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Abstract

We give bounds for optimal coverings of finite sets by elements of regular families
of subsets, and show that both upper and lower bounds are asymptotically sharp
for some families of examples.
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1 Introduction

We study coverings of finite sets by subsets belonging to a regular family. By
an (a, b)-regular family of subsets of a finite set F , or an (a, b)-regular hyper-
graph on F , we mean a family C for which there are integers a and b such that
for each C ∈ C we have |C| = a, and, for each x ∈ F , we have deg(x) = b,

where as usual deg(x) =
∣∣∣{C ∈ C | x ∈ C}

∣∣∣. Thus (a, b)-regular families are
what are sometimes called a-uniform, b-regular hypergraphs. The problem of
constructing small covers for such hypergraphs and of estimating the mini-
mum possible size for such covers are common, and appear in many contexts,
as in the study of covering codes (see [3]), in particular, in football pool prob-
lems (see [6]), in the study of vertex covers of graphs, and others. Somewhat
surprisingly, some sharp results are known for problems of this kind, see, e.g.,
[1], [4, Theorem 8.11], [5], and [9]. In this paper, we prove another result that
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shows that one may require strong regularity conditions and still obtain hy-
pergraphs that behave asymptotically ‘badly’ with respect to the size of covers
that they admit.

Let us now introduce the extremal parameter that we are interested in. If C
is a hypergraph on F , we let α(F, C) be the minimal integer r for which
there exist C1, . . . , Cr ∈ C such that

⋃
1≤j≤r Cj = F . We are concerned with

estimating the extremal values of α(F, C).

This paper is organized as follows. In Sections 2 and 3, we prove our upper
and lower bounds for α(F, C). Our proof for the existence of systems C with
large covering number α(F, C) is probabilistic; in Section 3.2, we briefly dis-
cuss a construction of Alon [1] based on finite fields and character sums. In
Section 4 we mention the dual problem of estimating the packing number of
hypergraphs. We conclude with some remarks and an open problem.

2 Upper bounds

Our first result is a slight improvement of classical results by Johnson, Stein,
and Lovász (see [7], [8], and [10]). Let us say that a family C of subsets of a
set F is (a, b)-semiregular if |C| ≤ a for all C ∈ C and deg(x) ≥ b for all x ∈ F .

Proposition 1 Let a and b be positive integers and suppose C is an (a, b)-
semiregular family on an n-element set F . Let m = |C|. Then, for any positive
integer `′,

n

a
≤ α(F, C) ≤ ln(m`′/bn)

ln(1− b/m)
+

m

b

∑
1≤j≤`′

1

j
. (1)

In particular, we have α(F, C) ≤ f(a, b, m, n), where we let ` = dbn/me and

f(a, b, m, n) =



n

`
+

m

b

∑̀
j=2

1

j
if b ≤ m/

√
n

m

b

(
ln

(
bn

m

)
+ γ

)
− 1

2
ln

(
b2n

m2

)
+

1

2
if b > m/

√
n.

(2)

Moreover, if b ≤ m/
√

n, we have

f(a, b, m, n) ≤ n

a
+

m

b

∑
2≤j≤a

1

j
<

m

b
(ln(a + 1) + γ), (3)

where γ = 0.5772156649 . . . is Euler’s constant.

We prove Proposition 1 in Section 2.1 below.
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Corollary 2 Let F be an n-element set and C an (a, b)-regular hypergraph
on F . Let also ` = min{a, dn/ae}. Then

⌈
n

a

⌉
≤ α(F, C) ≤ ln(a/`)

ln
1

1− a/n

+
n

a

∑̀
j=1

1

j

<
n

a

(
ln(a + 1) + γ

)
− 1

2
ln

a

`
+

1

2
. (4)

Our main result, given in Section 3 (see Proposition 6), shows that the esti-
mates for α(F, C) above are asymptotically sharp for certain regular families
of subsets of finite sets.

2.1 Proof of Proposition 1

We state and prove two auxiliary lemmas first. For the remainder of this
section, we fix an (a, b)-semiregular family C on a set F , where a and b are
positive integers. We also let n = |F | and m = |C|. Our first lemma follows
from a well known double counting argument.

Lemma 3 We have am ≥ bn. Moreover, given any A ⊂ F , there is C ∈ C
such that |C ∩ A| ≥ (b/m)|A|.

PROOF. Indeed, for any B ⊂ F , we have

ma ≥
∑
C∈C

|C ∩B| =
∑
C∈C

∑
x∈B

χC(x) =
∑
x∈B

∑
C∈C

χC(x) =
∑
x∈B

deg(x) ≥ b|B|,

where, as usual, χC is the characteristic function for the set C, that is, χC(x) =
1 if x ∈ C and χC(x) = 0 otherwise. Taking B = F , we obtain am ≥ nb,
which proves the first inequality in our lemma. Taking B = A, we deduce
that

∑
C∈C |C ∩ A| ≥ b|A|, which implies that there is a set C ∈ C for which

|C ∩ A| ≥ (b/|C|)|A|, as required. �

An immediate corollary to Lemma 3 is the following.

Corollary 4 For each positive integer k, there are C1, . . . , Ck ∈ C such that

∣∣∣∣F \
⋃

1≤i≤k

Ci

∣∣∣∣ ≤ n

(
1− b

m

)k

. (5)

A finer corollary to Lemma 3 is as follows.
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Corollary 5 It is possible to cover any A ⊂ F with at most

r

`
+

m

b

∑
2≤j≤`

1

j
≤ m

b

∑
1≤j≤`

1

j
(6)

members of C, where ` = dbr/me and r = |A|.

PROOF. We can cover A by C1, C2, . . . ∈ C so that, for each i, the cardinality
of Ci∩(A\⋃1≤j<i Cj) is as large as possible, given C1, . . . , Ci−1. For 1 ≤ s ≤ a,
let ks be the number of sets Ci in this covering such that |Ci∩(A\⋃1≤j<i Cj)| =
s. A little thought shows that Lemma 3 implies that

k1 ≤
m

b
, k1 + 2k2 ≤

2m

b
, . . . , k1 + 2k2 + · · ·+ sks ≤

ms

b
(7)

for all s. Moreover, clearly,

k1 + 2k2 + · · ·+ sks ≤ r (8)

for all s as well. Of course

k1 + 2k2 + · · ·+ aka = r. (9)

Note also that a ≥ `. From (7)–(9) it thus follows that

k1 + · · ·+ ka

=
1

a
(k1 + 2k2 + · · ·+ aka) +

∑
1≤j<a

1

j(j + 1)
(k1 + 2k2 + · · ·+ jkj)

≤ r

a
+

m

b

∑
1≤j<`

1

j + 1
+ r

∑
`≤j<a

1

j(j + 1)

=
r

`
+

m

b

∑
1≤j<`

1

j + 1
≤ m

b

∑
1≤j≤`

1

j
,

as required. �

We may finally prove Proposition 1.

PROOF. (Proof of Proposition 1) In the case b ≤ m/
√

n, the result in (2)
follows from Corollary 5 by taking r = n. The first inequality in (3) follows
from

n

`
=

n

a
+

∑
`≤j<a

n

j(j + 1)
≤ n

a
+

m

b

∑
`≤j<a

`

j(j + 1)
≤ n

a
+

m

b

∑
`≤j<a

1

j + 1
,
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and hence
n

`
+

m

b

∑
2≤j≤`

1

j
≤ n

a
+

m

b

∑
2≤j≤a

1

j
.

The second inequality in (3) is clear.

In general, given a positive integer `′, we claim that the upper bound in (1)
holds. To prove this claim, take r′ = m`′/b, and let

ln(m`′/bn)

ln(1− b/m)
= p + c, (10)

where p is an integer and 0 ≤ c < 1. Let k = p + 1, and set

r =

n(1− b

m

)k
 ≤ r′. (11)

We now apply Corollary 4 with the above value of k; this leaves us with an
uncovered set A of cardinality at most r. We then apply Corollary 5 with ` =
dbr/me ≤ dbr′/me = `′ to cover A. Using (10), (11), and the fact that the
left-hand side of (6) is increasing in ` for ` ≥ br/m, we deduce that this
application of Corollary 5 uses at most

r

`
+

m

b

∑
2≤j≤`

1

j
≤ r

`′
+

m

b

∑
2≤j≤`′

1

j
≤ 1

`′
n

(
1− b

m

)p+c+1−c

+
m

b

∑
2≤j≤`′

1

j

≤ n

`′

(
m`′

bn

)(
1− b

m

)1−c

+
m

b

∑
2≤j≤`′

1

j

=
m

b

(
1− b

m

)1−c

+
m

b

∑
2≤j≤`′

1

j
(12)

members of C. Therefore, in this covering we have used in total at most

(p + 1) +
m

b

(
1− b

m

)1−c

+
m

b

∑
2≤j≤`′

1

j

=
ln(m`′/bn)

ln(1− b/m)
+ (1− c) +

m

b

(
1− b

m

)1−c

+
m

b

∑
2≤j≤`′

1

j
(13)

members of C. The function φ(c) = 1 − c + (m/b)(1 − b/m)1−c is convex,
as may be seen by computing its second derivative, and hence its maximum
is φ(0) = φ(1) = m/b. Therefore (13) is bounded by

ln(m`′/bn)

ln (1− b/m)
+

m

b

∑
1≤j≤`′

1

j
,

as required.
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In order to prove the inequality α(F, C) ≤ f(a, b, m, n) in the case b > m/
√

n,
we just take `′ = bm/bc and apply the above inequality.

Some calculations complete the proof. The two main ingredients in these cal-
culations are the inequalities

∑
1≤r≤k

1

r
− ln k − γ <

1

2k
− 1

12k(k + 1)
,

which is valid for every positive integer k, and

− 1

ln(1− x)
<

1

x
− 1

2
,

valid for all 0 < x < 1. �

2.2 Proof of Corollary 2

Since C is an (a, b)-regular family, we have ma = nb. We take `′ = ` in
Proposition 1. Note that, then, the right-hand side of (1) becomes

ln(a/`)

ln
1

1− a/n

+
n

a

∑
1≤j≤`

1

j
. (14)

Therefore, we shall be done if we prove the last inequality in (4). Consider first
the case in which b > m/

√
n. Note that, then, we have ` = min{a, dn/ae} =

dn/ae, and hence ` ≥ n/a. This implies that ln b2n/m2 = ln a2/n ≥ ln a/`,
and hence, by the second bound in (2), we have that (14) is at most

n

a
(ln a + γ)− 1

2
ln

a

`
+

1

2
.

Let us now consider the case in which b ≤ m/
√

n. Then ` = a. Notice that,
moreover, dbn/me = bn/m = a. Therefore the first bound in (2) becomes

n

a
+

n

a

∑
2≤j≤a

1

j
=

n

a

∑
1≤j≤a

1

j
<

n

a
(ln(a + 1) + γ).

This completes the proof of the second inequality in (4), and Corollary 2
follows.

3 Lower bounds

We work with families of translations of a-element subsets of Z/nZ.
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If A = {0̄, 1̄, . . . , a− 1} ⊂ Z/nZ and C = {A + t | t ∈ Z/nZ}, where A + t =
{x + t | x ∈ A}, then α(Z/nZ, C) = dn/ae.

In the other direction, we have the following proposition.

Proposition 6 There is a0 ∈ N such that if n > a ≥ a0 then, for some
A ⊂ F := Z/nZ with |A| = a, the family C = {A + t | t ∈ Z/nZ} is such that

α(F, C) > k0 =

(
1− 12 ln ln a

ln a

)
ln a

ln
1

1− a/n

>

(
1− 12 ln ln a

ln a

)(
n

a
− 1

)
ln a. (15)

An interesting feature of Proposition 6 is that it claims the existence of
uniform, regular hypergraphs with large α. More importantly, the parame-
ters n > a are free and (15) gives good estimates regardless of the relation
between them. The reader is invited to compare the bounds in (4) and (15)
for the cases in which (i) a ∼ ln n, (ii) a ∼ n/ ln n, and (iii) a ∼ n/2. In the
course of answering a question of Tuza, Alon [1] obtained sharp bounds for
case (ii), although, strictly speaking, the hypergraphs in [1] are not precisely
a-uniform (the hyperedges have average cardinality a). We also observe that,
in Proposition 6 above, for simplicity, we restrict ourselves to (a, b)-regular
hypergraphs with a = b.

3.1 Proof of the lower bound

We now prove Proposition 6. The proof is split into two cases, according to
the size of a. We deal with the case in which a is large first; the other case
will require an additional idea.

3.1.1 Large a

Here, we suppose that a ≥ n/(ln n)3. We consider all the a-element subsets
of Z/nZ, taken with equal probability. Let us estimate the probability that
such a set A has k translations that cover F , where k is a given positive
integer, i.e., let us estimate the probability p(n, a, k) that there should exist
t1, . . . , tk ∈ Z/nZ such that (A + t1) ∪ · · · ∪ (A + tk) = Z/nZ. Note that
1− p(n, a, k) is the probability that (A + t1) ∪ · · · ∪ (A + tk) 6= Z/nZ for any
t1, . . . , tk ∈ Z/nZ, i.e., (Ac + t1)∩· · ·∩ (Ac + tk) 6= ∅ for any t1, . . . , tk ∈ Z/nZ.
Observe that, given t1, . . . , tk ∈ Z/nZ, we have (Ac + t1) ∩ · · · ∩ (Ac + tk) 6= ∅
if and only if there is x ∈ Z/nZ such that {x− t1, . . . , x− tk} ⊂ Ac.
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Fix T = {t1, . . . , tk} ⊂ Z/nZ.

Claim 7 Set r = dn/k2e. There exist x1, . . . , xr ∈ Z/nZ such that the sets
Bi = xi − T = {xi − t1, . . . , xi − tk} (1 ≤ i ≤ r) are pairwise disjoint.

PROOF. To prove our claim, take x1 = 0, and suppose that we have chosen
x1, . . . , xs, with s < n/k2, such that B1, . . . , Bs are pairwise disjoint. Since s <
n/k2, clearly U =

⋃
1≤i≤s(xi − T ) has fewer than n/k elements. Thus the

average cardinality of the intersection of U with x − T , for x ∈ Z/nZ, is
strictly smaller than one, whence there is xs+1 ∈ Z/nZ such that xs+1 − T is
disjoint from U . Our claim thus follows by induction. (See also Section 4.) �

Let us now proceed with the proof of our proposition. For any fixed set T =
{t1, . . . , tk}, the probability that x − T ⊂ Ac for some x ∈ Z/nZ is at least
the probability that xj − T ⊂ Ac for some j ∈ [r] := {1, . . . , r}, where the xj

(1 ≤ j ≤ r) are fixed and are as given by our claim. This latter probability
is 1 − p̃(n, a, k, r), where p̃(n, a, k, r) is the probability that xj − T 6⊂ Ac for
each j ∈ [r]. To estimate p̃(n, a, k, r), we consider random subsets Ã ⊂ Z/nZ
constructed as follows: let y ∈ Ã with probability a/n, independently for

all y ∈ Z/nZ. The probability that Ã has m elements is
(

n
m

)
(a/n)m(1 −

a/n)n−m, which is maximal for m = a, so the probability that |Ã| = a is at
least 1/(n+1). With this probability distribution, the events Bj = xj−T 6⊂ Ãc

(j ∈ [r]) are independent (because the sets Bj are pairwise disjoint), and the
probability of each of these events is 1 − (1 − a/n)k. Hence the probability
that Bj 6⊂ Ãc for all j ∈ [r] is (1− (1− a/n)k)r. So we have

p̃(n, a, k, r) = P
(
∀j ∈ [r] we have xj − T 6⊂ Ãc

∣∣∣∣ |Ã| = a
)

≤ (n + 1) P(∀j ∈ [r] we have xj − T 6⊂ Ãc) = (n + 1)

(
1−

(
1− a

n

)k
)r

,

and hence p(n, a, k) is at most(
n

k

)
p̃(n, a, k, r) ≤

(
n

k

)
(n + 1)

(
1−

(
1− a

n

)k
)r

≤ nk+1

(
1−

(
1− a

n

)k
)r

.

(16)
Let k = −β ln a/ ln(1 − a/n) ≤ β(n/a) ln n, where β ≤ 1. We have that the

right-hand side of (16) is nk+1
(
1− a−β

)r
, which is less than

n1+β ln4 n exp

(
−a−βn

k2

)
< exp

(
− a2−β

β2n ln2 n
+ ln n

(
1 + ln4 n

))
.

One may check that if β ≤ (1− 12(ln ln a)/ ln a), then a2−β/β2n ln2 n ≥ ln6 n
for large n.
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Since ln6 n � ln n(1 + ln4 n), we have p(n, a, k) � 1. Therefore there is A ⊂
Z/nZ with |A| = a such that (A + t1) ∪ · · · ∪ (A + tk) 6= Z/nZ for any
t1, . . . , tk ∈ Z/nZ. This implies that, for some A ⊂ Z/nZ with |A| = a,
we have α(F, C) > k0, where k0 is as in (15). This completes the proof of
Proposition 6 in the case in which a ≥ n/(ln n)3.

3.1.2 Small a

We now deal with the case in which a is ‘small’, that is, a < n/(ln n)3. Let

b = da(ln a + 1)e, r = dln ae, ε =
1

r
, δ =

10 ln ln a

ln a
, (17)

and

k =

⌈
1− δ

1 + ε
r(ln a)2

⌉
. (18)

We shall make use of the following claim, to be proved later (see §3.1.2.1).

Claim 8 There exist 0 ≤ yi < b (1 ≤ i ≤ a) so that if we let A0 =
{y1, . . . , ya} ⊂ {0, 1, . . . , b− 1} ⊂ Z/rbZ, then

(A0 + t1) ∪ · · · ∪ (A0 + tk) 6= Z/rbZ

for all t1, . . . , tk ∈ Z/rbZ.

We now prove Proposition 6 for a < n/(ln n)3 assuming Claim 8. Let ` =
bn/(r + 1)bc, and let yi (1 ≤ i ≤ a) be as in Claim 8 above. Put A0 =
{y1, . . . , ya} ⊂ Z/rbZ, and let A = {y1 mod n, . . . , ya mod n} ⊂ Z/nZ. We
claim that

(A + s1) ∪ · · · ∪ (A + sm) = Z/nZ (19)

implies that m > `(k + 1). To prove this claim, suppose (19) holds for some
s1, . . . , sm ∈ Z/nZ. For 0 ≤ j < `, let

Bj = {jb(r + 1) + q | 0 ≤ q < rb} and Ij = {i ≤ m | (A + si) ∩Bj 6= ∅}.

The sets Ij are pairwise disjoint, since the diameter of A+ si is at most b, and
the distance between Bj and Bj+1 is b + 1. Moreover, each Ij must have at
least k + 1 elements, since ⋃

i∈Ij

(A + si) ⊃ Bj

implies that ⋃
i∈Ij

(A0 + si) = Z/rbZ,

which, by the choice of A0 = {y1, . . . , ya}, implies that |Ij| > k.
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To finish the proof we just notice that

`(k + 1) =

⌊
n

(r + 1)b

⌋(⌈
1− δ

1 + ε
r(ln a)2

⌉
+ 1

)

>

(
n

(r + 1)b
− 1

)
1− δ

1 + ε
(ln a)3 >

n

b(r + 1)
(ln a)3

(
1− 11 ln ln a

ln a

)

>
n

a
(ln a)

(
1− 12 ln ln a

ln a

)
≥
(

1− 12 ln ln a

ln a

)
ln a

ln
1

1− a/n

,

for large enough a. �

3.1.2.1 Proof of Claim 8. In order to prove Claim 8, we consider a
random subset A0 of {0, 1, . . . , b− 1}, with each element present in A0 inde-
pendently with probability a/b. The probability that A0 has m elements is(

b
m

)
(a/b)m(1− a/b)b−m, which is maximal for m = a. Therefore, the probabil-

ity that such a set A0 has a elements is at least 1/(b + 1). As before, we shall
condition on the event |A0| = a later in the proof.

Let us fix t1, . . . , tk and let us estimate from above the probability that

(A0 + t1) ∪ · · · ∪ (A0 + tk) = Z/rbZ. (20)

Put T = {t1, . . . , tk}, and observe that (20) occurs if and only if for all x ∈
Z/rbZ, the set x− T = {x− t1, . . . , x− tk} meets A0. Let

s =
⌈

ε

1 + ε
rb
⌉

and s0 =
⌈

s

k2

⌉
. (21)

We now prove the following two facts (cf. Claim 7):

(*) There are x1, . . . , xs such that, for each i, we have

|(xi − T ) ∩ {0, 1, . . . , b− 1}| ≤ (1 + ε)
k

r
.

.
(**) There are x̃1, . . . , x̃s0 ∈ {x1, . . . , xs} such that the sets x̃j−T (1 ≤ j ≤ s0)

are pairwise disjoint.

To prove (*), it suffices to observe that the average number of elements in
(x− T ) ∩ {0, 1, . . . , b− 1} (x ∈ Z/rbZ) is k/r. The proof of (**) is similar to
the proof of Claim 7: suppose we have x̃1, . . . , x̃s1 ∈ {x1, . . . , xs} such that the
sets x̃j − T (1 ≤ j ≤ s1) are pairwise disjoint, but s1 < s/k2. Then∣∣∣∣ ⋃

1≤j≤s1

(x̃j − T )
∣∣∣∣ = s1k <

s

k
. (22)
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If we select xi ∈ {x1, . . . , xs} uniformly at random, then the probability that
a fixed element z in Z/rbZ belongs to xi − T is at most k/s, because k = |T |
translates of T contain z. Because of (22), the expected cardinality of

(xi − T ) ∩
⋃

1≤j≤s1

(x̃j − T )

is strictly smaller than 1. Therefore the sequence x̃1, . . . , x̃s1 may be extended
with a new element xi ∈ {x1, . . . , xs}. This completes the proof of (**).

For the remainder of the proof, we concentrate our attention on the x̃j in (**).
One may easily check that the probability that (x̃j − T ) ∩ A0 6= ∅ occurs for
all 1 ≤ j ≤ s0 is at most (

1−
(
1− a

b

)(1+ε)k/r
)s0

.

Therefore the probability that, for some T = {t1, . . . , tk} ⊂ Z/rbZ, we have
(x̃j − T ) ∩ A0 6= ∅ for all 1 ≤ j ≤ s0, conditioned on the event |A0| = a, is at
most

(b + 1)(rb)k

(
1−

(
1− a

b

)(1+ε)k/r
)s0

. (23)

We now estimate (23) in parts. In the calculations below, we tacitly assume
that a is larger than a suitable constant. Since 1− a/b ≥ 1− 1/(ln a + 1), we
have (

1− a

b

)(1+ε)k/r

≥ exp

(
−(1 + ε)

k

r(ln a)

)
. (24)

We have

(1 + ε)
k

r(ln a)
≥ (1− δ) ln a. (25)

Putting together (24) and (25), we have(
1−

(
1− a

b

)(1+ε)k/r
)s0

≤
(
1− a−1+δ

)s0 ≤ exp

(
−a−1+δ εrb

(1 + ε)k2

)
. (26)

Very generously, we have rb/k2 ≥ a/3(ln a)4. Therefore, again generously, we
have

a−1+δ εrb

(1 + ε)k2
≥ aδ

7(ln a)5
. (27)

On the other hand, a crude estimate gives

(b + 1)(rb)k ≤ exp
(
4(ln a)4

)
. (28)

Putting together (26), (27), and (28), we see that the quantity in (23) is
bounded from above by

exp

(
− aδ

7(ln a)5
+ 4(ln a)4

)
. (29)
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Because of our choice of δ (see (17)), we have that aδ = (ln a)10 � (ln a)9

as a → ∞, and hence the quantity in (29) is < 1 for any large enough a. We
conclude that the probability that A0 will do in Claim 8 is positive, and hence
the claim is proved. �

3.2 Constructive lower bounds

Recall that we prove the existence of systems C with large α(F, C) by tak-
ing F = Z/nZ and considering translates A + t (t ∈ Z/nZ) for suitable
random sets A ⊂ Z. As already observed by Alon [1], if we take n to be a
prime power q and let A ⊂ F = GF(q) be the set of squares in GF(q), then

C = {A + t | t ∈ GF(q)}

is an (a, a)-regular system for a = (q − 1)/2 and

α(F, C) ≥
(

1

2
− o(1)

)
lg q, (30)

where we write lg for the logarithm to the base 2. The bound in (30) follows
from the following result, which we quote from [2] (see Lemma 9, Chapter 13)
without proof. Let χ be the quadratic character on GF(q), so that χ(x) =
x(q−1)/2 (x ∈ GF(q)). We have χ(x) ∈ {±1, 0}, with χ(x) = 0 if x = 0
and χ(x) = 1 if and only if x is a square in GF(q) \ {0}.

Lemma 9 If T ⊂ GF(q) and k = |T |, then∣∣∣∣q −∑
x/∈T

∏
t∈T

(1− χ(x− t))
∣∣∣∣ ≤ (

(k − 2)2k−1 + 1
)
q1/2 + k2k−1. (31)

Lemma 9 is in fact a consequence of a well known estimate of Weil for character
sums (see [2]). To deduce (30) from Lemma 9, let T ⊂ GF(q) be an arbitrary
set with k = |T | = b(1/2) lg q − lg lg qc. The element x ∈ GF(q) will not be
covered by the translates A + t (t ∈ T ) if and only if x − T fails to meet A,
that is, x− t is not a square for any t ∈ T . Now, the number of such x is

2−k
∑
x/∈T

∏
t∈T

(1− χ(x− t)) .

Since by the choice of k we have

2−kq >
1

2
(k − 2)q1/2 + 2−kq1/2 +

k

2
,

the existence of such an x follows from (31).
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Finally, let us observe that our lower bound k0 in Proposition 6 for the case
in which a = n/2 (suppose n even for simplicity) is

k0 =

(
1− 12 ln ln n

ln n

)
lg n.

Furthermore, the upper bound for α(F, C) in Corollary 2 for this case is lg n+1.
Therefore Alon’s construction is off only by a factor of 2.

4 Packings

We briefly consider the problem of finding large packings in regular families.
Suppose C is a family of subsets of a set F . Let β(F, C) be the maximal integer r
for which there exist pairwise disjoint sets C1, . . . , Cr ∈ C.

We prove the following proposition.

Proposition 10 Suppose C is an (a, b)-regular family on an n-element set F .
Then

n

a2
≤ β(F, C) ≤ n

a
. (32)

Proposition 10 follows from the following lemma.

Lemma 11 Let C be an (a, b)-regular family of sets on a set F . Given a
subset C̃ ⊂ C with r elements, it is possible to find a subset B ⊂ C̃ of disjoint
sets with at least r/ab elements.

To prove Proposition 10, observe that if C is as in the statement of that
result, then we may take C̃ = C. Note that then r = |C̃| = |C| = bn/a, and
hence r/ab = n/a2, and the lower bound in (32) follows. The upper bound
in (32) is obvious.

We now prove Lemma 11.

PROOF. (Proof of Lemma 11) Let s be the maximal number of pairwise
disjoint members in C̃. Suppose for a contradiction that s < r/ab, and let
C1, . . . , Cs ∈ C̃ be such a maximal collection. Let A =

⋃
1≤j≤s Cj. We have |A| =

as, so the number of members of C̃ that intersect A is at most abs < r = |C̃|.
Therefore there is Cs+1 ∈ C̃ that is disjoint from all the Cj (1 ≤ j ≤ s), which
contradicts the maximality of C1, . . . , Cs. �
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4.1 An example

We now observe that the bounds in Proposition 10 cannot be substantially
improved without further hypotheses. Indeed, given a prime power q we may
take F to be the projective plane over the finite field GF(q), and C to be the
collection of lines of F . Then |F | = q2 + q + 1, the system C is (q + 1, q + 1)-
regular, and β(F, C) = 1. Notice that the lower bound in (32) tells us that
β(F, C) ≥ (q2 + q + 1)/(q + 1)2 → 1 as q →∞.

More generally, given a positive integer r we may take Fr = F × {1, 2, . . . , r}
and Cr = {L × {j} | L ∈ C, 1 ≤ j ≤ r} (i.e., Fr is the union of r disjoint
copies of the projective plane over GF(q) and Cr is the collection of lines in
these copies). We have |Fr| = r(q2+q+1), the system Cr is (q+1, q+1)-regular,
and β(F, C) = r, which is close to the lower bound r(q2 + q +1)/(q +1)2 given
by (32) provided q is large. We can use these examples in order to show that,
given sequences of integers (ak) and (nk), with ak → ∞ and nk/a

2
k → ∞ as

k → ∞, there exist sequences (ãk) and (ñk) such that ãk/ak and ñk/nk tend
to 1 as k → ∞ and for which there exist F (k) and C(k) such that C(k) is an
(ãk, ãk)-regular family of sets on F (k), where |F (k)| = ñk, and

lim
k→∞

β(F (k), C(k))

(
ñk

ã2
k

)−1

= 1

(here we use the fact that there is always a prime between x and (1 + o(1))x,
which follows from the prime number theorem).

5 Concluding remarks

If a is a positive integer, let

α(a, n) = max α(F, C),

where the maximum is taken over all (a, b)-regular families of sets C on an
n-element set F , and b ≥ 1 is arbitrary. Put

f(a) = lim sup
n→∞

a

n
α(a, n).

Our results imply that, for any large enough fixed a, we have

ln a− 12 ln ln a ≤ f(a) ≤
∑

1≤k≤a

1

k
= ln a + γ + O

(
1

a

)
. (33)

Notice that the upper bound for f(a) in (33) above holds for every a, by
Corollary 2.
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Consider the case in which a = 2, that is, the case of regular graphs. It is not
difficult to show that (2/n)α(2, n) = 4/3+o(1) as n →∞, so that f(2) = 4/3.
Indeed, for the lower bound, just take for C a collection of, say, k vertex
disjoint triangles on an 3k-element set F . Then α(F, C) = 2k and we conclude
that f(2) ≥ 4/3.

To prove the upper bound, we show that any b-regular graph G (b > 0)
must contain a matching that covers at least 2/3 of its vertices. Let M be a
maximum matching in G, and suppose U is the set of vertices that are covered
by M . Suppose for a contradiction that |U | < (2/3)n, where n = |V (G)|.
Let W = U c = V (G) \ U . Let the number of neighbours in W of a vertex u
in U be the W -degree dW (u) of u. The average W -degree of a vertex in U
is |W |b/|U |. Thus there is an edge e ∈ M whose endpoints x and y are such
that

dW (x) + dW (y) ≥ 2|W |b/|U | > b. (34)

Note that dW (x), dW (y) < b (because of the edge e = {x, y} ⊂ U). There-
fore (34) implies that dW (x), dW (y) ≥ 2. But then there exist distinct ver-
tices x′, y′ ∈ W , with x′ adjacent to x and y′ adjacent to y′. Now observe
that M \ {e} ∪ {xx′, yy′} is a larger matching than M , which contradicts the
maximality of |M |. This contradiction shows that M does indeed cover (2/3)n
vertices of G, and hence α(F, C) ≤ 2n/3. This implies f(2) ≤ 4/3.

Problem 12 Determine f(a) for all a ≥ 3.

Finally, we believe that it would be very interesting to improve on the con-
structive lower bounds (see Section 3.2).
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