, V2)

is (ε, J,G)-regular. Thus our claim holds. It follows that, putting (V̄1, V̄2, V̄3) =

(V
(t)
1 , V

(t)
2 , V

(t)
3 ), condition (1) holds for all x ∈ V̄i and all j 6= i (i, j ∈ {1, 2, 3}).

Moreover, since |V̄i| ≥ (1 − 2ε)|Vi| ≥ |Vi|/2 (i ∈ {1, 2, 3}), as a simple argument
shows, (V̄1, V̄2, V̄3) is a (2ε, J,G)-regular triple. �

The following is an easy consequence of Turán’s theorem [22].

Lemma 3. Let an integer α ≥ 1 be given, and suppose H = Hk is a graph of
order k > (α− 1)2 such that e(H) ≤ α−1

(
k
2

)
. Then α(H) ≥ α.

Proof. By Turán’s theorem, if α(H) < α, then e(H) ≥ e(Kk1 ∪ · · · ∪ Kkα−1),
where ki = b(k + i− 1)/(α− 1)c (1 ≤ i < α) and Kk1 ∪ · · · ∪Kkα−1 is the disjoint
union of the Kki (1 ≤ i < α). Therefore, if α(H) < α, we have

e(H) ≥
∑

1≤i<α

(
ki
2

)
≥ (α− 1)

(
k/(α− 1)

2

)
=

k2

2(α− 1)

(
1− α− 1

k

)
>

1

α

(
k

2

)
,

where the last inequality follows from k > (α− 1)2. �

We are now able to state and prove the main lemma of this section, Lemma 4.
This result tells us how to ‘choose’ the colour i in the argument sketched in §1.
Recall that Gn always denotes a graph of order n.

Lemma 4. Let r ≥ 2 and 0 < ε < 1 be given. Then there are constants η =
η(r, ε) > 0 and µ = µ(r, ε) > 0 for which the following holds. Suppose G = Gn

is an η-uniform graph with density p = d/n, and let E(G) = E1 ∪ · · · ∪ Er be an
r-edge-colouring χ of G. Let Gi ⊂ G be the spanning subgraph of G with edge set Ei
(1 ≤ i ≤ r). Then, for some 1 ≤ i = i(G,χ) ≤ r and µ ≤ µ̄ = µ̄(G,χ) ≤ 1, there
are pairwise disjoint sets V̄1, V̄2, V̄3 ⊂ V (G) such that (V̄1, V̄2, V̄3) is an (ε,Gi, G)-
regular triple and, for all a 6= b (a, b ∈ {1, 2, 3}), we have dGi,G(V̄a, V̄b) ≥ 1/r
and

∣∣ΓGi(x) ∩ V̄b
∣∣ ≥ µ̄d/2r for all x ∈ V̄a. Moreover, µ̄n/2 ≤ |V̄i| ≤ µ̄n for

all a ∈ {1, 2, 3}.

Proof. We start by invoking Ramsey’s theorem. Let k1 = Rr(3) be the least
integer R such that any r-edge-coloured complete graph of order R contains a
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monochromatic triangle. Put k0 = Rr(3)2. Let ε′ = min{Rr(3)−1, 1/15r, ε/2}.
Let η = η(ε′, k0, r) > 0 and K0 = K0(ε′, k0, r) ≥ k0 be as given by Lemma 1.
We may clearly assume that η < ε′/2K0. Put µ = 1/2K0. We now check that η
and µ above will do for our lemma. Thus let G = Gn be an η-uniform graph
with density p = d/n, and suppose E(G) = E1 ∪ · · · ∪ Er. Let Gi ⊂ G be the
spanning subgraph of G with E(Gi) = Ei (1 ≤ i ≤ r). We now apply Lemma 1
to G1, . . . , Gr ⊂ G to obtain an (ε′, G1, . . . , Gr, G)-regular (ε′, k)-equitable parti-
tion P = (Vi)

k
1 of V = V (G) with k0 ≤ k ≤ K0. Let µ̄ = |Vj |/n (1 ≤ j ≤ k).

By Lemma 3, for some 1 ≤ j1 < · · · < jk1 ≤ k, all pairs (Vja , Vjb) with 1 ≤
a < b ≤ k1 are (ε′, G1, . . . , Gr, G)-regular. By the choice of k1 = Rr(3), without
loss of generality we may assume that, for some 1 ≤ i ≤ r, the pairs (Vja , Vjb)
with 1 ≤ a < b ≤ 3 are such that dGi,G(Vja , Vjb) ≥ 1/r. We now apply Lemma 2 to
the (ε′, Gi, G)-regular triple (Vj1 , Vj2 , Vj3). Then we obtain V̄a ⊂ Vja (a ∈ {1, 2, 3})
such that µ̄n = |Vja | ≥ |V̄a| ≥ (1− 2ε′)|Vja | ≥ |Vja |/2 = µ̄n/2 and, moreover, such
that for all x ∈ V̄a and b 6= a (a, b ∈ {1, 2, 3}), we have

∣∣ΓGi(x) ∩ V̄b
∣∣ ≥ (1− 5ε′r)

eG(Va, Vb)

r|Va|
≥ (1− 5ε′r)(1− η)p|Vb|/r ≥ µ̄d/2r.

Finally, since ε′ ≤ ε/2, the triple (V̄1, V̄2, V̄3) is (ε,Gi, G)-regular. �

For convenience, we introduce the following simple definition. Let J be a bipar-
tite graph with a fixed bipartition, say V (J) = X ∪Y . Then, we shall say that J is
a (b, f)-expander , and that it is (b, f)-expanding , if for all U ⊂ X and U ⊂ Y such
that |U | ≤ b we have |ΓJ(U)| ≥ f |U |. Also, if G is a graph and U , W ⊂ V (G) are
such that U ∩W = ∅, then we write G[U,W ] for the bipartite subgraph of G with
vertex classes U , W and with edge set E(U,W ) = EG(U,W ). Lemma 5 below tells
us that the colour i and the triple (V̄1, V̄2, V̄3) given by Lemma 4 determine three
expanding bipartite graphs Gi[V̄a, V̄b] (1 ≤ a < b ≤ 3). To prove this, however, we
need to introduce another uniformity condition for graphs.

Let G = Gn be a graph of order n, and suppose A > 0 and 0 ≤ p ≤ 1. Let d = pn.
We say that G is (p,A)-upper-uniform if, for all sets U , W ⊂ V (G) with U ∩W = ∅
and 1 ≤ |U | ≤ |W | ≤ d|U |, we have

eG(U,W ) ≤ p|U ||W |+A{d|U ||W |}1/2. (2)

Moreover, if for all such U , W ⊂ V (G) we have∣∣eG(U,W )− p|U ||W |
∣∣ ≤ A{d|U ||W |}1/2,

we say that G is (p,A)-uniform.

Lemma 5. Let r ≥ 2 and 0 < ε < 1 be given. Let η = η(r, ε) > 0 and µ =
µ(r, ε) > 0 be as in Lemma 4, and suppose that G = Gn is an η-uniform graph
with density p = d/n and that E(G) = E1 ∪ · · · ∪ Er is an r-edge-colouring of G.
Let 1 ≤ i ≤ r, µ̄ ≥ µ, and (V̄1, V̄2, V̄3) be as in Lemma 4, and let J be the spanning
subgraph of G with E(Gi) = Ei. Put Ja,b = J [V̄a, V̄b] for all 1 ≤ a < b ≤ 3. Then,
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if G is (p,A)-upper-uniform for some A ≥ 1, every Ja,b is (µ̄n/3rf, f)-expanding
for any 0 < f ≤ (µ̄/6Ar)2d.

Proof. Fix a 6= b (a, b ∈ {1, 2, 3}), and put J̃ = Ja,b. Suppose σ ∈ {a, b} and 0 <
f ≤ (µ̄/6Ar)2d. Let U ⊂ Vσ with u = |U | ≤ µ̄n/3rf be fixed. Now let W = ΓJ̃(U),
and suppose for a contradiction that w = |W | < f |U |. Then

µ̄

2r
du ≤ eJ̃(U,W ) ≤ eG(U,W ) ≤ puw +A(duw)1/2 ≤ µ̄

3r
du+A(duw)1/2,

and hence µ̄du/6r ≤ A(duw)1/2. Therefore |W | = w ≥ (µ̄/6Ar)2du ≥ f |U |, which
is a contradiction. �

2.2. Random Graphs. Given α, δ > 0, we say that a graph G = Gn is (α, δ)-
locally sparse if, for all U ⊂ V (G) with |U | ≤ αn, we have e(G[U ]) ≤ (1 + δ)|U |.
The following lemma may be found in  Luczak [17].

Lemma 6. Let d > 1 be fixed, and consider the random graph Gp = Gn,p ∈ G(n, p)
where p = p(n) = d/n. Then for any fixed δ > 0 there is a constant α = α(d, δ) > 0
such that almost every Gp is (α, δ)-locally sparse. �

The following is immediate from standard estimates for tails of the binomial
distribution.

Lemma 7. Let 0 < η < 1 be given, and consider the random graph Gp = Gn,p ∈
G(n, p) with 0 < p = p(n) < 1. Put d = d(n) = np(n). Then, there is a con-
stant d0 = d0(η) such that, if d ≥ d0, almost every Gp is η-uniform with den-
sity p. �

We now verify that random graphs satisfy the rather strong uniformity condition
defined just before Lemma 5.

Lemma 8. Let d = d(n) > 0 be given, and put p = p(n) = d/n. Then a.e. Gp =
Gn,p ∈ G(n, p) is (p, e2

√
6)-uniform.

Proof. We may clearly assume that d ≥ 1. Let F = {(U,W ) : U, W ⊂ V =
V (Gp), 1 ≤ |U | ≤ |W | ≤ d|U |, U ∩ W = ∅}. In what follows, we shall always
have (U,W ) ∈ F , and |U | = u, |W | = w. We set

Pu,w = P (U,W ) = P
[∣∣eGp(U,W )− p|U ||W |

∣∣ > A{d|U ||W |}1/2
]
.

Our aim is to show that E =
∑

(U,W )∈F P (U,W ) = o(1) as n → ∞. Let us

put µ = µ(U,W ) = puw, b = b(U,W ) = A{duw}1/2, and η = η(U,W ) = b/µ =
An(duw)−1/2. Let F1 = {(U,W ) ∈ F : η ≤ e2}, F2 = F \ F1, and set Ei =∑

(U,W )∈Fi P (U,W ) (i = 1, 2). We now claim that Ei = o(1) for both i = 1 and 2.

(1) We have E1 = o(1).

Suppose (U,W ) ∈ F1. We claim that P (U,W ) ≤ 2 exp{−(A2/3e4)n}. To check
this claim, let us first assume that η = η(U,W ) ≤ 1. Then η2µ = A2n, and
hence P (U,W ) ≤ 2 exp{−(A2/3)n} by Hoeffding’s inequality [14] (see also McDi-
armid [18]), and our claimed estimate for P (U,W ) follows in this case. Suppose
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now that 1 ≤ η ≤ e2. Then, again by Hoeffding’s inequality, we have P (U,W ) ≤
P(e(U,W ) > 2µ) ≤ exp{−µ/3}. Note that b/µ = η ≤ e2 gives that µ ≥ b/e2 =
(A/e2)(duw)1/2. Also, we have An(duw)−1/2 = η ≤ e2, and therefore (duw)1/2 ≥
(A/e2)n. Thus µ ≥ (A2/e4)n, and P (U,W ) ≤ exp{−(A2/3e4)n}, as required. The
upper bound for E1 now follows easily. Indeed,

E1 =
∑

(U,W )∈F1

P (U,W ) ≤ 2× 4n exp

{
−A

2

3e4
n

}
= o(1).

(2) We have E2 = o(1).

Suppose (U,W ) ∈ F2. Then P (U,W ) = P(e(U,W ) > µ + b) ≤ P(e(U,W ) > b).
Let v be such that b = evµ/ log v. Then ev/ log v = b/µ = η ≥ e2, and hence we
may suppose v ≥ e. Also, we have evµ/ log v = b ≥ 1 ≥ e/v, and so v2µ ≥ log v.
Thus Pu ≤ P(e(U,W ) ≥ b) ≤ exp{−vµ} (see Theorem 7(ii) in Chapter I of [5]).
Now, we have vµ = (b/e) log v ≥ (A/e)(duw)1/2(log v) ≥ (A/e)(duw)1/2. Thus v ≥
(A/e)n(duw)−1/2, and so vµ ≥ (A/e)(duw)1/2 log{(A/e)n(duw)−1/2}. Therefore

P (U,W ) ≤ exp{−vµ} ≤
(

e(duw)1/2

An

)(A/e)(duw)1/2

. (3)

Recall that u ≤ w ≤ du, and so, setting r = u+w, we have (duw)1/2 ≥ dr/(d+1) ≥
r/2. Now let x = e/η = e(duw)1/2/An, and note that then 0 < x ≤ 1/e, and
that (3) states that P (U,W ) ≤ xBx, where B = (A/e)2n. Since xx is decreasing
for 0 < x ≤ 1/e, we have from (3) that P (U,W ) ≤ {(e/2A)(r/n)}(A/2e)r. Thus(

n

r

)
P (U,W ) ≤

(en

r

)r ( er

2An

)(A/2e)r
=

(
en

r

( er

2An

)A/2e)r
≤
( r

4n

)r
. (4)

For 1 ≤ s ≤ n and 1 ≤ t ≤ n − s, let Ps,t = P (S, T ), where S, T ⊂ V are such
that S ∩ T = ∅, and |S| = s, |T | = t. Then we have E2 =

∑
(U,W )∈F2

P (U,W ) =∑∗ (n
r

)(
r
u

)
Pu,r−u, where

∑∗
denotes sum over all 2 ≤ r ≤ n and 1 ≤ u ≤ r/2 such

that w = r − u ≤ du and η = η(U,W ) ≥ e2. Thus, by (4), we have that E2 is at
most ∑∗

(
r

u

)( r

4n

)r
≤

∑
2≤r≤n

( r

2n

)r
≤ 2n−2 = o(1),

as required.

Thus E = E1 + E2 = o(1), and the proof is complete. �

2.3. Definition of G = Gr. In this section we define our graph G that has the
Ramsey property for long induced cycles. Throughout this section, an integer r ≥ 2
is fixed. We now define some numerical constants that depend solely on r. Put ε =
1/48r, and let η = η(r) = η(r, ε) > 0 and µ = µ(r) = µ(r, ε) > 0 be as given
in Lemma 4. We may assume that µ ≤ ε. Put δ = 1/140. Fix D = D(r) ≥
8 × 105(r/µ)2 such that Gp = GN,p ∈ G(N, p) is (η/2)-uniform with density p =
D/N with probability 1 − o(1) as N → ∞ (cf. Lemma 7). Let α = α(D, δ) >
0 be such that Gp is (α, δ)-locally sparse with probability 1 − o(1) as N → ∞
(cf. Lemma 6). Clearly, we may assume that α ≤ µ. Let f0 = 16 and f = 2.
Let γ = α/24µ, and β = γ/D. Also, put b = βµ/6 and γ0 = βµ/20. Finally,
set g = 2blogf (ε/γ0)c+ 1, and B = 2/ log f .
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Lemma 9. Let an integer r ≥ 2 be fixed, and let η = η(r) > 0, δ = 1/140, D =
D(r), α = α(D, δ) > 0, and g = g(r) be as defined above. Put d = D/2. Then, for
any sufficiently large n ≥ 1, there is a graph G = Gr = Gnr such that (i) the maximal
degree ∆(G) of G is at most 8d, (ii) G is η-uniform with density p = d/n, (iii) G is
(p, e22

√
3)-upper uniform, (iv) G is (α, δ)-locally sparse, (v) G has girth g(G) > g.

Proof. Put N = 2n, and note that p = d/n = D/N . We consider Gp = GN,p ∈
G(N, p) and show that, with probability 1−o(1) as n→∞, a suitable subgraph G ⊂
Gp will do. By Markov’s inequality, the degree d(x) of a fixed vertex x ∈ Gp is such
that P(d(x) > 4D) < 1/4. Thus, the expectation E(X) of the number X = X(Gp)
of vertices x ∈ Gp with d(x) > 4D is less than N/4. Again by Markov’s inequality,
we have P(X ≥ N/2) < 1/2. Now let Zj = Zj(Gp) be the number of cycles of
length j in Gp (j ≥ 3), and let Z =

∑
3≤j≤g Zj . Then

E(Z) =
∑

3≤j≤g

E(Zj) =
∑

3≤j≤g

(
N

j

)
(j − 1)!

2
pj ≤

∑
3≤j≤g

Dj

2j
≤ 2Dg

3g
.

Thus P(Z ≥ 2Dg/g) ≤ 1/3. Recall that by the choice of D and α, we have with
probability 1− o(1) as N →∞ that Gp is (η/2)-uniform, (p, e2

√
6)-upper-uniform,

and (α, δ)-locally-sparse. Let N = 2n be large enough and fix a Gp satisfying these
three properties, and such that X = X(Gp) ≤ N/2 and Z = Z(Gp) ≤ 2Dg/g. We
now let G′ ⊂ Gp be an n-vertex induced subgraph of Gp such that ∆(G′) ≤ 8d, and
omit at most 2Dg/g edges from G′ to obtain a graph G of girth g(G) > g. We claim
that G will do. Clearly (i), (iv), and (v) of our lemma hold. Property (iii) holds as
well, since the error term in (2) for Gp is e2

√
6{D|U ||W |}1/2 = e22

√
3{d|U ||W |}1/2.

Finally, to check (ii), it suffices to recall that at most 2Dg/g = O(1) edges have
been omitted from G′. �

The graph G = Gr whose existence is guaranteed by Lemma 9 has the Ramsey
property for long induced cycles, as asserts our first main result below.

Theorem 10. Let an integer r ≥ 2 be fixed. The graph G = Gr = Gnr in Lemma 9
has the property that, for any r-edge-colouring of G, there is a colour c such that G
contains a monochromatic induced cycle C` of colour c for all B log n ≤ ` ≤ bn,

where B = B(r) > 0 and b = b(r) > 0 is as defined above. In particular, G
ind−→(C`)r

for all such `.

An immediate consequence of Theorem 10 is the following.

Corollary 11. For any fixed r ≥ 2, the induced size-Ramsey number rinde (C`)
of the `-cycle C` is at most c`, where c = cr > 0 is a constant that depends only
on r. �

§3. Proof of Theorem 10

3.1. Preparations for the proof. Let an integer r ≥ 2 be fixed, and assume the
constants ε, η, µ, δ, α, f0, f , γ, γ0, β, b, B, and g are as defined in Section 2.3.
Let a graph G = Gn satisfying (i)–(v) of Lemma 9 be given, and assume E(G) =
E1 ∪ · · · ∪ Er is an r-edge-colouring of G. Let i, µ̄, and V̄1, V̄2, V̄3 ⊂ V (G) be as
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in Lemma 4. Let Gi be the spanning subgraph of G with edge set Ei. Let m̄ = µ̄n
and m = dµne. Recall that m̄/2 ≤ |V̄i| ≤ m̄ (i ∈ {1, 2, 3}). We now concentrate
on the 3-partite graph J defined by Gi and the three vertex classes V̄1, V̄2, V̄3.
Formally, J = Gi[V̄1, V̄2] ∪Gi[V̄2, V̄3] ∪Gi[V̄1, V̄3].

Lemma 12. Let 1 ≤ i < j ≤ 3, and put J̃ = J [V̄i, V̄j ]. Then the graph J̃ is
(εm̄, f0)-expanding.

Proof. We use Lemma 5. Recall that G is (p,A)-upper-uniform for A = 2e2
√

3.
Also, by the definition ofD, we have that f0 = 16 ≤ (µ/12re2

√
3)2D/2 ≤ (µ̄/6Ar)2d.

Moreover, as ε = 1/48r, we have εm̄ = µ̄n/3rf0. Thus Lemma 5 gives that J̃ is
(εm̄, f0)-expanding, as required. �

Define a function ϕ = ϕf : Z+ → Z by putting ϕ(0) = 1 and ϕ(n) = dfϕ(n−1)e
for all n ≥ 1. Let L = 2 min{k : ϕ(k − 1) ≥ εm̄}. The starting point of the proof
of Theorem 10 is the following lemma.

Lemma 13. The graph J contains an induced (L + 1)-cycle that is also induced
in G.

We shall not give a full proof for Lemma 13, although we shall make detailed
comments in Section 3.5 on how one may alter a few steps in the arguments below
to prove this lemma. We now fix an induced cycle C0 of J that is also induced
in G, and assume that C0 has length L + 1 ≤ ` < bn. Our aim is to construct an
induced cycle C ′ of J that is also induced in G, and whose length is ` + 1. If we
show that this is possible, we shall have proved Theorem 10.

Suppose the vertices of C0 are, in cyclic order, x1, . . . , x`. In the sequel, if x ∈ V̄i
for some i ∈ {1, 2, 3}, we let Γ+

J′(x) = ΓJ′(x) ∩ V̄i+1 and Γ−J′(x) = ΓJ′(x) ∩ V̄i−1,
where the indices of the V̄i are considered reduced modulo 3.

Lemma 14. There is a set X ⊂ V (C0) with |X| ≥ (1 − 14δ)|C0| satisfying the
following. We may choose y+i ∈ Γ+

J′(xi) and y−i ∈ Γ−J′(xi) for all xi ∈ X in such a

way that, if Y = {y+i , y
−
i : xi ∈ X}, all vertices in Y have degree 1 in G[V (C0)∪Y ].

Proof. For each 1 ≤ i ≤ `, let us pick y+i ∈ Γ+
J′(xi) arbitrarily, and let us consider

the graph G[V (C0) ∪ Y +
1 ], where Y +

1 = {y+i : 1 ≤ i ≤ `}. Let

Y +
b = {y+i : the degree of y+i in G[V (C0) ∪ Y +

1 ] is at least 2},

X+
b = V (C0) ∩ ΓG(Y +

b ), and X+
g = V (C0) \ ΓG(Y +

b ). Note that all vertices y+i
with xi ∈ X+

g have degree 1 in G[V (C0) ∪ Y +
1 ]. We show that X+

g is nearly all

of V (C0). We have e(G[V (C0) ∪ Y +
b ]) ≥ (3/2)|X+

b |+ |X+
g |+ |Y +

b |. Since |V (C0) ∪
Y +
b | ≤ 2bn ≤ αn, we conclude that

2δ|C0| ≥ δ(|C0|+ |Y +
b |) ≥ e(G[V (C0) ∪ Y +

b ])− |V (C0) ∪ Y +
b | ≥

1

2
|X+

b |.

Thus |X+
g | ≥ (1− 4δ)|C0|. We now pick y−i ∈ Γ−J′(xi) for all 1 ≤ i ≤ ` arbitrarily,

and repeat the argument above. In this way we obtain X−g ⊂ V (C0) with |X−g | ≥
(1−4δ)|C0| such that all vertices y−i with xi ∈ X−g have degree 1 in G[V (C0)∪Y −1 ],

where Y −1 = {y−i : 1 ≤ i ≤ `}.
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We now consider Xg = X+
g ∩ X−g , Y +

g = {y+i : xi ∈ Xg}, and Y −g = {y−i :

xi ∈ Xg}. Clearly |Y +
g | = |Y −g | = |Xg| ≥ (1 − 8δ)|C0|. Moreover, since |V (C0) ∪

Y +
g ∪ Y −g | ≤ 3bn ≤ αn, we have that eG(Y +

g , Y
−
g ) ≤ δ|V (C0) ∪ Y +

g ∪ Y −g | ≤
3δ|C0|. Therefore, disregarding all vertices in Y +

g ∪ Y −g that are incident to Y +
g –

Y −g edges of G, we see that there is a set X ⊂ V (C0) with |X| ≥ (1 − 14δ)|C0|
satisfying the following: if Y + = {y+i : xi ∈ X} and Y − = {y−i : xi ∈ X}, then
in G[V (C0) ∪ Y + ∪ Y −] every vertex in Y + ∪ Y − has degree 1. �

In the sequel, we fix a set X ⊂ V (C0) together with vertices y+i , y−i for all xi ∈ X,
as given by Lemma 14. Also, we let Y + = {y+i : xi ∈ X}, Y − = {y−i : xi ∈ X},
and Y = Y + ∪ Y −, and put Q0 = V (C0) ∪ Y . For simplicity, below we consider
the indices of the vertices xi, y

+
i , and y−i reduced modulo ` = |C0|.

Recall L = 2 min{k : ϕ(k − 1) ≥ εm̄}. Suppose we are given a set Q ⊂ V (J)
with Q∩Q0 = ∅ and G[Q0 ∪Q] connected. We say that xi ∈ X is a Q-good vertex,
or simply a good vertex, if both y+i and y−i have degree 1 in G[Q0 ∪Q]. Moreover,
we say that (xi, xi+L) ∈ X×X is a Q-good pair , or a good pair , if both xi and xi+L
are good.

Now suppose (x
(1)
0 , x

(2)
0 ) = (xi, xi+L) is a good pair. Fix x

(1)
1 ∈ {y−i , y

+
i }

and x
(2)
1 ∈ {y−i+L, y

+
i+L} in such a way that x

(1)
1 ∈ V̄ρ(1), x

(2)
1 ∈ V̄ρ(2), and ρ(1) 6=

ρ(2). Thus, given Q as above and a Q-good pair (x
(1)
0 , x

(2)
0 ), we have associated to

this pair a certain pair (x
(1)
1 , x

(2)
1 ) of vertices that belong to different vertex classes

of J . For brevity, we put ΦQ(x
(1)
0 , x

(2)
0 ) = (x

(1)
1 , x

(2)
1 ).

3.2. Main Iterative Part of the Enlarging Algorithm. To run this part
of the ‘enlarging’ algorithm (cf. §1), we assume that we have the following set-up.
First of all, we suppose that we have a set Q ⊂ V (J ′) disjoint from Q0 = V (C0)∪Y
and with G[Q0 ∪Q] connected. We remark in passing that, when this part of our
algorithm is first run, we have Q = ∅. Typically, however, we run this part of
the algorithm many times, and every time we do so we update the set Q to a
slightly larger set. Now, continuing with the description of our set-up, besides Q,

we assume that we have a Q-good pair (x
(1)
0 , x

(2)
0 ), and (x

(1)
1 , x

(2)
1 ) = ΦQ(x

(1)
0 , x

(2)
0 ).

Let ρ(1), ρ(2) be such that x
(σ)
1 ∈ V̄ρ(σ) (σ ∈ {1, 2}). Put J̃ = J ′[V̄ρ(1), V̄ρ(2)], and

let X
(σ)
0 = {x(σ)0 } and X

(σ)
1 = {x(σ)1 } (σ ∈ {1, 2}).

Given the set-up above, we aim at defining sets X
(1)
2 , . . . , X

(1)
k , X

(2)
2 , . . . , X

(2)
k ⊂

V (G) satisfying the following properties:

(i) ΓJ̃(X
(σ)
i−1) ⊃ X(σ)

i for all 2 ≤ i ≤ k and σ ∈ {1, 2}.
(ii) |X(σ)

i | = df |X
(σ)
i−1|e for all 2 ≤ i ≤ k and σ ∈ {1, 2}.

(iii) The X
(σ)
i (2 ≤ i ≤ k, σ ∈ {1, 2}) are pairwise disjoint and disjoint from Q0∪

Q.

(iv) The only edges induced by Q0 ∪ Q ∪
⋃
X

(σ)
i in G, where the union ranges

over σ ∈ {1, 2} and 2 ≤ i ≤ k, are the ones in

E(G[Q0 ∪Q]) ∪
⋃

σ∈{1,2}, 2≤i≤k

{
E(G[X

(σ)
i ]) ∪ EG(X

(σ)
i−1, X

(σ)
i )

}
.

(v) |X(σ)
k′ | < γm for 0 ≤ k′ < k and |X(σ)

k | ≥ γm for σ ∈ {1, 2}.
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S
(1)
k′−1 :=

(
X

(1)
2 ∪ · · · ∪X(1)

k′−1

)
∪
(
X

(2)
2 ∪ · · · ∪X(2)

k′−1

)
;

A := ΓJ̃(X
(1)
k′−1) \X(1)

k′−2; B := ΓG

{
(Q0 ∪Q ∪ S(1)

k′−1) \X(1)
k′−1

}
;

if |A \B| ≥ f |X(1)
k′−1|

then return X
(1)
k′ ⊂ A \B with |X(1)

k′ | = df |X
(1)
k′−1|e

else return Q̃(1) := S
(1)
k′−1 and Q̃(2) ⊂ A ∩B

with |Q̃(2)| = df |X(1)
k′−1|e and report failure

Figure 1. Algorithm I

However, starting with a particular Q-good pair (x
(1)
0 , x

(2)
0 ), we may fail to find

such sets X
(σ)
i (2 ≤ i ≤ k, σ ∈ {1, 2}). In this case, we shall find a pair of sets Q̃(1),

Q̃(2) satisfying the following properties:

(i) Q̃(1) ∩ Q̃(2) = ∅, and Q̃ = Q̃(1) ∪ Q̃(2) is disjoint from Q0 ∪Q.

(ii) |Q̃(2)| ≥ {(f − 1)/2f}|Q̃|.
(iii) G[Q0∪Q∪Q̃] is connected and e(G[Q0∪Q∪Q̃]) ≥ e(G[Q0∪Q])+|Q̃|+|Q̃(2)|.

We now describe the algorithms that we shall use to generate the sets X
(σ)
i or,

failing that, the sets Q̃(1), Q̃(2). Assume first that k′ ≥ 2, and that we have already

found the sets X
(σ)
i (2 ≤ i ≤ k′ − 1, σ ∈ {1, 2}) satisfying (i)–(iv) with k replaced

by k′ − 1. The algorithm that we use to generate X
(1)
k′ is given in Figure 1.

Assume Algorithm I has returned X
(1)
k′ . Then ΓJ̃(X

(1)
k′−1) ⊃ X

(1)
k′ , |X(1)

k′ | =

df |X(1)
k′−1|e, X

(1)
k′ is disjoint from X

(σ)
i (2 ≤ i ≤ k′ − 1, σ ∈ {1, 2}) and disjoint

from Q0 ∪ Q, the only edges of G that are both incident to a vertex in X
(1)
k′ and

to a vertex in Q0 ∪ Q ∪
⋃
X

(σ)
i , where the union ranges over 2 ≤ i ≤ k′ − 1

and σ ∈ {1, 2}, are the ones in EG(X
(1)
k′−1, X

(1)
k′ ). Now we may run Algorithm II in

Figure 2 to generate X
(2)
k′ , or else to find appropriate Q̃(1), Q̃(2).

S
(2)
k′−1 := S

(1)
k′−1 ∪X

(1)
k′ ;

A := ΓJ̃(X
(2)
k′−1) \X(2)

k′−2; B := ΓG

{
(Q0 ∪Q ∪ S(2)

k′−1) \X(2)
k′−1

}
;

if |A \B| ≥ f |X(2)
k′−1|

then return X
(2)
k′ ⊂ A \B with |X(2)

k′ | = df |X
(2)
k′−1|e

else return Q̃(1) := S
(2)
k′−1 and Q̃(2) ⊂ A ∩B

with |Q̃(2)| = df |X(2)
k′−1|e and report failure

Figure 2. Algorithm II

A quick inspection gives the following.

Lemma 15. Suppose the sets X
(σ)
k′′ (1 ≤ k′′ < k′, σ ∈ {1, 2}) satisfy conditions

(i)–(iv) above with k replaced by k′ − 1, and that running Algorithm I and II we
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obtain X
(σ)
k′ (σ ∈ {1, 2}). Then conditions (i)–(iv) hold with k replaced by k′. �

Now assume that either Algorithm I or Algorithm II has failed to generate X
(1)
k′

or X
(2)
k′ , respectively. Thus we have defined a certain pair of sets Q̃(1), Q̃(2).

Lemma 16. Statements (i)–(iii) above hold for Q̃(1), Q̃(2).

Proof. Let us assume that Q̃(1), Q̃(2) have been generated by Algorithm II. The case
in which they are generated by Algorithm I is similar, and therefore omitted. Start

by noticing that Q̃(1)∩Q̃(2) = ∅, since Q̃(1) = S
(2)
k′−1, Q̃(2) ⊂ A = ΓJ̃(X

(2)
k′−1)\X(2)

k′−2,

and the only edges of J̃ incident to X
(2)
k′−1 have their other endvertex either in X

(2)
k′−2

or outside Q0 ∪Q ∪ S(2)
k′−1. This last fact also implies that A ∩ (Q0 ∪Q) = ∅ and,

since Q̃(1) = S
(2)
k′−1 is also disjoint from Q0 ∪ Q, we have that Q̃ ∩ (Q0 ∪ Q) =

∅. Thus (i) follows. We now check (ii). Here we use that the sets X
(σ)
i grow

geometrically with i, and that, by Lemma 12, the set A = ΓJ̃(X
(2)
k′−1) \ X(2)

k′−2

has cardinality |A| ≥ 2f |X(2)
k′−1|. Note that the latter fact implies that |A ∩ B| >

f |X(2)
k′−1|, since we have |A\B| < f |X(2)

k′−1|. Thus we may indeed find Q̃(2) ⊂ A∩B
with |Q̃(2)| = df |X(2)

k′−1|e, as required in Algorithm II. Now, we have |Q̃(1)| =

|S(2)
k′−1| ≤ (2/(1 − 1/f) − 1)|X(1)

k′ |. Thus Q̃ = Q̃(1) ∪ Q̃(2) has cardinality |Q̃| ≤
{(f + 1)/(f − 1)}|X(1)

k′ |+ |Q̃(2)| = {(f + 1)/(f − 1) + 1}|Q̃(2)| = {2f/(f − 1)}|Q̃(2)|,
as required.

We now turn to (iii). First recall that G[Q0 ∪ Q] is connected, and note that,

clearly, G[Q0∪Q∪Q̃(1)] is also connected. It now suffices to notice that each vertex

of Q̃(2) sends at least two edges into Q0∪Q∪Q̃(1): if w ∈ Q̃(2), then w sends an edge

into X
(2)
k′−1 since w ∈ ΓJ̃(X

(2)
k′−1), and w sends an edge into (Q0 ∪Q∪ Q̃(1)) \X(2)

k′−1

since w ∈ B = ΓG

{
(Q0 ∪Q ∪ S(2)

k′−1) \X(2)
k′−1

}
. Thus (iii) follows. �

We shall run Algorithms I and II alternately until we either have obtained the

sets X
(σ)
i (1 ≤ i ≤ k, σ ∈ {1, 2}) satisfying (i)–(v) above, or else we have found

the sets Q̃(1), Q̃(2) satisfying (i)–(iii). Algorithm III given in Figure 3 makes this
precise. Recall C0 and Y are fixed. Let Q ⊂ V (G) be such that Q ∩ Q0 = ∅
and G[Q0 ∪ Q] is connected. Now let (x

(1)
0 , x

(2)
0 ) be a Q-good pair. We may now

run Algorithm III with this input.

3.3. Part I of the Enlarging Algorithm. We now consider the two possible

outcomes of Algorithm III, namely, either we have generated sets X
(σ)
i (1 ≤ i ≤ k,

σ ∈ {1, 2}) or else we have generated the sets Q̃(1), Q̃(2). If the latter happens, we

let Q̄ = Q ∪ Q̃, we then look for a Q̄-good pair of vertices (x̄
(1)
0 , x̄

(2)
0 ) in C0, and

we run Algorithm III with Q̄ and (x̄
(1)
0 , x̄

(2)
0 ). If, on the other hand, Algorithm III

succeeds in finding the sets X
(σ)
i , we then run Algorithm IV given below. Thus,

roughly speaking, we run Algorithm III several times until it returns the sets X
(σ)
i .

We make this precise in Algorithm IV, given in Figure 4. To run this algorithm,
we only assume that C0 has been fixed at the beginning. The main lemma in this
section is the following.
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(x
(1)
1 , x

(2)
1 ) := ΦQ(x

(1)
0 , x

(2)
0 );

X
(1)
0 := {x(1)0 }; X

(2)
0 := {x(2)0 }; X

(1)
1 := {x(1)1 }; X

(2)
1 := {x(2)1 };

k := 1;
repeat k := k + 1;

run Algorithm I to generate X
(1)
k ;

if succeeded in generating X
(1)
k

then run Algorithm II to generate X
(2)
k

until have |X(1)
k |, |X

(2)
k | ≥ γm

or else Algorithm I or Algorithm II reported failure;

if obtained |X(1)
k |, |X

(2)
k | ≥ γm

then return X
(1)
0 , . . . , X

(1)
k , X

(2)
0 , . . . , X

(2)
k

else return Q̃(1), Q̃(2) given by the algorithm that failed

Figure 3. Algorithm III

let X, Y as in Lemma 14 be fixed;
Q0 := V (C0) ∪ Y ; Q := ∅;
repeat

(*) find a Q-good pair (x
(1)
0 , x

(2)
0 );

run Algorithm III to obtain the X
(σ)
i or Q̃(1), Q̃(2);

if Algorithm III has failed then Q := Q ∪ Q̃(1) ∪ Q̃(2)

until Algorithm III returns X
(σ)
i (0 ≤ i ≤ k, σ ∈ {1, 2});

return the X
(σ)
i

Figure 4. Algorithm IV

Lemma 17. Algorithm IV finds Q ⊂ V (J ′), a Q-good pair of vertices (x
(1)
0 , x

(2)
0 ),

(x
(1)
1 , x

(2)
1 ) = ΦQ(x

(1)
0 , x

(2)
0 ), and sets X

(σ)
i (0 ≤ i ≤ k, σ ∈ {1, 2}) with X

(σ)
0 =

{x(σ)0 }, X
(σ)
1 = {x(σ)1 } (σ ∈ {1, 2}) and such that (i)–(v) hold.

To prove Lemma 17, it suffices to show that, in any iteration of the repeat

loop in Algorithm IV, a Q-good pair of vertices (x
(1)
0 , x

(2)
0 ) as required in (*) may

always be found. We now proceed to prove this. Thus, let us assume that this loop
has been iterated j ≥ 0 times and that, in these j calls of Algorithm III, we have

failed to generate the X
(σ)
i . Let Q

(1)
j′ , Q

(2)
j′ be the sets returned by Algorithm III

in the j′th call (1 ≤ j′ ≤ j). Put Qj′ = Q
(1)
j′ ∪ Q

(2)
j′ for all 1 ≤ j′ ≤ j, and

let Q =
⋃

1≤j′≤j Qj′ . Also, let Q(σ) =
⋃

1≤j′≤j Q
(σ)
j′ (σ ∈ {1, 2}). We now prove

two auxiliary lemmas, Lemmas 18 and 19.

Lemma 18. For all 1 ≤ j′ ≤ j, we have |Qj′ | < (α/2)n.

Proof. Fix 1 ≤ j′ ≤ j, and suppose that, for some k′ ≥ 2, in the j′th call of

Algorithm III we generated X
(σ)
0 , . . . , X

(σ)
k′−1 (σ ∈ {1, 2}) and X

(1)
k′ , but failed to
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generate X
(2)
k′ . Then, for σ ∈ {1, 2},

|Qj′ | =

∣∣∣∣∣∣
⋃

σ′∈{1,2}, 2≤k′′<k′
X

(σ′)
k′′

∣∣∣∣∣∣+ |X(1)
k′ |+ |Q

(2)
j′ | ≤

(
2

1− 1/f
+ 2(f + 1)

)
|X(σ)

k′−1|.

Therefore, if |Qj′ | ≥ (α/2)n, we have

|X(σ)
k′−1| ≥

f − 1

2(f2 + f − 1)
|Qj′ | ≥

α(f − 1)n

4(f2 + f − 1)
≥ γm,

which is a contradiction. The case in which Algorithm III generates X
(σ)
0 , . . . , X

(σ)
k′−1

(σ ∈ {1, 2}) but fails to generate X
(1)
k′ for some k′ ≥ 2 can be dealt with simi-

larly. �

Lemma 19. Let 1 ≤ j′ ≤ j and set Q′ = Q1 ∪ · · · ∪ Qj′ . Then G[Q0 ∪ Q′] is

connected and e(G[Q0 ∪Q′]) ≥ |Q0 ∪Q′|+
∣∣⋃

1≤j′′≤j′ Q
(2)
j′′

∣∣.
Proof. This follows from property (iii) satisfied by the Q̃(1), Q̃(2) generated by
Algorithms I and II, and a simple induction on j′. �

Recall we are assuming that the repeat loop of Algorithm IV has been run j

times, and that we have so far failed to generate the X
(σ)
i . Moreover, Q =⋃

1≤j′≤j Qj′ is the union of the Q̃(1), Q̃(2) obtained by Algorithm IV in those j calls

of Algorithm III. We now consider G[Q0 ∪Q]. We let Xj ⊂ X be the set of Q-good

vertices of C0. We aim at showing that there is a Q-good pair (x
(1)
0 , x

(2)
0 ) ∈ Xj×Xj .

An easy counting argument shows that such a pair does indeed exist if |Xj | > |C0|/2.

Lemma 20. We have |Xj | > |C0|/2.

Proof. Let xi ∈ C0 be an ∅-good vertex that is not Q-good. Then by definition
either y+i or y−i has degree at least 2 in G[Q0 ∪Q]. Note that this may be the case

either because (a) xi belonged to a good pair (x
(1)
0 , x

(2)
0 ) in one of the j iterations

of the repeat loop of Algorithm IV, or else because (b) although it never belonged

to such a pair, a vertex in Q(2) =
⋃

1≤j′≤j Q
(2)
j′ is adjacent to y+i or y−i in G. Let us

say that xi ∈ X \Xj has been used if (a) above holds, and that xi has been spoilt
if (b) above holds.

Clearly, the number of used vertices xi in X \Xj is 2j. Let s be the number of
vertices xi ∈ X \ Xj that have been spoilt. Then |X| = 2j + s + |Xj |. We now
analyse two cases.

Case 1. We have |Q0 ∪Q| > αn.

In this case, let j0 = max{j′ : |Q0 ∪ · · · ∪Qj′ | ≤ αn}, and let Q′ = Q1 ∪ · · · ∪Qj0 .
If |Q′| ≥ 3bn, then |Q′| ≥ |Q0|, since |Q0| ≤ 3|C0| < 3bn. Therefore, by Lemma 19

and property (ii) of Q
(1)
j′ , Q

(2)
j′ , we have

e(G[Q0 ∪Q′])− |Q0 ∪Q′| ≥

∣∣∣∣∣∣
⋃

1≤j′≤j0

Q
(2)
j′

∣∣∣∣∣∣ ≥ f − 1

2f
|Q′|

=
f − 1

2f

|Q′|
|Q0 ∪Q′|

|Q0 ∪Q′| ≥
f − 1

4f
|Q0 ∪Q′| > δ|Q0 ∪Q′|.
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Since |Q0 ∪ Q′| ≤ αn, this contradicts the fact that G is (α, δ)-locally sparse.
Therefore we have |Q′| < 3bn. But |Q0 ∪ Q′ ∪ Qj0+1| > αn, and hence |Qj0+1| ≥
(α − 6b)n ≥ (α/2)n. This, however, contradicts Lemma 18, and we conclude that
Case 1 cannot occur.

Case 2. We have |Q0 ∪Q| ≤ αn.

Suppose first that |Q| ≥ |Q0|. Then, as in Case 1, we have that

e(G[Q0 ∪Q])− |Q0 ∪Q| ≥

∣∣∣∣∣∣
⋃

1≤j′≤j

Q
(2)
j′

∣∣∣∣∣∣ ≥ f − 1

4f
|Q0 ∪Q| > δ|Q0 ∪Q|,

which is a contradiction. Thus |Q| < |Q0|. Now suppose j ≥ |C0|/10. Noting
that |Q| ≥ j, we have

e(G[Q0 ∪Q])− |Q0 ∪Q| ≥
f − 1

2f

|Q|
|Q0 ∪Q|

|Q0 ∪Q|

≥ f − 1

2f

j

3|C0|+ j
|Q0 ∪Q| ≥

f − 1

62f
|Q0 ∪Q| > δ|Q0 ∪Q|,

which is again a contradiction. Therefore j < |C0|/10. Finally, to complete the
proof of our lemma, suppose that |Xj | ≤ |C0|/2. Then |C0|(1 − 14δ) ≤ |X| =
2j+ s+ |Xj | ≤ s+ (7/10)|C0|, and hence s ≥ (3/10)|C0|−14δ|C0| ≥ (1/5)|C0|. We
remark in passing that, if j = 0, this is already a contradiction since in this case
trivially s = 0. In general, we have e(G[Q0 ∪ Q]) − |Q0 ∪ Q| ≥ 1 + s ≥ |C0|/5 ≥
(1/30)|Q0 ∪Q| > δ|Q0 ∪Q|, which is a contradiction. Hence |Xj | > |C0|/2 and the
lemma is proved. �

Now Lemma 17 follows easily.

Proof of Lemma 17. As observed above, Lemma 20 implies that we may always
execute step (*) in the repeat loop of Algorithm IV. Thus we eventually succeed

in finding the required X
(σ)
i , and hence Lemma 17 follows. �

3.4. Part II of the Enlarging Algorithm. Now assume that Algorithm IV has

terminated with X
(σ)
0 , . . . , X

(σ)
k (σ ∈ {1, 2}). Recall that |X(σ)

k | ≥ γm (σ ∈ {1, 2}).
Let 2 ≤ k0 ≤ k be such that if S = Q0 ∪

⋃
X

(σ)
k′ , where the union ranges over 2 ≤

k′ ≤ k0 and σ ∈ {1, 2}, then |S| ≤ βm. Note that |Q0| ≤ 3bn ≤ βm, and hence k0
is well-defined. To find the induced cycle C ′ that we are after, we now run another

algorithm, Algorithm V. This algorithm defines further sets X
(σ)
k+1, X

(σ)
k+2, . . . (σ ∈

{1, 2}), and it uses them to find C ′. As usual, let X
(σ)
0 = {x(σ)0 }, X

(σ)
1 = {x(σ)1 }

(σ ∈ {1, 2}), let x
(σ)
1 ∈ V̄ρ(σ) (σ ∈ {1, 2}), and put J̃ = J [V̄ρ(1), V̄ρ(2)]. Algorithm V

is given in Figure 5.

For the sets X
(σ)
k (σ ∈ {1, 2}) to be well-defined in the repeat loop in Algo-

rithm V, we need to verify the following lemma.

Lemma 21. Suppose the repeat loop of Algorithm V has been run for k < k′ < k′′.

Then |ΓJ̃(X
(σ)
k′′−1) \ (Tk′′−1 ∪ ΓG(S))| ≥ f |X(σ)

k′′−1| for σ ∈ {1, 2}.
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Tk := Q0 ∪
⋃

2≤k′≤k, σ∈{1,2}X
(σ)
k′ ; S := Q0 ∪

⋃
2≤k′≤k0, σ∈{1,2}X

(σ)
k′ ;

k′ := k;
repeat k′ := k′ + 1;

pick X
(1)
k′ ⊂ ΓJ̃(X

(1)
k′−1) \ (Tk′−1 ∪ ΓG(S)) with |X(1)

k′ | = df |X
(1)
k′−1|e;

pick X
(2)
k′ ⊂ ΓJ̃(X

(2)
k′−1) \ (Tk′−1 ∪ ΓG(S)) with |X(2)

k′ | = df |X
(2)
k′−1|e;

Tk′ := Tk′−1 ∪X(1)
k′ ∪X

(2)
k′

until |X(σ)
k′ | ≥ εm̄ (σ ∈ {1, 2});

k1 := k′, and let x(1) ∈ X(1)
k1

, x(2) ∈ X(2)
k1

be such that x(1)x(2) ∈ E(J̃);

for σ ∈ {1, 2}, let P (σ) be the x
(σ)
0 –x(σ) path

in J̃ naturally given by the X
(σ)
i ;

(†) let C ′ be the cycle in J ′ obtained from C0 by replacing the

x
(1)
0 –x

(2)
0 path of length L in C0 by P (1)x(1)x(2)P (2);

return C ′

Figure 5. Algorithm V

Proof. Fix σ ∈ {1, 2}. We have that

|Tk′′−1| ≤
2

1− 1/f
|X(σ)

k′′−1|+ |Q0| ≤
2f

f − 1
|X(σ)

k′′−1|+ 3bn,

and, since |X(σ)
k′′−1| ≥ γm, that |ΓG(S)| ≤ 8d|S| ≤ 8dβm ≤ (8dβ/γ)|X(σ)

k′′−1|. There-
fore, by Lemma 12, we have

|ΓJ̃(X
(σ)
k′′−1) \ (Tk′′−1 ∪ ΓG(S))| ≥

{
f0 −

2f

f − 1
− 3b

γµ
− 8dβ

γ

}
|X(σ)

k′′−1| ≥ f |X
(σ)
k′′−1|,

as required. �

Recall that k0 was the largest integer with 2 ≤ k0 ≤ k and |S| ≤ βm, where S =

Q0 ∪
⋃
X

(σ)
k′ and the union is over 2 ≤ k′ ≤ k0 and σ ∈ {1, 2}. Since the sets X

(σ)
k′

(1 ≤ k′ ≤ k1) grow geometrically, this choice of k0 implies that |X(σ)
k0
| = Ω(n)

(σ ∈ {1, 2}), and hence that k1 − k0 = O(1).

Lemma 22. The repeat loop of Algorithm V generates X
(σ)
k+1, . . . , X

(σ)
k1

with |X(σ)
k1
| ≥

εm̄ (σ ∈ {1, 2}). Moreover, we have that k1 − k0 ≤ logf (ε/γ0).

Proof. The first statement follows from Lemma 21. For the second statement, let

us first show that indeed |X(σ)
k0
| = Ω(n) (σ ∈ {1, 2}). If k0 = k, then |X(σ)

k0
| ≥ γm ≥

γ0n. Assume that k0 < k. Then

βm <

∣∣∣∣∣∣Q0 ∪
⋃

2≤k′≤k0+1, σ∈{1,2}

X
(σ)
k′

∣∣∣∣∣∣ ≤ 3bn+
2

1− 1/f
|X(1)

k0
|+ 2df |X(1)

k0
|e

≤ 3bn+

{
2f

f − 1
+ 2(f + 1)

}
|X(1)

k0
|.
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Hence |X(1)
k0
| = |X(2)

k0
| ≥

(
(f − 1)/2(f2 + f − 1)

)
(βµ− 3b)n ≥ γ0n. Since |X(σ)

k′ | =
df |X(σ)

k′−1|e for all 2 ≤ k′ ≤ k1 and σ ∈ {1, 2}, we have k1 − k0 ≤ logf (ε/γ0). �

We have now completed the proof that the ‘enlarging’ algorithm succeeds.

Lemma 23. Algorithm V returns an induced (`+ 1)-cycle C ′ ⊂ J̃ of J̃ that is also
induced in G. �

3.5. Proof of the Theorem. The methods used in the proof of Lemma 23 may
be used to prove Lemma 13.

Sketch of the Proof of Lemma 13. Pick x0 ∈ J ′, and choose y+ ∈ Γ+
J′(x0), y− ∈

Γ−J′(x0) arbitrarily. Put Y = {y+, y−}, X(1)
0 = X

(2)
0 = {x0}, Q0 = {x0} ∪ Y ,

Q = ∅, x(1)1 = y+, x
(2)
1 = y−, and let x

(σ)
1 ∈ V̄ρ(σ) (σ ∈ {1, 2}). As usual,

let J̃ = J [V̄ρ(1), V̄ρ(2)]. Put k = 1, and iterate the repeat loop in Algorithm III. By
using that G is (α, δ)-locally sparse, one may prove the following claim

Claim. The repeat loop in Algorithm III, run with the set-up above, succeeds in

finding sets X
(σ)
0 , . . . , X

(σ)
k with |X(σ)

k | ≥ γm (σ ∈ {1, 2}).
We omit the proof of the claim. Now replace step (†) in Algorithm V by

let C ′ be the (L+ 1)-cycle in J ′ naturally given by
the cycle C0, the paths P (1), P (2), and the edge x(1)x(2)

Running this modified Algorithm V on the sets X
(σ)
0 , . . . , X

(σ)
k (σ ∈ {1, 2}) given

by the above claim, we obtain a cycle C ′ of J ′ that has length L + 1 and that is
also induced in G, as required. �

Proof of Theorem 10. Lemmas 4, 13 and 23 give that a graph G as in Lemma 9 is
as required. �

§4. Density Type Results

Theorem 10 is clearly a Ramsey type result. If, instead of colouring the edges of
a graph G with r colours, we simply picked e(G)/r edges of G, we could not even
guarantee that we would obtain an odd cycle. However the following ‘density’ type
results may be proved.

Theorem 24. For any 0 < γ ≤ 1, there are constants c1 = c1(γ) > 0, b1 = b1(γ) >

0, B1 = B1(γ) > 0, and a graph G = Gnγ of size e(G) ≤ c1n such that G
ind−→
γ
C2` for

any B1 log n ≤ ` ≤ b1n. �

Roughly speaking, the result above says that a density type result may be proved
for long even induced cycles, for any fixed positive density. If we wish to guarantee
long odd induced cycles as well, we need to assume that the density is strictly
above 1/2.

Theorem 25. For any 1/2 < γ ≤ 1, there are constants c2 = c2(γ) > 0, b2 =
b2(γ) > 0, B2 = B2(γ) > 0, and a graph G = Gnγ of size e(G) ≤ c2n such

that G
ind−→
γ
C` for any B2 log n ≤ ` ≤ b2n. �

To prove Theorems 24 and 25, we again consider a random graph Gp ∈ G(N, p)
with p = D/N and D a constant very large with respect to γ. We then take G
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to be a subgraph of Gp with small maximal degree and large girth. We omit the
details.
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