THE INDUCED SIZE-RAMSEY NUMBER OF CYCLES

P.E. HAXELL, Y. KOHAYAKAWA, AND T. LUCZAK

ABSTRACT. For a graph H and an integer r > 2, the induced r-size- Ramsey number
of H is defined to be the smallest integer m for which there exists a graph G with m
edges with the following property: however one colours the edges of G with r colours,
there always exists a monochromatic induced subgraph H’ of G that is isomorphic
to H. This is a concept closely related to the classical r-size-Ramsey number of Erdés,
Faudree, Rousseau, and Schelp, and to the r-induced Ramsey number, a natural
concept that appears in problems and conjectures due to, among others, Graham
and Rodl and Trotter. Here, we prove a result that implies that the r-size-Ramsey
number of the cycle C* (£ > 3) is at most ¢, for some constant ¢, that depends only
on r. Thus we settle, in a rather strong sense, a conjecture of Graham and Rodl,
which states that the above holds for the path P’ of order ¢, and also generalise a
result of Bollobas, Burr, and MG that states that the r-size-Ramsey number of the
cycle C*? is linear in £. Our method of proof is heavily based on random graphs and
on a variant of the well-known regularity lemma of Szemerédi.

§0. INTRODUCTION

In this article we are concerned with a basic problem in Ramsey theory: we shall
show that there are very sparse graphs that have the Ramsey property with respect
to long induced cycles. Before we make this precise, we give some background and
terminology.

Let G and H be graphs and r a positive integer. Let us put [r] = {1,...,7}.
We write G — (H), if, for any r-colouring x : E(G) — [r] of the edges of G,
there is a monochromatic copy of H in G, that is, for some subgraph H' C G of G
isomorphic to H, we have that x is constant on E(H’). If we are further guaranteed

to find an induced monochromatic copy of H in G, we write Gid>(H )r. The well-
known theorem of Ramsey implies that for any given graph H and any r > 2, we
have G — (H), if G is a sufficiently large complete graph. On the other hand, a
classical result proved independently by Deuber [9], Erdés, Hajnal, and Pésa [11],
and Rodl [19] states that, for any graph H and any r > 1, there is a graph G such
that G2 (H),.

For a graph G, we write |G| for its order, that is, the number of vertices
in G, and we write e(G) for its size, the number of edges in G. Let K™ be
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the complete graph of order n. Now, for a graph H and a positive integer r,
let r(H,r) = min{|G| : G — (H).}, and let ro(H,r) = min{e(G) : G — (H),}.
Thus Ramsey’s theorem guarantees that r(H, ), re(H,r) < oo for any H and any r.

Similarly, replacing the — relation by the 4 elation in the definitions above, we
obtain r™4(H,r) and r®(H,r). The result of Deuber, Erdds, Hajnal, Pésa, and
Rodl gives that 7d(H, r), r*d(H, r) < oo for any H and any r > 1. We call 7(H,r)
the r-Ramsey number of H, and r.(H, ) the r-size-Ramsey number of H (cf. [10]).
We refer to the induced analogues of these parameters as the induced r-Ramsey
number and as the induced r-size-Ramsey number of H. For simplicity, in the
basic case in which the number r of colours is 2, we omit this parameter from our
notation.

Many problems in Ramsey theory involve the functions 7, r¢, 7, and rind.
Undoubtedly, the best-known of these problems concerns the order of growth of the
standard Ramsey number R(n,n) = r(K™). A celebrated problem of Erdds asks
whether lim,,_,, R(n,n)'/™ exists, and, if it does exist, what the value is. (See for
instance [1, Appendix B].)

We now turn to the specific problems that we shall deal with here. Let P’
be the path of order ¢. Settling a problem of Erdés, Beck [2] proved the rather
striking result that, for any fixed positive integer r, there is a constant ¢, such
that r.(P%,7) < ¢.f for any £ > 1. This result suggests the following two problems.
Graham and Ro6dl [12] raised the natural question whether such a linear upper
bound also holds for r"d(P* r) for any fixed r. Moreover, writing C* for the cycle
of order ¢, the result of Beck naturally suggests investigating whether r.(C*, r) is
also linear in £. Our main result here settles these two questions in the affirmative.
We prove that rénd(C’Z ,17) < ¢,.¢ for some constant ¢, that depends only on r.

We in fact prove more. Theorem 10 below states that, for any fixed » > 2 and
any n > 1, there is a graph G = G, = G} of order n and size e(G) = O(n) satisfying
the following property: for any r-edge-colouring of G, there is a colour ¢ such that,
for any ¢ with Blogn < ¢ < bn, there is a monochromatic induced f-cycle C* in G
of colour ¢. Here, B = B(r) > 0 and b = b(r) > 0 are two real constants that
depend only on r. In particular, for any ¢ as above, we have Gﬂ(()’e)r.

Note that Theorem 10 is an intrinsically Ramsey-theoretical result. Let us in-
troduce some notation to make this precise. Suppose G and H are graphs and y
is a real number with 0 < v < 1. We write G —, H if any subgraph J C G

with e(J) > ve(G) contains a copy of H. Moreover, let us write G2 H if J above
g

necessarily contains an induced copy of H. It is easy to see that, owing to the

odd cycles, the immediate analogues of Theorem 10 for the relations —, and Ind,
¥

cannot hold for v < 1/2. If we restrict our attention to even cycles we may however
prove a result analogous to Theorem 10. This ‘density’, rather than ‘partition’,
type result is given in §4 (see Theorem 24). To guarantee all cycles in a range as
in Theorem 10, we need to have v > 1/2. This result is given in Theorem 25.

Our method is based on random graphs, and on a variant of the powerful lemma,
of Szemerédi concerning regular partitions of graphs. Part of the method was
developed in [17] to deal with induced cycles in random graphs. Our variant of
Szemerédi’s lemma, given in Section 2.1 below, asserts the existence of regular
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partitions for subgraphs of pseudo-random graphs. We remark that this lemma
was independently observed in [16] and by Roédl [20]. An overview of the proof of
Theorem 10 is given in §1 below.

We close by mentioning a few related problems and results. Theorem 10 immedi-
ately implies that r.(C*, r) = O(¢) for any fixed r, a result proved by Bollobas, Burr,
and an MG! [6]. Our proof of Theorem 10 may be considerably simplified to give a
direct proof of this result. In [2] and [3], Beck investigated r.(H,r) for the case in
which H is a tree. Further results on the size-Ramsey number of trees may be found
in [13] and in [15]. Beck [3] has also studied the induced size-Ramsey number of
trees. It is proved in [3] that ri"(T,r) = O{|T|?(log|T|)*} for any tree T and any
fixed 7, and it is also observed that there is a tree Ty with ri*(Tp, 2) = Q(|Tp|?).
Finally, we remark that the estimation of r"d(H) presents very interesting and
challenging problems.

A problem of Graham and Rédl [12] asks whether r"4(H) < exp{c|H|} for any
graph H and some absolute constant ¢ > 0. The best results so far are due to Rodl,
who has proved that this is indeed the case for bipartite graphs H, and that for
general graphs one at least has that "4 (H) < exp{exp{|H|'*°M}} as |H| — oo
(cf. [12]). On the other hand, Trotter has asked whether if we consider graphs H
of bounded maximal degree, then 7*4(H) is of polynomial order in |H| (see [12]).
It is worth noting that, for such graphs H, the Ramsey number r(H) is indeed
linear in |H|, as proved by Chvatal, Rodl, Szemerédi, and Trotter [8]. (See also [4]
and [7].)

§1. SKETCH OF THE METHOD OF PROOF

In this section we outline the proof of the following result: for any fixed r > 2 and
any integer n > 1, there is a graph G = G, = G} of order n and size e(G) = O(n)
with the property that Gﬂ((ﬂ)r for any Blogn < ¢ < bn, where B = B(r) > 0
and b = b(r) > 0 are constants that depend only on r.

Here and in the sequel, G™ will always denote a graph of order n. Throughout
this section we let an integer » > 2 be fixed. Let an integer n > 1 be given. It
is enough to prove the existence of G = G}' as above for large enough n. Hence
we may and shall assume in the sequel that n is greater than a suitably large
constant ng = no(r) that depends only on r. We consider a binomial random
graph G’ = G}, € G(N,p) where p = p(N) = D/N and D is a constant that is
very large with respect to r. Thus, G’ = G), has vertex set {1,..., N}, say, and an
edge ij (1 <i < j < N) is present in G’ with probability p, independently of all
other edges. We fiz a typical element G’ € G(N,p), and delete from G’ all vertices
that have ‘large’ degree and all edges that belong to ‘short’ cycles. Let G be the
resulting graph. (Here we choose N a little larger than n so that we may further
require G to have order n.) We claim that this deterministic graph G will do.

To prove this claim, fix an arbitrary r-edge-colouring of G. Now, by invoking
the variant of Szemerédi’s regularity lemma mentioned in the introduction, we may
choose a colour ¢ for which the argument below works. The conditions that we
require on this colour ¢ and the general set-up on which the rest of the proof is

I Mysterious gentleman
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based are hard to describe briefly. Thus, let us assume for now that this colour has
somehow been chosen. Let J be the spanning subgraph of G whose edges are the
edges of G coloured i.

We first need to show that J contains a short induced cycle C that is also induced
in G. It turns out that we may guarantee the existence of such a cycle C of length
logarithmic in n. We now assume that we are given an induced ¢-cycle Cy in J
that is also induced in G, where /¢ is neither too small nor too large. In the rest
of the proof we show that we may ‘enlarge’ this cycle Cy to an induced (¢ + 1)-
cycle C’ of J that is also induced in G. Provided we succeed in showing that this
process may be carried out for reasonably short and reasonably long cycles Cy, we
are done. More precisely, it suffices to show that this is indeed possible for ¢ in the
range clogn < ¢ < n/c for some constant ¢ = ¢, > 0.

The ‘enlarging’ procedure is as follows: we simply find in Cj a segment of length L
that may be replaced by a path of length L + 1 to give the required cycle C’.
Here L = O(logn) is to be chosen suitably. Not all segments of Cy admit a path
as above. Thus we need to try several possibilities before we find a good segment.

We first fix two vertices x(()l), ;r[()z) that determine a segment of length L in Cj.
In the main iterative part of our ‘enlarging’ algorithm (cf. Section 3.2), we look for
suitable sets of vertices Xéo), . ,X,ga) (o € {1,2}). These Xi(a) grow geometrically
with 1, Xéa) = {x((]a)}, and |X,ga)] = Q(n) (o € {1,2}). Moreover, they have
the following further property: for any z(1) € X,gl), 2 e X 122), we may find
vertices acgg) € Xi(g) (1 <i <k, o€ {1,2}) for which xél) =z, :1:,((:2) = z(?),
the paths P(?) = x(()o) . xg’) (o € {1,2}) are induced paths of J, and (*) the only
edges induced in G by V(Cy) U {azga) :1<i<k,oe{1,2}} are the ¢ + 2k edges
in E(Co) U E(PM)U E(P®?).

However, for a given pair (1:(()1), 1:(()2)), we may fail to find such sets Xi(a). In such
a case, we find a set QQ C V(G) of vertices of G that together with V(Cp) (and some
other vertices) induce a ‘dense’ subgraph in G, i.e. a subgraph with many edges. We

successively search for the sets X Z.(J) starting with many distinct pairs (x(()l),x(()z)),

and show that we eventually succeed in finding the X i(a) for some pair (11(()1) , 1,‘(()2) )
(see Lemma 17). Roughly speaking, we use the fact that, if we were to fail starting
from many such pairs (xél),x((f)), we would be able to find in G a subgraph that is

far too dense for a subgraph of a random graph.

The argument above guarantees |X,EU)| = Q(n) (o € {1,2}), but the constant in
the Q-notation is quite small. In the second part of the ‘enlarging’ algorithm, we
extend the sequences Xéa), .. .,X,ia) (o € {1,2}). We define X,Ej_)l, . ,X,ET) with
the XZ-(O) again growing geometrically with ¢, and with | X ,Efl’)] > cn, where ¢ > 0
is to be chosen suitably. To define such sets Xi(g) (k < i <k, o € {1,2}),
roughly speaking, we weaken property (*). Namely, we require that for any PASONS
X,Ei), ) ¢ X,gz), we may find vertices 3:50) € XZ.(U) (1<i<k, oe€{l2}) for
which x,(cll) =z, ngl) =z, plo) = x(()a) : xl(g) is a path in J (o € {1,2}), and
(f) the only edges induced in G by V(Cy) U {:EZ(U) 11 <i<ky, o€ {l,2}} are the
ones in E(Cp) U E(PM) U E(P®), except for possibly some edges e incident to



THE INDUCED SIZE-RAMSEY NUMBER OF CYCLES 5

vertices in UX,S,T), where the union ranges over o € {1,2}, kg < k¥’ < k1, and ko
satisfies k1 — ko = O(1).

Picking c large enough, we may guarantee that there is an X ,SLX Ig) edge (W x(2)
in J. This edge together with P() and P(?) give the path of length L + 1 that we
use to construct C’. The fact that C” is an induced cycle in G follows from (1) and
the fact that G has large girth. (The edges e mentioned in (f) do not occur in C’
as they would give short cycles in G.)

Let us give an outline of the contents of the following sections. The method used
to choose the colour 7 in the argument above is given in Section 2.1. In Section 2.2
we compile the results concerning random graphs that we shall need. In Section 2.3
we give the construction of the graph G = G} sketched above. There we also state
our first main result, Theorem 10. In §3 we give the proof of Theorem 10. In §4 we
state two related results.

§2. PRELIMINARY RESULTS

2.1. Szemerédi’s Lemma. Let a graph G = G of order |G| = n be fixed.
For U, W Cc V = V(GQ) with UNW = 0, we write E(U,W) = Eq(U,W) for
the set of edges of G that have one endvertex in U and the other in W. We
set e(U, W) = eq(U,W) = |E(U,W)|. The following notion will be needed in the
sequel. Suppose 0 < 7 < 1 and 0 < p < 1. We say that G is n-uniform with
density p if, for all U, W C V with UNW = () and |U|, |W| > nn, we have

lea(U, W) = p|U||W|| < np|U[[W|.

Now let H C G be a spanning subgraph of G. For U, W Cc V with UNnW = 0,
let
eg(UW)/eq(U,W) ifeq(U W) >0

Ay (U, W) =
1.6, W) {o if eq:(U, W) = 0.

Suppose ¢ > 0, U, W C V, and UNW = (. We say that the pair (U, W) is
(e, H,G)-regular, or simply e-regular, if for all U" C U, W' ¢ W with |U’| > ¢|U|
and |W'| > e|W/|, we have

|dH7G(U/, W/) — dH7g(U, W)| S e.

Now let r > 1 spanning subgraphs H, ..., H, C G of G be given. The pair (U, W)
is said to be (e, Hy, ..., H.,G)-regular if it is (¢, H;, G)-regular for all 1 < i <.

We say that a partition P = (V;)k of V = V(G) is (g, k)-equitable if |Vy| < en,
and |Vi| = ... = |Vi|. Also, we say that Vj is the exceptional class of P. When
the value of ¢ is not relevant, we refer to an (e, k)-equitable partition as a k-
equitable partition. Similarly, P is an equitable partition of V if it is a k-equitable
partition for some k. Finally, we say that an (g, k)-equitable partition P = (V;)&
of Viis (¢, Hy, ..., Hy,G)-regular, or simply e-reqular, if at most s(g) pairs (V;,V})
with 1 < ¢ < 5 < k are not (g, Hy,...,H,,G)-regular. We can now state the
extension of Szemerédi’s lemma to subgraphs of n-uniform graphs.
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LEMMA 1. For given € > 0 and ko, r > 1, there are constants n = n(e, ko,7) > 0
and Ky = Ko(g, ko, ) > ko that depend only on e, ko, and r for which the following
holds. If G is an n-uniform graph and Hy,...,H, C G are r spanning subgraphs
of G, then there is an (e, Hy, ..., H.,G)-reqular (e, k)-equitable partition of V =
V(G) with kg <k < Ky. O

Lemma 1 has been observed independently by Rodl [20] and Kohayakawa [16].
We shall not give a proof of this result here since, once the set-up is clear, natural
modifications to the proof in [21] of Szemerédi’s original lemma give Lemma 1.

Now suppose H C G is a spanning subgraph of a graph G. Let V1, V5, V3 C V(G)
be three pairwise disjoint sets of vertices, and let € > 0 be given. In the sequel,
we say that the triple (Vi, V2, V3) is an (e, H, G)-regular triple if all pairs (V;, V)
with 1 <i < j <3 are (¢, H, G)-regular.
LEMMA 2. Let 0 < e < 1/5 and 0 < p < 1 be given, and suppose 0 < n < /8.
Let G = G" be an n-uniform graph, and let J C G be a spanning subgraph of G.
Suppose (Vi,Va,V3) is an (e, J, G)-regular triple with d; ; = djc(Vi,V;) > p for
all 1 <i < j <3. Moreover, assume |V;| > (n/e)n fori € {1,2,3}. Then there are
sets V; C V; (i € {1,2,3}) such that

[Ts(@) NG| > (1~ 5e/p)ds sea (Vi V) /|Vi (1)

for all z € V; and j # i (i,7 € {1,2,3}). Moreover, |V;| > (1 — 2¢)|V;| for
all i € {1,2,3} and, in particular, (Vl,VQ,V?,) is (2¢, J, G)-regular.

Proof. We first define three sequences of sets V; = Vi(o) D Vi(l) O+ (1€{1,2,3})
and a sequence of vertices xg,x1,... by induction as follows. Put Vi(o) =V
for i € {1,2,3}. Now let s > 1 and assume Vi(o) DD %(S_l) (1 € {1,2,3})
and g, ... ,xs_o already defined. If |Vi(371)] < (1-2¢)|V;| for some i € {1,2, 3}, ter-
minate the sequences. Otherwise, if putting (V1, V2, V) = (Vl(s_l), VQ(S_I), V3(S_1))
condition (1) holds for all z € V; and all j # i (i, 7 € {1,2,3}), then terminate
the sequences. However, if putting (Vi, Vs, V3) = (Vl(s_l),VQ(S_I),V;S_U) condi-
tion (1) fails for some z5_1 € V(S_l) and js_1 # is—1 (is—1, Jjs—1 € {1,2,3}), then
put V(S) = V(S 1)\{335 1} and V(g) V(S Y for g = is_1. This completes the def-
inition of the Vi(s) and of the xs. Suppose we have obtained the sequences (V;(S))i:l
(i € {1,2,3}). We claim that [V;")| > (1 — 2¢)|Vj| for i € {1,2,3}.

Assume the contrary, and suppose without loss of generality that |V1(t)] <(1

2¢)|V4| and |Vi(t)| > (1 —2¢)|V;| for i = 2, 3. Then, for any x € V; \ Vl(t), there
are s = s, and j = j, € {2,3} such that x = 2,1 and

IDs(2) NV < |Cy(e) N VY] < (1 = 5¢/p)drjec(Vi, Vi) /Al

We may assume that there is a set U C Vj \ Vl(t) with |U] > |Vq '\ V1(t)|/2 > e|W|

such that, for all z € U, we have |I";(z) N Vz(t)] < (1 = 5¢/p)di2ec(Vh, Va)/|Vil.
Then

V) =3 D) n VY| < (1 = Be/p)dy o|Ulec (Vi Va) /IVA,
zeU
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and hence U] V1, Va)
€ ’
drc(U V") < (1~ Se/p)d1,2f|vl‘ : G(UIV(;)
€G sy Vo

By the n-uniformity of G, we have
ea(U, V") > plU|[VS?| = nplU V)| > p(1 = n)(1 — 2¢)|U||Va,

and
eq(Vi,Va) < p(1+n)|Vi||Val.

Therefore

5e ] 1 d
dJ7G(U, VZ(t)) S {1 _ 6} ﬂ . 1,2

S 1—n T2 < {1—5;64-45}6&,2 <dip ¢,
which is a contradiction, as |U| > e|Vy], |V2(t)\ > (1 —2¢e)|Va| > ¢|Va], and (V, Va)
is (g, J, G)-regular. Thus our claim holds. It follows that, putting (Vi, Vs, V3) =
(Vl(t),%(t),%)(t)), condition (1) holds for all z € V; and all j # i (i, j € {1,2,3}).
Moreover, since |V;| > (1 — 2¢)|V;| > |Vi|/2 (i € {1,2,3}), as a simple argument
shows, (V1, Vs, V3) is a (2¢, J, G)-regular triple. [

The following is an easy consequence of Turan’s theorem [22].
LEMMA 3. Let an integer o > 1 be given, and suppose H = H* is a graph of

order k > (av — 1)? such that e(H) < a_l(g). Then a(H) > «.

Proof. By Turén’s theorem, if a(H) < «, then e(H) > e(K* U ... U KFa-1),
where k; = [(k+i—1)/(a—1)] (1 <i<a)and K* U---U KF-1 is the disjoint
union of the K*: (1 <i < ). Therefore, if a(H) < «, we have

e(H) > é;a <’;> > (o~ 1)<k/(a2_ U) = Q(Qki 1 (1 -3 1> ~ ;@)

where the last inequality follows from k& > (o — 1)2. O

We are now able to state and prove the main lemma of this section, Lemma 4.
This result tells us how to ‘choose’ the colour ¢ in the argument sketched in §1.
Recall that G™ always denotes a graph of order n.

LEMMA 4. Let r > 2 and 0 < € < 1 be given. Then there are constants n =
n(r,e) > 0 and p = p(r,e) > 0 for which the following holds. Suppose G = G"
is an n-uniform graph with density p = d/n, and let E(G) = EyU---U E,. be an
r-edge-colouring x of G. Let G; C G be the spanning subgraph of G with edge set F;
(1 <i<r). Then, for some 1 <i=1i(G,x) <randp<p=p(G,x) <1, there
are pairwise disjoint sets Vi, Vo, V3 C V(G) such that (Vi,Va, V3) is an (¢,G;, G)-
reqular triple and, for all a # b (a, b € {1,2,3}), we have dg, ¢(Va, V) > 1/r
and |Tg,(x) N V3| > ad/2r for all v € V,. Moreover, in/2 < |V;| < fin for
all a € {1,2,3}.

Proof. We start by invoking Ramsey’s theorem. Let k; = R,-(3) be the least
integer R such that any r-edge-coloured complete graph of order R contains a
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monochromatic triangle. Put kg = R,.(3)%. Let ¢ = min{R,(3)71,1/15r,¢/2}.
Let n = n(e’,ko,r) > 0 and Ky = Ko(e, ko,7) > ko be as given by Lemma 1.
We may clearly assume that n < ¢’/2K,y. Put p = 1/2K,. We now check that n
and p above will do for our lemma. Thus let G = G™ be an n-uniform graph
with density p = d/n, and suppose E(G) = E; U---U E,. Let G; C G be the
spanning subgraph of G with F(G;) = E; (1 < i < r). We now apply Lemma 1
to G1,...,G, C G to obtain an (¢/,Gy,...,G,,G)-regular (¢, k)-equitable parti-
tion P = (V;)¥ of V. = V(G) with kg < k < Ko. Let i = |V;|/n (1 < j < k).
By Lemma 3, for some 1 < j; < --- < ji, < k, all pairs (Vj,,V},) with 1 <
a <b<k are (¢/,Gy,...,G,,G)-regular. By the choice of k; = R,(3), without
loss of generality we may assume that, for some 1 < ¢ < r, the pairs (V},,V},)
with 1 < a < b < 3 are such that dg, ¢(Vj,,Vj,) > 1/r. We now apply Lemma 2 to
the (¢/, G;, G)-regular triple (V,,V},,V;,). Then we obtain V, C V;, (a € {1,2,3})
such that fin = |V;,| > V.| > (1 —2¢")|V;,| > |V;,]/2 = jin/2 and, moreover, such
that for all z € V, and b # a (a, b € {1,2,3}), we have

GG(Va, %)

T, () N V| > (1—5¢er) A

> (1= 5¢'r) (L = n)plVil/r > ud/2r.

Finally, since ¢’ < £/2, the triple (V1, V2, V3) is (&, G;, G)-regular. [

For convenience, we introduce the following simple definition. Let J be a bipar-
tite graph with a fixed bipartition, say V(J) = X UY. Then, we shall say that J is
a (b, f)-expander, and that it is (b, f)-expanding, if for all U C X and U C Y such
that |U| < b we have |I';(U)| > f|U|. Also, if G is a graph and U, W C V(G) are
such that U N W = (), then we write G[U, W] for the bipartite subgraph of G with
vertex classes U, W and with edge set E(U, W) = Eg(U,W). Lemma 5 below tells
us that the colour i and the triple (Vi, Va, V3) given by Lemma 4 determine three
expanding bipartite graphs G;[V,, V3] (1 < a < b < 3). To prove this, however, we
need to introduce another uniformity condition for graphs.

Let G = G™ be a graph of order n, and suppose A > 0and 0 < p < 1. Let d = pn.
We say that G is (p, A)-upper-uniform if, for all sets U, W C V(G) with UNW = ()
and 1 < |U| < |W| < d|U|, we have

ec(U,W) < plU|IW|+ A{dU||W[}'/2. (2)
Moreover, if for all such U, W C V(G) we have
lea(U,W) = plUI|W|| < A{d|U[|W[}'/2,

we say that G is (p, A)-uniform.

LEMMA 5. Letr > 2 and 0 < € < 1 be given. Let n = n(r,e) > 0 and p =
wu(r,e) > 0 be as in Lemma 4, and suppose that G = G™ is an n-uniform graph
with density p = d/n and that E(G) = E1 U ---U E, is an r-edge-colouring of G.
Let 1 <i<vr, i>pu, and (V1,Va,V3) be as in Lemma 4, and let J be the spanning
subgraph of G with E(G;) = E;. Put Jo, = J[V,, V3] for all1 < a <b < 3. Then,
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if G is (p, A)-upper-uniform for some A > 1, every Jop is (an/3rf, f)-expanding
for any 0 < f < (u/6Ar)?d.

Proof. Fix a # b (a, b € {1,2,3}), and put J = Jap- Suppose o € {a,b} and 0 <
f < (/6Ar)%d. Let U C V, with u = |U| < fin/3r f be fixed. Now let W =T 5(U),
and suppose for a contradiction that w = |W| < f|U|. Then

2ﬂdu <e;(U,W) <eq(U, W) < puw + Alduw)'/? < 3ﬂdu + A(duw)*/?,
r r

and hence fidu/6r < A(duw)'/?. Therefore |W| = w > (ii/6Ar)?du > f|U|, which
is a contradiction. [

2.2. Random Graphs. Given «, § > 0, we say that a graph G = G™ is («,0)-
locally sparse if, for all U C V(G) with |U| < an, we have e(G[U]) < (1 + 9)|U].
The following lemma may be found in Luczak [17].

LEMMA 6. Let d > 1 be fized, and consider the random graph G, = G, , € G(n,Dp)
where p = p(n) = d/n. Then for any fized § > 0 there is a constant a« = a(d, ) > 0
such that almost every G, is («, d)-locally sparse. [

The following is immediate from standard estimates for tails of the binomial
distribution.

LEMMA 7. Let 0 < n < 1 be given, and consider the random graph G, = G, €
G(n,p) with 0 < p = p(n) < 1. Put d = d(n) = np(n). Then, there is a con-
stant dy = do(n) such that, if d > do, almost every G, is n-uniform with den-
sity p. U

We now verify that random graphs satisfy the rather strong uniformity condition
defined just before Lemma 5.

LEMMA 8. Let d = d(n) > 0 be given, and put p = p(n) = d/n. Then a.e. G, =
Grnp € G(n,p) is (p,e*\/6)-uniform.

Proof. We may clearly assume that d > 1. Let ¥ = {({U,W) : U W C V =
V(G,), 1 < |U| < |[W| <dU|,UNW = 0}. In what follows, we shall always
have (U, W) € F, and |U| = u, |W| = w. We set

Py = P(UW) =P ||ec, (U, W) = plU|W]| > A{dlU||W[}/?].
Our aim is to show that B = }_ ez P(UW) = o(1) as n — oco. Let us
put p = p(U,W) = puw, b = b(U,W) = A{duw}'/?, and n = n(U,W) = b/p =
An(duw)™Y2. Let Fi = {(UW) € F :n < e}, Fo = F\ Fi, and set E; =
>wwyer, P(UW) (i =1, 2). We now claim that E; = o(1) for both i =1 and 2.
(1) We have E; = o(1).

Suppose (U, W) € F;. We claim that P(U,W) < 2exp{—(42/3e*)n}. To check
this claim, let us first assume that n = n(U,W) < 1. Then n?u = A?n, and
hence P(U, W) < 2exp{—(A%/3)n} by Hoeffding’s inequality [14] (see also McDi-
armid [18]), and our claimed estimate for P(U, W) follows in this case. Suppose
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now that 1 < n < e%. Then, again by Hoeffding’s inequality, we have P(U, W) <
P(e(U,W) > 2u) < exp{—pu/3}. Note that b/u = n < e? gives that u > b/e? =
(A/e?)(duw)'/?. Also, we have An(duw)~'/? =n < e?, and therefore (duw)'/? >
(A/e*)n. Thus pu > (A%/e*)n, and P(U, W) < exp{—(A42%/3e*)n}, as required. The
upper bound for £ now follows easily. Indeed,

2
E, = Z P(U,W) <2x4"exp {—;:;n} = o(1).
(U,W)eF1

(2) We have E5 = o(1).

Suppose (U, W) € Fy. Then P(U,W) = P(e(U,W) > pu+b) < P(e(U, W) > b).
Let v be such that b = evu/logv. Then ev/logv = b/u = n > €%, and hence we
may suppose v > e. Also, we have evy/logv = b > 1 > e/v, and so v2u > logv.
Thus P, < P(e(U,W) > b) < exp{—vu} (see Theorem 7(4i) in Chapter I of [5]).
Now, we have v = (b/e) logv > (A/e)(duw)/?(logv) > (A/e)(duw)'/?. Thus v >
(A/e)n(duw)~1/? and so vu > (A/e)(duw)/?log{(A/e)n(duw)~'/?}. Therefore

e(duw)l/2 (A/e)(duw)/?
- An 3
An ) 3)

Recall that « < w < du, and so, setting r = u+w, we have (duw)'/? > dr/(d+1) >
r/2. Now let © = e/n = e(duw)'/?/An, and note that then 0 < z < 1/e, and
that (3) states that P(U,W) < 2B% where B = (A4/e)?n. Since 2z is decreasing
for 0 < 2 < 1/e, we have from (3) that P(U, W) < {(e/2A)(r/n)}A/2¢)" Thus

n en\" ¢ er \(4/2e)r en [ er \A/2e\" "
P < (— — = —(=—— <(—) . 4
(r) (U.W) < ( r ) (2An) ( r (2An) > - (4n) )
Forl1<s<mnand1l<t<n-s,let P,y = P(S,T), where S, T C V are such

that SNT =0, and |S| = s, |T| = t. Then we have Ey = 3~ ()5, P(U,W) =
S (”) (T)Pu,r,u, where " denotes sum over all 2 <7 < n and 1 < u < r/2 such

” u

that w = r —u < du and n = n(U, W) > e?. Thus, by (4), we have that Ej is at

most 5 <u> (L) < 2; () <2072 =o0(),

Srsn

P(U,W) < exp{—up} < (

as required.
Thus E = E;1 + Ey = o(1), and the proof is complete. [

2.3. Definition of G = G,.. In this section we define our graph G that has the
Ramsey property for long induced cycles. Throughout this section, an integer r > 2
is fixed. We now define some numerical constants that depend solely on r. Put ¢ =
1/48r, and let n = n(r) = n(r,e) > 0 and p = p(r) = p(r,e) > 0 be as given
in Lemma 4. We may assume that y < e. Put § = 1/140. Fix D = D(r) >
8 x 10°(r/u)? such that G, = Gn, € G(N,p) is (n/2)-uniform with density p =
D/N with probability 1 — o(1) as N — oo (cf. Lemma 7). Let o = «(D,d) >
0 be such that G, is («,0)-locally sparse with probability 1 — o(1) as N — oo
(cf. Lemma 6). Clearly, we may assume that a < p. Let fo = 16 and f = 2.
Let v = «/24pu, and 8 = ~v/D. Also, put b = Su/6 and vy = Su/20. Finally,
set g = 2[log;(¢/70)] + 1, and B =2/log f.
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LEMMA 9. Let an integer r > 2 be fized, and let n = n(r) > 0, § = 1/140, D =
D(r), a = a(D,d) >0, and g = g(r) be as defined above. Put d = D/2. Then, for
any sufficiently large n > 1, there is a graph G = G, = G} such that (i) the mazimal
degree A(G) of G is at most 8d, (i) G is n-uniform with density p = d/n, (iii) G is
(p, €22+/3)-upper uniform, (iv) G is (o, §)-locally sparse, (v) G has girth g(G) > g.

Proof. Put N = 2n, and note that p = d/n = D/N. We consider G, = Gy, €
G (N, p) and show that, with probability 1—o(1) as n — oo, a suitable subgraph G C
G)p will do. By Markov’s inequality, the degree d(x) of a fixed vertex x € G, is such
that P(d(z) > 4D) < 1/4. Thus, the expectation E(X) of the number X = X (G))
of vertices z € G, with d(z) > 4D is less than N/4. Again by Markov’s inequality,
we have P(X > N/2) < 1/2. Now let Z; = Z;(G,) be the number of cycles of
length j in G, (j > 3), and let Z =} 5. Z;. Then

E(Z)= Y E(Z)= ) (N)(j;mpfg > o<t

3<j<g 3<j<g \J

Thus P(Z > 2D9/g) < 1/3. Recall that by the choice of D and «, we have with
probability 1 —o(1) as N — oo that Gy, is (1/2)-uniform, (p,e?/6)-upper-uniform,
and («, d)-locally-sparse. Let N = 2n be large enough and fix a G, satisfying these
three properties, and such that X = X(G,) < N/2 and Z = Z(G)) < 2D9/g. We
now let G’ C G}, be an n-vertex induced subgraph of G, such that A(G’) < 8d, and
omit at most 2D9 /g edges from G’ to obtain a graph G of girth g(G) > g. We claim
that G will do. Clearly (i), (iv), and (v) of our lemma hold. Property (ii7) holds as
well, since the error term in (2) for G,, is €2\/6{D|U||W|}'/? = e?2,/3{d|U||W |} /2.
Finally, to check (77), it suffices to recall that at most 2D9/g = O(1) edges have
been omitted from G'. [

The graph G = G, whose existence is guaranteed by Lemma 9 has the Ramsey
property for long induced cycles, as asserts our first main result below.

THEOREM 10. Let an integer v > 2 be fixed. The graph G = G, = G} in Lemma 9
has the property that, for any r-edge-colouring of G, there is a colour ¢ such that G
contains a monochromatic induced cycle C* of colour ¢ for all Blogn < ¢ < bn,

where B = B(r) > 0 and b = b(r) > 0 is as defined above. In particular, GE)(C'E)T
for all such £.

An immediate consequence of Theorem 10 is the following.

COROLLARY 11. For any fived v > 2, the induced size-Ramsey number rind(C*)
of the (-cycle C* is at most cl, where ¢ = ¢, > 0 is a constant that depends only
onr. U

§3. PROOF OF THEOREM 10

3.1. Preparations for the proof. Let an integer r > 2 be fixed, and assume the
constants e, n, u, 9, «, fo, f, v, Y0, B, b, B, and g are as defined in Section 2.3.
Let a graph G = G™ satisfying (i)—(v) of Lemma 9 be given, and assume E(G) =
Ey1U---UE, is an r-edge-colouring of G. Let 4, fi, and Vi, Vo, V3 C V(G) be as
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in Lemma 4. Let G; be the spanning subgraph of G with edge set E;. Let m = n
and m = [un]. Recall that m/2 < |V;| < m (i € {1,2,3}). We now concentrate
on the 3-partite graph J defined by G; and the three vertex classes Vi, Va, V.
Formally, J = GZ [‘717 ‘72] U Gi[v2a V3] U Gz [Vlv ‘23]

LEMMA 12. Let 1 < i < j < 3, and put J = JVi,V;]. Then the graph J s
(em, fo)-expanding.
Proof. We use Lemma 5. Recall that G is (p, A)-upper-uniform for 4 = 2e2,/3.
Also, by the definition of D, we have that fo = 16 < (u/12re?/3)2D/2 < (ji/6Ar)?d.
Moreover, as € = 1/48r, we have em = fin/3rfy. Thus Lemma 5 gives that J is
(em, fo)-expanding, as required. [

Define a function ¢ = ¢ : Zy — Z by putting ¢(0) = 1 and ¢(n) = [fe(n—1)]
for all n > 1. Let L = 2min{k : ¢(k — 1) > em}. The starting point of the proof
of Theorem 10 is the following lemma.

LEMMA 13. The graph J contains an induced (L + 1)-cycle that is also induced
in G.

We shall not give a full proof for Lemma 13, although we shall make detailed
comments in Section 3.5 on how one may alter a few steps in the arguments below
to prove this lemma. We now fix an induced cycle Cy of J that is also induced
in G, and assume that Cy has length L + 1 < ¢ < bn. Our aim is to construct an
induced cycle C” of J that is also induced in G, and whose length is £ + 1. If we
show that this is possible, we shall have proved Theorem 10.

Suppose the vertices of Cy are, in cyclic order, x1, ..., z¢. In the sequel, if z € V;
for some i € {1,2,3}, we let I'F,(z) = Ty (z) N Vigq and ', (z) = Ty (z) N Vg,
where the indices of the V; are considered reduced modulo 3.

LEMMA 14. There is a set X C V(Cy) with | X| > (1 — 149)|Co| satisfying the
following. We may choose y; € T'Y,(z;) and y; € T, (x;) for all z; € X in such a
way that, if Y = {y;,y; : ; € X}, all vertices in Y have degree 1 in G[V(Cp)UY].

Proof. For each 1 <1¢ < /£, let us pick y:r € F}L/ (z;) arbitrarily, and let us consider
the graph G[V(Co) UY;"], where Y = {y; : 1 <i < (}. Let

Y.F = {yS : the degree of y; in G[V(Cp) UY;] is at least 2},

X = V(Co) NTg(Yh), and X} =V(Co)\ I¢(Y, ). Note that all vertices y;°
with z; € X have degree 1 in G[V(Cp) UY;"]. We show that X is nearly all
of V(Cy). We have e(G[V (Co) UY; 1) > (3/2)| X + | X| + [VyF]. Since [V(Co) U
Yb+] < 2bn < an, we conclude that

1
25/Col > 8(1Col + ¥;1) 2 e(GIV(Co) UY;]) = [V(Co) UV | = 21X,

Thus | X, | > (1 —40)|Co|. We now pick y;- € '}, (x;) for all 1 < i < £ arbitrarily,
and repeat the argument above. In this way we obtain X, C V(Cp) with [X | >
(1—46)|Co| such that all vertices y; with ; € X have degree 1 in G[V (Co)UY; |,
where Y ={y; : 1 <i <[/},
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We now consider X, = X N X, Y, = {y : 2; € Xg}, and Y, = {y;
z; € Xg}. Clearly |Y;F| = [Y; | = |Xg| > (1 —80)|Co|. Moreover, since |V (Cp) U
Y, UY, | < 3bn < an, we have that eq(Yy", Y, ) < 6|V(Co) UY," UY, | <
30|Cy|. Therefore, disregarding all vertices in YJr UY, that are incident to YgJL
Y, edges of G, we see that there is a set X C V(Cp) with | X| > (1 — 140)|Cy|
satisfying the following: if Y* = {y;f : 2, € X} and Y~ = {y; : #; € X}, then
in G[V(Co) UY T UY ] every vertex in YY" UY ™ has degree 1. [

In the sequel, we fix a set X C V(Cp) together with vertices y;", y;” forall z; € X,
as given by Lemma 14. Also, we let Y* = {y" : 2, € X}, Y~ = {y; 1 2, € X},
and Y = YT UY ™, and put Qo = V(Cy) UY. For simplicity, below we consider
the indices of the vertices x;, yf , and y; reduced modulo ¢ = |Cy|.

Recall L = 2min{k : p(k — 1) > em}. Suppose we are given a set @ C V(J)
with QN Qo = 0 and G[Qp U Q] connected. We say that x; € X is a Q-good vertex,
or simply a good vertex, if both y;” and y; have degree 1 in G[Qo U Q]. Moreover,
we say that (z;,z;+1) € X x X is a Q-good pair, or a good pair, if both z; and x4,
are good.

Now suppose (m(() ),m(()2)) = (w4, xi41) is a good pair. Fix iL'(ll) € {y; .y}

(2)

and 21~ € {y;, .y .} in such a way that x( ) € Vo) 9:12) € Vy(2), and p(1) #

p(2). Thus, given @ as above and a @-good pair (:1:(()1), m(()Q)) we have associated to

this pair a certain pair (acg ), acg )) of vertices that belong to different vertex classes

of J. For brevity, we put @Q(xél), x(()2)) (x 51),3352)).

3.2. Main Iterative Part of the Enlarging Algorithm. To run this part
of the ‘enlarging’ algorithm (cf. §1), we assume that we have the following set-up.
First of all, we suppose that we have a set @ C V(J’) disjoint from Qo = V(Cp)UY
and with G[Qo U @] connected. We remark in passing that, when this part of our
algorithm is first run, we have Q = (). Typically, however, we run this part of
the algorithm many times, and every time we do so we update the set @ to a
slightly larger set. Now, continuing with the description of our set-up, besides @,
we assume that we have a QQ-good pair (x[() ),x[()z)) and (xgl),ng)) (x(()l),m((f)).
Let p(1), p(2) be such that xga) € Vo) (0 € {1,2}). Put J=J [Vp(l),Vp(Q)], and
let X7 = {2{} and X7 = ({7} (0 € {1,2}).

Given the set-up above, we aim at defining sets Xz(l), . ,X,gl), Xéz), .. ,X,gz) C
V(G) satistying the following properties:

(i) T#X)) > X forall 2 < i < k and o € {1,2}.
) \X(")| [f|Xf”>1|1 forall 2< i < k and o € {1,2}.
(#i) The X(a) (2 <i<k,oe€{l,2}) are pairwise disjoint and disjoint from Qo U

Q.
(iv) The only edges induced by Qo U Q U JX i(a) in G, where the union ranges
over o € {1,2} and 2 < i < k, are the ones in

EGuehu | {BEGEDUE(XT, X}

oce{1,2},2<i<k

()\X |<7mfor0<k:/<kand\X()|>7mfor<7€{1 2}.
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SO = <X§1) u-- UX,S)_l) U (Xf’ u-- UX,S)_l);
A=THXPO\XY),; B:i=Tg {(Qo UQUSE )\ X;S)_l}s
if |4\ B| > flx{ |
then return X)) ¢ A\ B with |X\)| = [£|1 X ,]]
else return Q) := S,(;)_l and Q@ c ANB
with |Q®)| = [f\X,S)_IH and report failure

FiGure 1. Algorithm I

However, starting with a particular Q-good pair (:c(()l),:c((f)), we may fail to find

such sets Xi(o) (2<i<k, oe{1,2}). In this case, we shall find a pair of sets Q(*),
@(2) satisfying the following properties:

(i) Qv(l) NQR® =0, and Q= QW U QX is disjoint from Qo U Q.

(id) 10P] = {(f — 1)/2f 1@ ) o

(ii1) G[QoUQUQ)] is connected and e(G[QoUQUQ)]) > e(G[QoUQ]) +|Q|+]Q?)|.
We now describe the algorithms that we shall use to generate the sets Xi(a) or,
failing that, the sets @(1), @(2). Assume first that &’ > 2, and that we have already
found the sets Xi(g) (2<i<k —1,0€{1,2}) satistying (i)—(iv) with k replaced
by k' — 1. The algorithm that we use to generate X ,S) is given in Figure 1.

Assume Algorithm T has returned X,i,l). Then FJ(X,SL) D X,S)7 ]X,S)| =
rr1x) 7, X0 is disjoint from X (2 < i <k —1, 0 € {1,2}) and disjoint
from Qo U @, the only edges of G that are both incident to a vertex in X ,S) and
to a vertex in Qg U Q U UXi(U), where the union ranges over 2 < i < k' — 1
and o € {1,2}, are the ones in EG(X,i}ll, X,(C})). Now we may run Algorithm IT in

Figure 2 to generate X,g?), or else to find appropriate @(1), @(2).

sP =50 uxW:
A=THXP O\XE s Bi=Te {(QuQusE )\ X, };
if |4\ B > f1X,7 |
then return X,g?) C A\ B with \X,g)] = (f\X,g)_lﬂ
else return @(1) = S,i?ll and Qv(Q) CANB
with [Q®| = [£|XZ) |1 and report failure

FIGURE 2. Algorithm II

A quick inspection gives the following.

LEMMA 15. Suppose the sets X,g‘,y,) (1 < K" < K,o € {1,2}) satisfy conditions
(i)—(iv) above with k replaced by k' — 1, and that running Algorithm I and II we
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obtain X,gff) (0 € {1,2}). Then conditions (i)—(iv) hold with k replaced by k'. O

Now assume that either Algorithm I or Algorithm II has failed to generate X ,S)
or X ,g), respectively. Thus we have defined a certain pair of sets @(1), 6(2).

LEMMA 16. Statements (i)—(iii) above hold for Q, Q.

Proof. Let us assume that @(1), @(2) have been generated by Algorithm II. The case
in which they are generated by Algorithm I is similar, and therefore omitted. Start

by noticing that QWNQ® =0, since QW) = S,(j)_l, Q® CcA=T- F(X ,g) 1)\X,g?) 2
and the only edges of J incident to X 153)—1 have their other endvertex either in X ,i,)_Q
or outside Qo U Q U S,(j)_l. This last fact also implies that AN (Qp U Q) = 0 and,
since QM) = S,i?)_l is also disjoint from Qu U Q, we have that Q N (QoUQ) =
(. Thus (i) follows. We now check (ii). Here we use that the sets Xi(g) grow
geometrically with ¢, and that, by Lemma 12, the set A = (X,g?) 1) \X,g?) 9
has cardinality |A| > 2f|X ,i?) 1|- Note that the latter fact implies that [A N B| >

\Xk, 1|, since we have |A\ B| < f]X,S) 1|- Thus we may indeed find Q® c AnB
with [Q®)| = [f|Xk, 1|1, as required in Algorithm II. Now, we have QW] =
1S | < (2/(1—1/f) — D|X]. Thus @ = QW U Q@ has cardinality |Q| <
{(F+1)/(f = DHXD|+1QP| = {(F +1)/(f — 1)+ 1}HQ®P| = {2f/(f —1}HQ®),
as required.

We now turn to jzzz) First recall that G[Q U Q] is connected, and note that,
cle&irly, G[QoUQU Q(l)] is also connected. It Tnow suffices ‘to notice that each vertex
of Q® sends at least two edges into QoUQUQW: if w € Q| then w sends an edge
into X,g,) | sincew € T (X]g) 1), and w sends an edge into (QoUQU QW) \X,g?)_l
sincew € B=T¢ {(Qo uQU S;(j),l) \X,i?ll} Thus (4ii) follows. O

We shall run Algorithms I and IT alternately until we either have obtained the
sets Xi(a) (1 <i<k, oe€{l,2}) satisfying (i)—(v) above, or else we have found
the sets Q), Q) satisfying (i)—(4ii). Algorithm III given in Figure 3 makes this
precise. Recall Cy and Y are fixed. Let @ C V(G) be such that Q N Qo = 0

and G[Qo U Q)] is connected. Now let (x(()l),x(()z)) be a Q-good pair. We may now
run Algorithm III with this input.

3.3. Part I of the Enlarging Algorithm. We now consider the two possible
outcomes of Algorithm III, namely, either we have generated sets X; (@) (1<i<k,
o € {1,2}) or else we have generated the sets Q) Q). If the latter happens, we
let Q = QU Q, we then look for a -good pair of vertices (IL‘é ), IL‘é )) in Cy, and
we run Algorithm III with @ and (x(()l), a_c(()Q)) If, on the other hand, Algorithm IIT
succeeds in finding the sets Xi(g), we then run Algorithm IV given below. Thus,
roughly speaking, we run Algorithm III several times until it returns the sets X i(a) .
We make this precise in Algorithm IV, given in Figure 4. To run this algorithm,

we only assume that Cj has been fixed at the beginning. The main lemma in this
section is the following.
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(21", 2?) = Bqaf”, x”);
X = (2h X = 2Ph x0 = 20 X = 2P
k:=1;
repeat k:=k + 1;
run Algorithm I to generate X ,21);
if succeeded in generating X ,gl)
then run Algorithm IT to generate X ,22)
until have |Xlil)|, |X,E:2)| > ym
or else Algorithm I or Algorithm II reported failure;
if obtained ]X,gl)\, ]X,iz)\ > ym
then return Xél), e ,X,gl), X(()2), e ,X,gz)
else return @(1), @(2) given by the algorithm that failed

FicUre 3. Algorithm IIT

let X, Y asin Lemma 14 be fixed;
Qo :=V(Ch)UY; Q:=0;
repeat
(*) find a Q-good pair (m(()l), m(()2));
run Algorithm III to obtain the XZ»(U) or é(l), é(z);
if Algorithm III has failed then Q := Q U QW U Q®
until Algorithm III returns Xi(a) (0<i<k,o€{l,2});
return the Xi(a)

F1cURrE 4. Algorithm IV

LEMMA 17. Algorithm IV finds Q@ C V(J'), a Q-good pair of vertices (:U(()l),$(()2)),
(xgl),xgz)) = @Q(xél),xéz)), and sets Xl-(a) (0 <i <k, o€ {1,2}) with Xég) =
{xég)}, ng) = {:cg")} (o0 € {1,2}) and such that (i)—(v) hold.

To prove Lemma 17, it suffices to show that, in any iteration of the repeat
loop in Algorithm IV, a Q-good pair of vertices (:1:(()1), :1:(()2)) as required in (*) may
always be found. We now proceed to prove this. Thus, let us assume that this loop
has been iterated j > 0 times and that, in these j calls of Algorithm III, we have
failed to generate the Xi(a). Let Qg-}), Qf) be the sets returned by Algorithm III
in the j'th call (1 < j' < j). Put Q; = QE}) U Q?) for all 1 < 5/ < j, and
let @ = Ui, Q- Also, let Q) = ;e Q§-7) (o € {1,2}). We now prove
two auxiliary lemmas, Lemmas 18 and 19.

LEMMA 18. For all 1 < j' < j, we have |Q;/| < (a/2)n.

Proof. Fix 1 < j' < j, and suppose that, for some k&’ > 2, in the j'th call of
Algorithm IIT we generated X((]a), . .,X,S,jzl (0 € {1,2}) and X,g,l), but failed to
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generate X( ) Then, for o € {1,2},

Q=] U X,£%>+|X,S>r+r@§?>\s(

ore{1,2},2<k" <k’
Therefore, if |Q;/| > (a/2)n, we have
f- a(f —1)n
e R 2 T 2 Ym,
> A W
which is a contradiction. The case in which Algorithm III generates Xéa), e X 12711

(o € {1,2}) but fails to generate X,S) for some k&' > 2 can be dealt with simi-
larly. O

LEMMA 19. Let 1 < j' < j and set Q' = Q1 U---UQj. Then G[Qo U Q'] is
connected and e(G[Qo U Q']) > |Qo U Q| + ‘ U1<]H<j Qi

Proof. This follows from property (iii) satisfied by the QW, Q@ generated by
Algorithms T and II, and a simple induction on j’. O

(o)
1—1/f +2(f+1)> | X 24 -

X)) > 1Q;

Recall we are assuming that the repeat loop of Algorithm IV has been run j
times, and that we have so far failed to generate the XZ-(U). Moreover, @ =
U1<j,<j @; is the union of the QM Q® obtained by Algorithm IV in those j calls

of Algorithm IIT. We now consider G[Qo U Q]. We let X; C X be the set of Q-good

vertices of Cyp. We aim at showing that there is a ()-good pair (x(() ), x(()2)) € X;xXj.

An easy counting argument shows that such a pair does indeed exist if | X;| > |Cp|/2.
LeEMMA 20. We have |X;| > |Copl|/2.

Proof. Let z; € Cy be an (-good vertex that is not Q-good. Then by definition

either y;” or y; has degree at least 2 in G[Qo U @Q]. Note that this may be the case

either because (a) x; belonged to a good pair (x(() ), x(() )) in one of the j iterations

of the repeat loop of Algorithm IV, or else because (b) although it never belonged
to such a pair, a vertex in Q®) = U1<j/<3 Q(?) is adjacent to yZ ory, in G. Let us
say that z; € X \ X, has been used if (a) above holds, and that x; has been spoilt
if (b) above holds.

Clearly, the number of used vertices z; in X \ X is 2j. Let s be the number of
vertices z; € X \ X; that have been spoilt. Then |X| = 2j + s + | X;|. We now
analyse two cases.

Case 1. We have |Qo U Q| > an.

In this case, let jo = max{j’ : [QoU---UQ,/| < an},and let Q' = Q1 U---UQj,.
If |Q'| > 3bn, then |Q'| > |Qol, since |Qo| < 3|Cy| < 3bn. Therefore, by Lemma 19
and property (7) of Qg}), Q;-?), we have

(Gl UQ) —1Qua>| | P zf;fl@'\
1<5' <jo
i1 Q)

57 100U v|= 1 |Q0UQ\>5\Q0UQ\
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Since |Qo U Q'| < an, this contradicts the fact that G is («a,d)-locally sparse.
Therefore we have |Q'| < 3bn. But |Qo U Q' U Qj,+1] > an, and hence |Qj,+1| >
(o — 6b)n > (a/2)n. This, however, contradicts Lemma 18, and we conclude that
Case 1 cannot occur.

Case 2. We have |Qo U Q| < an.
Suppose first that |Q| > |Qo|. Then, as in Case 1, we have that

e(GlRoU QD) —120u@l> | | @?|> L Lig,uql> e uql,

1<5'<y 4

which is a contradiction. Thus |Q| < |Qo|- Now suppose j > |Cy|/10. Noting
that |Q| > j, we have

f-1_1Q

@(G[QO UQ]) - ‘QO U Q’ > Tmmgo U Q’
-1 J—1
> TWKQO uQ| > WKQO UQ|>9QouUQ,

which is again a contradiction. Therefore j < |Cy|/10. Finally, to complete the
proof of our lemma, suppose that |X;| < |Cy|/2. Then |Co|(1 — 146) < |X| =
2j+s+|X;| < s+(7/10)|Cy|, and hence s > (3/10)|Co| —146|Co| > (1/5)|Co|. We
remark in passing that, if j = 0, this is already a contradiction since in this case
trivially s = 0. In general, we have e(G[Qo U Q]) — |Qo U Q| > 1+ s > |Cy|/5 >
(1/30)|Qo U Q| > §|Qo U Q|, which is a contradiction. Hence |X;| > |Cy|/2 and the
lemma is proved. [

Now Lemma 17 follows easily.

Proof of Lemma 17. As observed above, Lemma 20 implies that we may always
execute step (*) in the repeat loop of Algorithm IV. Thus we eventually succeed

in finding the required X i(g), and hence Lemma 17 follows. [

3.4. Part IT of the Enlarging Algorithm. Now assume that Algorithm IV has
terminated with Xéa), e ,X,io) (0 €{1,2}). Recall that |X,i0)| >~ym (o € {1,2}).
Let 2 < kg < k be such that if S = Qg U UX,E‘,T), where the union ranges over 2 <
k' < ko and o € {1,2}, then |S| < fm. Note that |Qo| < 3bn < Bm, and hence kg
is well-defined. To find the induced cycle C’ that we are after, we now run another

algorithm, Algorithm V. This algorithm defines further sets X ,gi)l,X ,21)2, .. (o€

{1,2}), and it uses them to find C’. As usual, let Xéo) = {:U(()U)}, X{U) = {xY’)}
(0 €{1,2}), let xﬁ") € Vyo) (0 € {1,2}), and put J= J[Vo1), Vo)) Algorithm V
is given in Figure 5.

For the sets X,ga) (0 € {1,2}) to be well-defined in the repeat loop in Algo-
rithm V, we need to verify the following lemma.

LEMMA 21. Suppose the repeat loop of Algorithm V has been run fork < k' < k.
Then [T #( X5 )\ (T UTa(S))| > FIX) | for o € {1,2}.
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Z/k ::ngO UlUs<pr <k, e (1,2} Xlg(/j); S:=QoUlUscrs<ky, e 1,2} XIS;);
repeat’ K=K +1;
pick X, € DH(X0) )\ (Th1 UTG(S)) with [X1| = [£1X07,[];
pick X7 ¢ rj(X,g?ll) \ (T—1 UTa(9)) with [ X7 = [FIXZ) |15
Ty =T U XIS) U X]S:?)
until | X7 > em (o € {1,2});
ki =k, and let z(V) € X(l) @ ¢ X(2) be such that z(Mz®@ e E(J);
for o € {1 2}, let P(°) be the x( o) a:(") path
in.J naturally given by the X (U)
(1) let C” be the cycle in J’ obtained from Cy by replacing the
x((]l) (2) path of length L in Cy by P(Mz(M (2 p2).
return C/

Ficure 5. Algorithm V

Proof. Fix o € {1,2}. We have that

2
T 1] <
el = 7=y

and, since ]Xk,, 1| = ym, that [T'g(S)| < 8d|S| < 8dpm < (8dﬁ/7)|X,§‘,7,)_1|. There-
fore, by Lemma 12, we have

o 2f (o
X301+ 1Qol < 721X | + 36,

T X))\ (T UTG(S))] = {fo - AL R } X > XS

as required. [J

Recall that ko was the largest integer with 2 < kg < k and |S| < fm, where S =
Qoul X,i, and the union is over 2 < k¥’ < kg and o € {1,2}. Since the sets X( ?)

(1 < k' < k1) grow geometrically, this choice of ko implies that | X IEZ)’ = Q(n)
(o0 € {1,2}), and hence that k1 — kg = O(1).

LEMMA 22. Therepeat loop of Algorithm V generates X,ii)l, . ,X,Sflf) with \X,ET)| >

em (o € {1,2}). Moreover, we have that ki — ko <log;(e/70)-

Proof. The first statement follows from Lemma 21. For the second statement, let
us first show that indeed |X\7)| = Q(n) (o € {1,2}). If ko = k, then | X7 > ym >
~von. Assume that kg < k. Then

Bm < |Qo U U X7 < 3bn+ ¢ XD+ 201X

2<_k/§‘30 1706{172} /J
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Hence \X,gi)| = |X,£§)] > ((f=1)/2(f*+ f = 1)) (Bu — 3b)n > yon. Since ]X,S,T) =
[FIXS) ] for all 2 < K < ky and o € {1,2}, we have ki — ko < log;(e/70). O
We have now completed the proof that the ‘enlarging’ algorithm succeeds.

LEMMA 23. Algorithm V returns an induced (¢ + 1)-cycle C' C J of J that is also
induced in G. [

3.5. Proof of the Theorem. The methods used in the proof of Lemma 23 may
be used to prove Lemma 13.

Sketch of the Proof of Lemma 13. Pick zg € J', and choose y* € T'F,(x0), y~ €
I} (xo) arbitrarily. Put Y = {y*,y~}, X(()l) = X(SQ) = {x0}, Qo = {x0} UY,
Q = 0, acgl) = gyt xgz) = gy, and let x§") € Vp(a) (o € {1,2}). As usual,

let J = JVoy, Vp2yl- Put k = 1, and iterate the repeat loop in Algorithm III. By

using that G is («, d)-locally sparse, one may prove the following claim

Claim. The repeat loop in Algorithm III, run with the set-up above, succeeds in
finding sets XO(U)7 cees X,gg) with \X,ga)\ >ym (o € {1,2}).

We omit the proof of the claim. Now replace step (1) in Algorithm V by

let C' be the (L + 1)-cycle in J’ naturally given by
the cycle Cp, the paths P, P and the edge (M z ()

Running this modified Algorithm V on the sets Xéa), e ,Xlga) (o0 € {1,2}) given
by the above claim, we obtain a cycle C’ of J’ that has length L + 1 and that is
also induced in G, as required. [

Proof of Theorem 10. Lemmas 4, 13 and 23 give that a graph G as in Lemma 9 is
as required. [

84. DENSITY TYPE RESULTS

Theorem 10 is clearly a Ramsey type result. If, instead of colouring the edges of
a graph G with r colours, we simply picked e(G)/r edges of G, we could not even
guarantee that we would obtain an odd cycle. However the following ‘density’ type
results may be proved.
THEOREM 24. For any 0 < v < 1, there are constants c; = c1(y) > 0, by = b1 () >

0, By = B1(y) > 0, and a graph G = G’ of size e(G) < c1n such that G o2 for
v

any Bilogn < {<bn. O

Roughly speaking, the result above says that a density type result may be proved
for long even induced cycles, for any fixed positive density. If we wish to guarantee
long odd induced cycles as well, we need to assume that the density is strictly
above 1/2.

THEOREM 25. For any 1/2 < v < 1, there are constants ca = ca(y) > 0, by =
ba(y) > 0, B2 = Ba(y) > 0, and a graph G = GI of size e(G) < can such

that G240 for any Balogn < £ <byn. O
¥

To prove Theorems 24 and 25, we again consider a random graph G, € G(N,p)
with p = D/N and D a constant very large with respect to 7. We then take G
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to be a subgraph of G, with small maximal degree and large girth. We omit the
details.
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