CHAPTER 4

The Hitting Time of Hamilton Cycles in Random
Bipartite Graphs

B. Bollobést
Y. Kohayakawa*

Abstract. Frieze showed that the limit distributions of Hamilton cycles and minimum degree
two coincide for random bipartite graphs. We strengthen this by showing that the hitting times
of having minimum degree at least two and being Hamiltonian coincide for almost every random
bipartite graph process. The method used in our proof includes a new way of finding Hamilton
cycles in random bipartite graphs.

1. Introduction

Pésa [10] and Korshunov [8] showed that a.e. Gp is Hamiltonian if p = c¢(logn)/n, where ¢ >
0 is some absolute constant; this came close to answering completely a question of Erdés
and Rényi [4], who raised the problem of computing the ‘minimal’ p = p(n) for which
a.e. random graph G, of order n has a Hamilton cycle. Based on the work of Pdsa,
Komlds and Szemerédi [7] succeeded in determining the threshold function for Hamilton
cycles (see also Korshunov [9]); they proved the very pleasing fact that it coincides with
the threshold function for minimum degree at least two. In fact, as proved in [2], a much
more refined result is true: not only do the threshold functions of these two properties
coincide, but so do their hitting times for almost every graph process.

In this note we are interested in Hamilton cycles in random bipartite graphs. Frieze [6]
determined the limit distribution for Hamilton cycles in such graphs, thus showed that the
threshold functions for Hamilton cycles and minimum degree two coincide in this case as
well. In spite of the fact that such a result is not very surprising, the proof is rather
complicated: it is certainly much more difficult than the proof of the results in (7] or [9].
Our aim in this note is to sharpen this theorem of Frieze by showing that the properties of
being Hamiltonian and having minimum degree two do not only have the same threshold

function, but their hitting times coincide almost surely as well.
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It might be at first a little surprising that one needs any new idea to determine the
threshold function of being Hamiltonian for bipartite graphs, however no simple-minded
application of the known techniques is enough: they break down when one wants to apply
Pésa’s lemma owing to a certain parity problem. Qur method of overcoming this difficulty
is different from Frieze's; being simpler, it will allow us to sharpen his result as described
above.

The notation and terminology used in this note are standard (see [3]) but for the sake
of convenience we define some of the terms we shall use. We start with a model of random
subgraphs of a graph. Let a graph H be given and assume that H has m > 1 edges.
Let 0 <p <1and 0 <t<mbe given. Let us first define the model G(H,p) of random
spanning subgraphs of H as follows. A random element G, € G(H,p) is obtained by
selecting its edges randomly from the edge-set of H, where the probability of an arbitrary
fixed edge of H being selected is p, and all these selections are independent from one

another. More precisely, for an arbitrary fixed spanning subgraph G of H,
P(G, = G) = p9(1 — p)m ),

where as usual e(G) denotes the number of edges of G. We now define the space G(H,1);
this is simply the probability space on the spanning subgraphs of H with exactly ¢ edges
where all of them are equiprobable.

Analogously to a random graph process (see [3], p. 38), we define a random H -process,
or simply an H -process, as a Markov chain G = (G,)7* whose states are spanning subgraphs
of H. The process starts with the empty graph and, for 1 £ ¢t < m, the graph G; is obtained
from G;—, by the random addition to it of an edge of H not present in G;_y, with all the
possible new edges equiprobable. Thus Gy has precisely ¢ edges and G,, = H. Let §(H ) be
the set of all m! random H-processes. Then it is a probability space all of whose elements
are equiprobable; we shall usually write G for a random element of it.

Suppose that @ is a non-trivial monotone increasing property of the subgraphs of H;
that is, the graph H has it, the empty subgraph of H does not have it, and f G C His a
subgraph of H that has it then any subgraph of H that contains G has it as well. Then for
all H-processes G= (G)F we call the time r for which @ appears the hitting time of Q:

T=T19= Tq(é) = 7(G; Q) = min{t > 0: G has Q}.

Let us now go back to bipartite graphs by letting H above be the complete balanced
bipartite graph K™™. Let 0 < p = p(n) < 1 be given. The most basic model of random
bipartite graphs is simply G(K™™,p). We shall call a K™"-process a random bipartite

graph process, or briefly a bipartite graph process. Our main result of this note is that the
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hitting times of having minimum degree two and of being Hamiltonian coincide in a.e. such

process; formally, for ae. G € G(K"'"),
T(é; G is Hamiltonian) = (G 8(G) > 2), (1)

where as customary §(G) denotes the minimum degree of G.

Let us outline the organisation of this note. In Section 2 we give some preliminaries
concerning models of random graphs; in particular, we introduce several spaces of random
graphs that will be needed in the proof of our result. We also describe the various rela-
tionships between these spaces and briefly discuss why they are needed. Our main result
(Theorem 11) is given in the next section; it follows soon after Lemma 8, which is the key
result needed in its proof. In Section 4 we discuss a related problem concerning certain

special k-factors.

2. Preliminaries

We shall mostly be dealing with balanced bipartite graphs and therefore it is going to be
convenient for us to fix once and for all two disjoint n-sets, say A = A, and B = B,,
as the vertex classes of our bipartite graphs. More precisely, the term ‘bipartite graph’
will mean a spanning subgraph of the complete bipartite graph J{™" whose vertex classes
are A and B.

As mentioned in the introduction, the most basic model of random bipartite graphs
is G(K™™,p). As an illustration of one of the ideas involved in the proof of (1), let
us very roughly sketch how one might prove that a.e. Gp € G(K™",p) is Hamiltonian,
provided p = p(n) is large enough.

Given a random element G, € G(X™",p), we first prove that, as p is large enough,
it a.s. has a 2-factor F. We then select a largest component Q of F, which is obviously a
cycle. If Q is a Hamilton cycle we are done, hence we assume the contrary. We now use the
fact that G, is a.s. connected: let Q' # Q be a component of F' which is connected to @ by
an edge in Gp. The cycles Q and @' and any edge between them give us a path P in Gp
of order strictly larger than the order of Q. Note that we now have a spanning subgraph
of G, that is a collection of cycles and a path. If we can extend our path P to a longer
path in G,, we do so. Otherwise we note that, by adding a very small number of edges
to Gp, we can get a cycle Q" for which V(Q") = V(P). We now have a new 2-factor F
whose largest component is strictly larger than the largest component of F. We complete

the proof by iterating this process, until we find a Hamilton cycle.

Unfortunately, the proof of (1) will involve a slightly more complicated model than
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G(K™",p); in fact, by Lemma 1 below, it will suffice to prove that a.e. random bipartite
graph is Hamiltonian according to the model G, .(n, p; 2 2), which we shall now introduce.
This is a model of random edge-coloured bipartite graphs. Let 0 < p = p(n) < 1 and
1 €k € n be given. (In Sections 2 and 3 we shall always have £ = 2; in Section 4, we
shall consider arbitrary k.) The model G, = Gy -(n,p; > k) consists of bipartite graphs
whose edges are coloured yellow and red. To define a random element of Gy ,, first choose
an element Gy of G(K™",p). Let zi,...,z, be the vertices of degree less than k in G,.
For each i = 1,...,s, randomly add to Gy an edge z;y;, where the vertex y; belongs
to the vertex class not containing z; and z;y; ¢ E(Gy). Colour the edges in Gy yellow
and the edges added to Gy red. This yellow-red edge-coloured bipartite graph Gy,r is a
random element of Gy . The model Gy (n,p; > k) is defined analogously; thus its elements
are random bipartite graphs whose edges are coloured blue and red: the blue edges are
generated first with probability p and then the red ones are added as before.

We shall always choose p in such way that the minimum degrees of both Gy and G} are
almost surely one. Thus the red edges that we add to them when we generate G, . and Gy,
guarantee that we obtain graphs of minimum degree two almost surely. In fact, it might
be of some help to keep in mind that the red edges are used always solely for the purpose
of making the minimum degree of our graphs almost surely two: hence the notation that

distinguishes red. We shall use the bipartite version of a lemma of Bollobds {2].

Lemma 1. Let k > 1 be fixed and let Q be a non-trivial monotone increasing property

of bipartite graphs such that every graph having () has minimum degree at least k. Let
p = (logn + (k — 1)loglogn — w(n))/n, 2)

where w(n) — oo and w(n) < logloglogn. If a.e. graph in Gy,r = Gy r(n,p; 2 k) has @,
then
r(6;Q) = 7(G8(G) 2 k)

for a.e. bipartite graph process G. ]

It should now be clear that our aim is to prove that a.e. Gy r € Gy,r = Gy,r(n,p; 2 k)

is'Hamiltonian, where k = 2 and p satisfies (2). Let us set
p = (logn + loglogn — loglog logn)/n; 29

from here onwards, we tacitly assume that p is given by (2"). We shall use the pow-
erful colouring technique of Fenner and Frieze [5] in order to establish that a.e. Gyr is

Hamiltonian.
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At the beginning of this section, we sketched a proof of the fact that a.e. G, € .
G(K™",p) is Hamiltonian if p is large enough. Fenner and Frieze’s method can be applied
to rid that proof of its recursive character, thereby substantially simplifying it and allowing
one to derive a sharper result. (For instance, compare the proofs of Theorems VIIL9
and VIIL11 in (3].) The key ingredient of the colouring method is the use of two certain
models of edge-coloured graphs. Since we are already looking at a model of such graphs,
namely G, r, our use of Fenner and Frieze’s technique will be slightly complicated by the
fact that we shall have to introduce two further models of edge-coloured bipartite graphs.

The models we shall need are defined as follows.

Let us start by setting p, = (nloglogn)™ and p, = 1 — p}. We now define the
model Gb,g,r = Gb,g,r(1, P, Py, Py; 2> 2) consisting of bipartite graphs whose edges are col-
oured blue, green and red. To define a random element Gy g, of G 4 -, pick an element Gy
of Gy, and recolour its yellow edges blue with probability pj and green with probability py,
the colours being chosen independently for each edge. We denote the probability in G; 4 -
by Py g,r-

Given a random element Gy,gr € G g,r, let us denote by G, the graph obtained
from Gb,g,r by the deletion of its green edges. We define the space §, -~ , consisting of

g.r’

random blue-red edge-coloured bipartite graphs, by requiring that the map Gs g, — G, ~

19T

given by Gy gr — G b should be measure preserving.

Although in principle we are now ready to start our proof, it will be convenient to
introduce, merely for technical reasons, two further spaces of graphs. Instead of working
directly with the models Gy 4,0 and G, -, it will be easier to consider approximations to
these spaces, denoted Gy r o and Gs,r respectively, defined as follows.

We start with Gy . Set
Pb = pyp
= (1—py)p
= (1 - (nloglogn)™") (logn + loglog n — logloglogn) /n.
Our space Gy, is simply Gy (n, pp; > 2); we denote the probability in this space by Py r.
Let us now define the model Gs,r,y = Gb,r,¢(1, Pb,Pg; 2 2), which very closely approxi-
mates Gy g, Let us set py = pp,, /(1 — ps). To define a random element Gb,r 5 € Gb,r,g, We
pick an element G4, from Gy, and an element H from G(K™", p,) independently of each
other and then set
Gi,r,g = Gor U H.
We keep the colours of the edges in G4, and colour the new edges coming from H green.
The probability in the space Gy r g is denoted Py r,g. Note that the map ¢ :Gorg — Goor

given by Gy,r,g — Gr = G, - is measure preserving.
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The following lemma simplifies the computations and justifies the introduction of the

last two spaces of random graphs.

Lemma 2. Let @ be a property of blue-green-red edge-coloured bipartite graphs. Then
a.e. Gy g r € Gy g,r has Q if and only if a.e. Gy .y € Gor o has Q. a

Lemma 2 follows easily from the two observations below. We denote by V;(G) the set
of vertices of degree one in G. Also, given a coloured graph G} , ., we denote the graph
obtained by deleting its red edges by G;,g’?, and the one obtained by further dropping the
green ones by G;,,g\,:. The graph obtained by deleting its blue edges is denoted GX

1T
Lemma 3. Let G;, or be a fixed bipartite graph whose edges are coloured blue, green and

red in such a way that the following conditions hold:

@) 6(Gi)=a(cz, ) =1,

r b,g,r
(i) 6 (Gigr) =2
(i) Vi (G;’g;) -V (G:,E?).
Then
Pb,g.r(Gogr = G gr) = (1 +0(1)Pb,r,¢(Go,r,s = Gig.r)- m]
Lemma 4. A.e. Gy g, € Gb,q,r satisfies (i), (ii) and (3i1) of Lemma 3. 0

In the proof of the fact that a.e. Gy ; € Gy, is Hamiltonian, we shall need the following
purely graph-theoretical lemma on 2-factors. We omit its proof, although we remark that
one can easily deduce it from the max-flow min-cut theorem of Ford and Fulkerson (for
instance, see (1], p. 47). Before giving the lemma, we introduce some further notation.
Given a bipartite graph G and a subset U of its vertices, we denote by T(U) the set of
vertices of G adjacent to some vertex in U. Also, the set of vertices of G that are adjacent
to exactly one vertex in U is denoted by I'=1(U). We set '52(U) = T(U) \ I'=1(U). Thus
the vertices in I'»2(U) are adjacent to at least two vertices in U.

Note that if a bipartite graph G has a 2-factor then, for all U C V(G) entirely

contained in one of its vertex classes, we have that
1
[P32(0)| + 2= ()] > [U] (3)

Lemma 5. Let G be a bipartite graph. The following conditions are equivalent:
(i) G has a 2-factor.
(ii) For all U C A, relation (3) holds.
(i) For allU C B, relation (3) holds. O
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We shall need the following definition. Let G be a bipartite graph. We say that G is
2-ezpanding, or simply ezpanding, ifforal U C Aand allU C B

[Tl 2 2U],
provided |U| < 2n/5. We shall use the following corollary to Lemma 5.

Corollary 6. Let G be an expanding bipartite graph. Suppose that for all S C A and
all S C B we have

IT>2(5)] 2 151,

provided |S| = [2n/5]. Then, if G does not have a 2-factor then there is a set Uy C V(G),
Uo C A or Uy C B, for which (3) fails and |U| < 3n/5.

Proof Suppose G does not have a 2-factor. By Lemma 5 and the symmetry between A
and B, we may and shall assume that there exists a set U C A for which (3) fails. Assume
that |U| > 3n/5, since otherwise we are done. It is easy to check that (3) must fail for
Us = B\ T'»2(U) as well. Choose § C U with |S| = [2r/5]. Then

|Uo| = n = T2(U)| < n = IT52(S)| < 1 — 15| < [3n/5). o

3. The main result

Not surprisingly, our proof of the main result of this note is based on Pésa’s lemma [10]
(see also [3], Lemma VIIL4). Given a graph G and a path P of G, we shall call P strongly
mazimal if (1) G has no cycle whose vertex set is V(P) and (ii) G has no path longer
than P in which the vertices of P appear contiguously, not necessarily in the same order
as they doin P.

We are now ready to state a simple corollary of Pésa’s lemma; it is the obvious

analogue of Lemma VIIL5 in (3] for bipartite graphs.

Lemma 7. Let G be an expanding bipartite graph. Set u = |2n/5|. Suppose G has
a strongly maximal path P of even order. Then there are u distinct vertices Y1, ...,Yu
in A and sets Y1,...,Y, C B such that |¥;| > u and G has no y;-Y; edges, 1 < < u.
Furthermore, for all i = 1,...,u and z; € Y;, the graph G has a path Q whose endvertices
are y; and z;, and V(Q) = V(P). O

The key lemma in the proof of (1) is the following result.
Lemma 8. A.e. Gyr € Gor = Gb,r(n,P5; 2 2) is connected, expanding and has a 2-factor.

Proof. We assume throughout this proof that n is large enough. Let us first note that
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(logn + loglogn — 2logloglog n)/n < py < (1 + o(1))(log n)/n.

(a) A.e Gy, is connected.

This is entirely routine: one shows that a.e. Gy € G(I{™", py) has no isolated vertices

and, in fact, is a.s. connected.
(b) A.e. Gy is expanding.

Set R = (logn)?/3. We call a subset U of the vertices of a bipartite graph G a u-
obstruction if |U| = u, either U C A or U C B, and

ID(UY| < 2|U| + R.
Moreover, if the graph G[U U T(U)] induced by U UT(U) in G is connected, we say that
the u-obstruction U is connected.

Claim. A.e. Gy € G(KX™™,py) has no connected u-obstructions for 2 < u < 2n/5.
We shall prove this by considering two ranges for u.
Case 1. ‘Large’ w: (1/13)logn < u < 2n/5.

Let m, = m,(G;) denote the number of connected u-obstructions of G. Then, using the

fact that the number of labelled trees on t vertices is i*~2, we have that

2u+[R]-1 n n
E(m,) < Z 2(u> (v)(u + o)t — p)r(rv)putvl

v=1

n en\® sen\v? 2logn\**”
< hadd = u+tv_—u(n—v)(logn)/n
_zlognz(u) (v)(u+v) € n

utv (u + ,U)u+v —u(logn)(1—v/n)

<n Z(Ze logn) =t

<n 2(46 log n)u+ue—2u(logn)/11
< n(3u)(4elog n)ivp=2u/ll
< 3n%((4elog n)tn~2/11)"
S n—u/G.
Thus
[2n/5]
E Z my | < 2n—(1/78)logn = 0(1))

u=[(1/13)log n]

and hence a.e. G has no connected u-obstruction for (1/13)logn < u < 2n/5.
Case 2. ‘Small’ u: 2 € u < (1/13)logn.

For a vertex v of G, let dp(v) denote its degree in Gp. We show that a.e. Gy is such that
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dy(z) + di(y) > [(1/3)logn] = w, (3)

whenever z and y are vertices at distance two in Gp.

This will imply the claim in this case, since then we have that |['(U)| > (1/6) logn for
any U contained in a vertex class of Gy with |U| > 2 and Gy[U UT(U)] connected. Hence,
if 2 <u=|U| < (1/13)logn and G4[U UT(U)] is connected, then

|T(U)] = (1/6)1logn > 2|U| + R,

showing that U is not a connected |U|-obstruction.

Let us now show that (3) holds for a.e. Gy. Let m = m(Gy) denote the number
of triples of vertices (z,y,2) where z and y are at distance two, have z as a common
neighbour, and the sum of the degrees of z and y is at most w = [(1/3)logn|. It is enough
for us to show that for a.e. G we have m = m(G}) = 0. The following crude estimates for

the expectation of m will suffice:

E(m) — 2n2(n _ 1)])% Z (Z(Tlv— 1)>P§(1 . pb)Z(u—l)—v

v=0

5 5 o (2enpp\Y _an +2
K-n’pyl —— ] € Pog(w+2)z
-2 w

3 10gn 2 2en(1og n)/n (1/3)logn = loglogn (1/3)logn
< 3n n=? | 4 o8logn

n (1/3)logn logn
< (10g n)3n—'1+(1/3)log(6e)

< TL_O'OG,

hence E(m) = o(1), and so a.s. m = 0, as required. This completes the proof of Case 2

and so of our claim.

Let us now continue with the proof of (b). Given a red-blue edge-coloured graph Gb,r,
let Gy denote the graph obtained by the deletion of its red edges. It is straightforward to
check that a.e. Gj,; is such that (i) its minimum degree is two, (i7) it has at most 2(logn)!/?
red edges, (iii) no two of its red edges are at distance less than or equal to 2, and (1v) ver-
tices at distance one from a red edge have degree at least 2 + R in Gy. By our claim
above, we know that a.e. Gy, is such that (v) Gy has no connected u-obstruction for
2 <u < 2n/5.

To complete the proof of (b), it suffices to show that if a red-blue edge-coloured
graph G, satisfies (i)-(v), then it is expanding. Suppose then that, contrary to this
assertion, there is a graph G = G, satisfying (i)-(v) such that

IT(U)] < 2101,
for some set U contained in one of its vertex classes and satisfying U] € 2n/5. Without

loss of generality, we may assume that U C A and that G[UUT(U)] is connected. Let E C
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" E(G) be the red edges of G. Let the components of GIUUT(U)] - E, be Gy,...,G.. Let
C1,...,C, be the components G; for which

[V(G:)n B| 2 2|V(Gi) n Al (4)

and C},...,C] be the remaining ones (s +t = w). We clearly have that ¢t > 1. Note
that [V(C])N A| = 1 for all 1 < ¢ < ¢, since G, satisfies (v) above. Thus, each Clisa
single edge u;v; (u; € U), say, and u; is incident to a red edge, but v; is not, by (si). In
particular, by (i),

t < 2(logn)'/2.

Note that if a little more than (4) is true for some component Ci,, then we get a contra-

diction. More precisely, suppose that there is an éo for which
[V(Ciy) N B| > 2|V(Ci,) N Al + R (5)
holds. Then, as R = (logn)?/® > t, we have that
IP(U)| = 3 IV(EehnBl+ Y IV(C)n Bl

2t+(2V(Ci)NAl+R)+ ) |V(C:)N B
iip
> 264+ 2[V(Cig)| + Y [V(Ci) N B)
i#ig
2 2[U|,
contradicting the choice of U. Hence we assume that for no iy relation (5) holds, and
therefore, by (v), that [V(C;)NA4|=1,forall 1 <i<s.

We now claim that s = 0. Let us assume the contrary. As G[U UT(U)] is connected,
we may assume without loss of generality that there is a red edge joining u; € V(C}) to
a vertex in V(C;) N B. As the degree in G; of the unique vertex in V(C)) N A is less
than 2 + R, this contradicts (iv). Hence s = 0.

We now claim that ¢ = 1. Indeed, if t > 2 then G[U U I'(U)] cannot be connected
since the vertices in I'(U) N B = {vy,...,v} are not incident to red edges.

Thus s = 0 and t = 1. Now we simply note that this contradicts the choice of U
and (). This completes the proof that if G = G}, satisfies (¢)—(v), then it is expanding.
As we saw above, this shows that (5) holds.

(¢) A.e. Gy, has a 2-factor.

Let G be a bipartite graph. We now call a set U C V(G) a weak u-obstruction if
|T>2(U)| £ |U|, and either U C A or U C B. Corollary 6 implies that if G is expanding
and has no weak u-obstruction for 2n/5 < u £ 3n/5, then G has a 2-factor.
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Since we already know that a.e. Gy, is expanding, in order to prove that a.s. such
a graph has a 2-factor, it is enough to show that a.e. Gj , has no weak u-obstruction for
2n/5 < u £ 3n/5. We shall show that this is in fact the case even for a.e. G € G(K™", ps).

Let my, = m,(Gs) denote the number of weak u-obstructions of G. Let 2n/5 < u < 3n/5
and set u = nn. Then 2/5 <7 < 3/5 and

2
E(m.) < (Z) (1 —po)* +ups(1 —ps)*™)"""

27n 1n—u
4
<(5) L3

e 2nn 3 1mnf2 (1=9)n
- — = at/)
<(£)" [Brtogmyrronr

e\2" /3 \'7" "
< <E> (577) (logn)(l—n/Z)(l—n)ﬂn—n(l-n)n

< (log n)13n/'25n—6n/25_
Hence
[3n/5)
E Z my| < (logn)ISn/ZSnl—ﬁn/25 — 0(1)’
u=[2n/5]
and therefore a.e. G has no weak u-obstruction for 2n/5 < n < 3n/5, as required. O

By applying Lemma 2, we conclude the next result. As always, given Gh,g,r € Gbog.rs
we denote by Gb?r the graph obtained from G 4, by the deletion of its green edges.

Lemma 9. A.e. Gy g, inG,gr issuchthat G, is connected, expanding and furthermore

has a 2-factor.

Proof. Let us say that a fixed blue-green-red edge-coloured Gy ;. satisfies property Q
if G:;r, the graph obtained by the deletion of its green edges, is connected, expanding
and has a 2-factor. As the map Giry € Gbrg — G, .5 € Gb,r is measure preserving,

Lemma 8 implies that a.e. G r,¢ has Q. Hence, by Lemma 2, a.e. Gp,g,r has Q. O

Before we can state our last lemma, we need to introduce a further piece of notation.
Let G be a graph. A subgraph F of G is called an almost 2-factor if it spans the whole of G
and all its vertices have degree 2 except for possibly two of them, which may have degree 1.
Thus F is either a 2-factor of G or it is a spanning subgraph of G whose components are
all cycles except for one, which is a path. We set

e(@) if F has a component @
{F)= that is a path

max{e(C) : C a cycle in F'} otherwise,
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where, as usual, the number of edges of a graph H is denoted by e(H). Finally, given a

graph G that has an almost 2-factor, we set
L(G) = max{{(F) : F an almost 2-factor of G}.
If G has no almost 2-factor, we set L(G) = 0. We can now state our last lemma.

Lemma 10. A.e. Gy 4, € Gy g,y is such that L(Gyg,r) = L(G, ~ ).

b,g,r

Proof. Recall that Gy, g, can be generated from a randomly chosen Gy.r by an appropriate
random recolouring of the yellow edges by blue and green. Assume that Gy 4, has been
generated from Gy, € Gy r, with Gy, having an almost 2-factor. Let F be an almost
2-factor of Gy,r such that &(F) = L(Gy ;) = L(Gb,q,r). Let F' be the component of F that
is a path if such exists, otherwise let it be a longest cycle of F. Thus £(F) = e(F"). Note
that L(Gy,g,r) = L(Gb,r) if no edge of F' has been assigned green when we generated Gog,r

from Gy,;. As e(F') < n, we see that the probability that all edges of F' have been coloured

blue is at least

(P)" = (1-py)" = (1~ (nloglogn)™")" =1~ o(1),

and the result follows. O

We are finally ready to prove our main result.

Theorem 11. Let 73, 7o and 7y be the hitting times of having minimum degree at
least two, having a 2-factor and the property of being Hamiltonian, respectively. Then

a.e. bipartite graph process G is such that
12(G) = np(G) = u(G).

In particular, if p= (logn + loglogn + ¢,)/n then

0 ifep, = —o0
lim P(G, € G(KX™",p) is Hamiltonian) = { e~2¢"° ifc, — ¢
nee 1 if ep — +o0.

Proof. By Lemma 1, it is enough to prove that a.e. Gy € Gy r(n,p; > 2) is Hamiltonian,
where

p = (logn + loglogn — logloglogn)/n;

equivalently, that a.e. Gy 4, € Giq,r is Hamiltonian. Let us denote by H° the subset

of Gy,4,r consisting of the non-Hamiltonian coloured graphs, and set

gg‘fw ={Gb,gr:G is connected, expanding, has a 2-factor,

bg.r

and furthermore L(Gjq,,) = L(Gb,’y‘,r)}-
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Thus g}fM is the set of graphs Gigr € Gb,g,r satisfying the conditions in Lemmas 9
and 10. By these lemmas, it follows that P,,,g,z(gg{g,,) =1-0(1). Hence, in order to show
that Py g -(H®) = o(1), it suffices to prove that

Pb,g,(G5r9.c) = o(1), (6)
where G377, = H* N gi‘fg,z. Note that, by Lemma 2, this is equivalent to showing that
Pb)ﬂng(gl?,xgc,_t) = 0(1)1 (7)

which we shall now prove.

Recall that an element Gy,r g € Gs,r,g can be generated by randomly choosing G, €
Gyr and H € G(K™",p,) (independently from each other), and then setting Gs g =
Gy, U H, where we keep the colours of the edges in Gy, and colour the ones in H but
not in Gy, green. Also, recall that the map ¢ : Gy,rg € Gb,5,9 — G, .~ € Gp,r is measure

br,g
preserving. Let us set G5’y = ¢(G5%,)- We then have that

Pb,z.y(gl?fgc,z) < Pb,;(gifz’)max P(H :Gyrg=GorVH € glf?gc,;)y

where the maximum is taken over all Gs,r € G3’F. Hence (7) follows from the claim below.

Claim. For all Gy € G§*°

by

Py = Po(Gy,) =P(H : Gy gy = Gop UH € GF5,) = o(1). 8)

b,g,r

Fix G, € G§¥, and assume that H is such that Gbrg = Gor U H € G, We now
claim that there are |2n/5)2 edges of K™" that cannot appear in H. Indeed, let F be
an almost 2-factor of Gy, that has a component C such that L(Gsr) = &(C)." As Gy r 1s
connected, we see that C.is a strongly maximal path. Applying Lemma 7, we conclude
that Gy, is either Hamiltonian, or else it is such that if any of the [2n/5]? edges yiz:
of Lemma 7 is in H, then L(Gy,r4) > L(Gsr). Since we are assuming that Gs,r g is not

Hamiltonian, this implies that Py is at most

2
NTEYIIC I O G -S N .3 I
(1=p,) = e [ 2 (n2 loglog n 5 o(1),

where we used that
S 1 logn -
Ps = 5\ n2 loglogn /
4. A related problem

Let & > 1 be fixed and let F' be a k-regular graph. We say that F is decomposable if
either k is even and F is the disjoint union of k/2 Hamilton cycles, or else k is odd and F
is the disjoint union of a 1-factor and (k — 1)/2 disjoint Hamilton cycles.

An obvious necessary condition for a graph G to have a decomposable k-factor is that



THE HITTING TIME OF HAMILTON CYCLES 39

its minimum degree should be at least k. The following natural question arises. Let k > 1
be fixed. Let p = p(n) be such that a.e. G, € G(K™",p) has minimum degree k. Is it
then true that a.e. G, € G(K™",p) has a decomposable k-factor? Or, in fact, do the
hitting times of minimum degree at least k and of the existence of a decomposable k-factor
coincide for a.e. bipartite graph process? In this section we outline a proof of the fact

that the hitting times do coincide almost surely. We shall in fact just state the necessary
lemmas and sketch the proof.

The case k = 1 is that the hitting times of a 1-factor and minimum degree at least
one coincide; this may be found in [3] as Theorem VIL1. The case k = 2 is Theorem 11 in
this note; we may therefore assume that k > 3.

For this section we set

p= (logn + (k —1)loglogn — logloglogn)/n,
1

py = (nloglogn)™,
py=1-p,
and
Ps = Pyp-
(We have only redefined p; the other probabilities have been changed accordingly.) We
shall again make use of the models of bipartite random graphs introduced in Section 2;
more precisely, we shall need the following spaces of random bipartite graphs: Gs g, =
Gb,9,0(n, D, Py Dy 2 k), Go,r = Go,r(nypy; 2 k), and Gy,rg = Gb,r,g(n, Pb, Pgi 2 k). The key

lemma is the following.
Lemma 12. Let k > 3 be fixed. Then a.e. Gyr € Gbr is such that if Fy is any (k — 2)-
factor of K™", then Gy — E(Fy) is connected, expanding and has a 2-factor. O
Again by Lemma 2, this immediately gives us the following result, which is the ana-
logue of Lemma 9 that we shall need.
Lemma 13. Let k > 3 be fixed. Then a.e. Gy g,r € Gb,g,r is such that if Fy is any (k — 2)-
factor of K™", then G, ~ - E(Fy) is connected, expanding and has a 2-factor. 0
Arguing in the same way as in the proof of Lemma 10, we conclude the following,.
Lemma 14. Let k > 3 be fixed. Then a.e. Gy gr € G g, is such that
L(Gipgz — E(Ry)) = L(G, 5, — E(F),
for any (k — 2)-factor Fy of Gy g,r. O
We now state the main result of this section and give an outline of its proof.

Theorem 15. Let k > 1 be fixed. Let 7, 7kr and Taxr be the hitting times of hav-

ing minimal degree at least k, having a k-factor, and having a decomposable k-factor,
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respectively. Then a.e. bipartite graph process G is such that
7(G) = 14r(G) = 7arr (G). ©)

In particular, if p = (logn + (k — 1)loglogn + ¢, )/n then
nli_'u;o P(Gp € G(K™",p) has a decomposable k-factor)

0 ifep — —c0
= g2 ifeqn —c
1 if ¢ — +00.

Proof. As the proof does not need a substantial new idea, we shall only sketch it. We
use induction on k. As observed above, we know that our result holds if £ = 1, 2. Let
us assume that & > 3 and that (9) holds for smaller values of k. Again by Lemma 1, it
suffices to show that a.e. Gy q,r € Gs,g,r has a decomposable k-factor. Analogously to the
proof of Theorem 11, let us denote by H° the subset of G g, consisting of the graphs that
do not have a decomposable k-factor.

By applying the induction hypothesis, one can check that a.e. Gy g,r has a decompos-
able (k — 2)-factor. We now set

g,?’,m ={Gs,4,r : Gb,g,r has a decomposable (k — 2)-factor Fy such that

Gb,?,; — E(Fp) is connected, expanding, has a 2-factor,

and furthermore L(Gy4,r — E(F0)) = L(G, ~ . - E(Fy))}.
As in the proof of Theorem 11, but this time using Lemmas 13 and 14, we are left with

proving that
Pu,rg(Ghg,c) = o(1), (10)

where again G5, = H NGy, .
We now argue exactly as in the proof of Theorem 11; in particular, the following claim

completes the proof.

Claim. For all G, € G55,
Po = Po(Gre) = P(H : Go,pg = Gag UH € G55%5,) = of1). (1)

Fix Gy r € G5, and assume that H is such that Gy r,g = Gs,,UH € G%5 . Let [y bea
decomposable (k - 2)-factor of Gp,r,9- Since Gi,r o does not have a decomposable k-factor,
we know that Gy, — E(Fp), and hence Gb,r — E(Fy), is not Hamiltonian. We now claim
that there are |2n/5]% — 2n edges of K™™ that cannot appear in H. Indeed, let F be an
almost 2-factor of G ; — E(Fo) that has a component C such that L(Gy,r — E(Fp)) = ¢(C).
As Gy r—E(Fy) is connected, we see that C is a strongly maximal path. Applying Lemma7,

we conclude that Gy, — E(Fp) is either Hamiltonian, or else it is such that if any of
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~ the |2n/5)% edges yiz; of Lemma 7, except the ones in Fy, is in H, then L(Gy,r,, — B(Fy)) >
L(Gy,r— E(Fy))- Since we are assuming that Gy » — E(Fp) is not Hamiltonian, this implies
that Py is at most

1 logn
1 py2n/5i-2n - togm
(1 =) =P T3\ w2 loglogn / | |

where we used that
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