ESSENTIALLY INFINITE COLOURINGS OF HYPERGRAPHS

B. BOLLOBÁS, Y. KOHAYAKAWA, V. RÖDL, M. SCHACHT, AND A. TARAZ

Abstract. We consider edge colourings of the complete r-uniform hypergraph $K_{n}^{(r)}$ on n vertices. How many colours may such a colouring have if we restrict the number of colours locally? The local restriction is formulated as follows: for a fixed hypergraph H and an integer k we call a colouring (H, k)-local if every copy of H in the complete hypergraph $K_{n}^{(r)}$ receives at most k different colours.

We investigate the threshold for k that guarantees that every (H, k)-local colouring of $K_{n}^{(r)}$ must have a globally bounded number of colours as $n \rightarrow \infty$, and we establish this threshold exactly. The following phenomenon is also observed: for many H (at least in the case of graphs), if k is a little over this threshold, the unbounded (H, k)-local colourings exhibit their colourfulness in a "sparse way"; more precisely, a bounded number of colours are dominant while all other colours are rare. Hence we study the threshold k_{0} for k that guarantees that every (H, k)-local colouring γ_{n} of $K_{n}^{(r)}$ with $k \leq k_{0}$ must have a globally bounded number of colours after the deletion of up to εn^{r} edges for any fixed $\varepsilon>0$ (the bound on the number of colours is allowed to depend on H and ε only); we think of such colourings γ_{n} as "essentially finite". As it turns out, every essentially infinite colouring is closely related to a nonmonochromatic canonical Ramsey colouring of Erdős and Rado. This second threshold is determined up to an additive error of 1 for every hypergraph H. Our results extend earlier work for graphs by Clapsadle and Schelp [Local edge colorings that are global, J. Graph Theory 18 (1994), no. 4, 389-399] and by the first two authors and Schelp [Essentially infinite colourings of graphs, J. London Math. Soc. (2) 61 (2000), no. 3, 658-670]. We also consider a related question for colourings of the integers and arithmetic progressions.

[^0]
Contents

1. Introduction 2
2. Statement of the main results 3
2.1. Warm-up 3
2.2. Finite local colourings 4
2.3. Essentially finite colourings 5
2.4. Rainbow colourings of arithmetic progressions 8
3. Essentially unbounded colourings of the integers 9
4. Globally bounded local colourings 10
4.1. Auxiliary lemmas 10
4.2. Proof of Theorem 2 12
4.3. Proofs of Lemmas 15 and 17 13
5. Essentially unbounded colourings 18
5.1. A partite version of the Erdős-Rado canonical theorem 18
5.2. Further auxiliary lemmas 20
5.3. Proof of Theorem 8 22
5.4. Proof of Theorem 5 25
References 27

1. Introduction

For an integer $r \geq 2$, let $K_{n}^{(r)}$ be the complete r-uniform hypergraph with vertex set $[n]=\{1, \ldots, n\}$. We identify hypergraphs with their edge sets, e.g., $K_{n}^{(r)}=\binom{[n]}{r}$, the family of all subsets of $[n]$ with cardinality r. In the following, we consider colourings $\gamma_{n}: K_{n}^{(r)} \rightarrow \mathbb{Z}$ and the set of all such colourings will be denoted by $\mathcal{C}_{n}^{(r)}$. For a given colouring, we say that a vertex x sees colour i in this colouring if x is contained in an edge of colour i.

Fix an r-uniform hypergraph H and a positive integer k. A colouring $\gamma_{n} \in \mathcal{C}_{n}^{(r)}$ of $K_{n}^{(r)}$ is called (H, k)-local if (the edges of) every copy of H in $K_{n}^{(r)}$ are coloured with at most k different colours. Local colourings were introduced by Truszczyński [14]. We shall denote the set of all such colourings by $\mathcal{L}_{n}^{(r)}(H, k)$.

We are interested in the structure of the colourings in $\mathcal{L}_{n}^{(r)}(H, k)$. In particular, we investigate what one can say about the total number of colours used in a colouring in $\mathcal{L}_{n}^{(r)}(H, k)$. It turns out that this total number is uniformly bounded (as $n \rightarrow \infty)$ as long as k is below a certain threshold $\operatorname{Fin}(H)$. Our first main result gives a simple, explicit expression for $\operatorname{Fin}(H)$ (see Theorem 2 below). This result generalizes a result of Clapsadle and Schelp [2], who investigated this problem for graphs, that is, the case $r=2$.

By definition, the (H, k)-local colourings γ_{n} of $K_{n}^{(r)}$ with k just above the threshold $\operatorname{Fin}(H)$ may use an unbounded number of colours (as $n \rightarrow \infty$). However, for many H, for k just a little above $\operatorname{Fin}(H)$, only a uniformly bounded number of colours occur a large number of times in γ_{n} : if we restrict γ_{n} to some $(1-o(1))\binom{n}{r}$ edges of $K_{n}^{(r)}$, we again have a uniformly bounded number of colours only. We call such colourings γ_{n} "essentially finite." To be precise, we call a family of colourings $\left\{\gamma_{n}\right\}$ essentially finite if for any $\varepsilon>0$ there is an integer T such that all but
at most $\varepsilon\binom{n}{r}$ edges of $K_{n}^{(r)}$ are coloured by at most T colours by all colourings γ_{n} in the family.

We investigate a second threshold, which we denote by $\operatorname{EssFin}(H)$, related to essential finiteness of colourings. We have $\operatorname{EssFin}(H)=k_{0}$ if and only if k_{0} is the maximal integer such that every (H, k)-local colouring γ_{n} of $K_{n}^{(r)}$ with $k \leq k_{0}$ is essentially finite. In what follows, we determine $\operatorname{EssFin}(H)$ up to an additive error of 1 (see Theorem 5). This result generalizes a result of the first and second authors together with Schelp [1], who investigated the parameter $\operatorname{EssFin}(H)$ for graphs H. As in that previous paper, most of the work will lie in identifying certain unavoidable substructures in essentially infinite colourings, that is, colourings that are not essentially finite. The main result that we obtain in this direction has, unfortunately, a somewhat technical look; see Theorem 8 in Section 2.3. Our estimate for $\operatorname{EssFin}(H)$ follows directly from Theorem 8 (see Section 5.4).

By definition, we have

$$
\begin{equation*}
\operatorname{Fin}(H) \leq \operatorname{EssFin}(H) \tag{1.1}
\end{equation*}
$$

We shall show that, at least in the case of graphs, we have strict inequality in (1.1) in most cases (we also exhibit examples of graphs H for which equality holds). See Corollary 6.

We also consider essentially infinite colourings of the integers, and we prove that they necessarily contain arbitrarily long 'rainbow' (totally multicoloured) arithmetic progressions (see Theorem 10). It turns out that this result is of a much simpler form than the results for essentially infinite colourings of hypergraphs, and the proof is correspondingly more pleasant.

In the next section, we shall give a detailed account of our results, together with the necessary definitions, some of which will be introduced rather gently, as they do require some getting used to. Mostly because of its length and simplicity, we then move on to essentially infinite colourings of integers and long rainbow arithmetic progressions. Most of the work will be in the two sections that follow. In Section 4, we shall prove our explicit formula for $\operatorname{Fin}(H)$, and in Section 5 we shall investigate essentially infinite colourings of hypergraphs and prove our estimate on EssFin (H).

2. Statement of the main Results

2.1. Warm-up. Suppose one tries to colour the edges of $K_{n}^{(r)}$ using as many colours as possible, and the only restriction is that it has to be an (H, k)-local colouring. Let us denote the maximum number of colours that one can achieve by

$$
t(H, k, n):=\max \left\{|\operatorname{im}(\gamma)|: \gamma \in \mathcal{L}_{n}^{(r)}(H, k)\right\}
$$

For given H and k, we are interested in how $t(H, k, n)$ behaves as a function in n.
To warm up, consider the following example. Let $r=2$ and $H=K_{5}$. We have that

$$
\begin{equation*}
t\left(K_{5}, 1, n\right)=1 \quad \text { and } \quad t\left(K_{5}, 2, n\right)=2 \tag{2.1}
\end{equation*}
$$

Indeed, the former is trivial and the latter is immediately verified as follows. Suppose for a contradiction that a colouring $\gamma \in \mathcal{L}_{n}^{(2)}\left(K_{5}, 2\right)$ uses three different colours c_{1}, c_{2}, and c_{3} on the edges $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}$, and $\left\{x_{3}, y_{3}\right\}$. If these six vertices are not pairwise distinct, then they are contained in a copy of K_{5} picking up 3 colours, which is forbidden. Also, the edge $\left\{x_{1}, x_{2}\right\}$ cannot have colour c_{3}, so w.l.o.g. it has colour c_{1}. But then the vertices $x_{1}, x_{2}, y_{2}, x_{3}, y_{3}$ span a K_{5} with 3 colours. This shows that indeed $t\left(K_{5}, 2, n\right)=2$.

Next we claim that

$$
t\left(K_{5}, 3, n\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+1
$$

This can be verified by considering the colouring $\gamma_{\text {match }, n} \in \mathcal{C}_{n}^{(2)}$, which assigns to each edge of a fixed matching of size $\lfloor n / 2\rfloor$ a new colour and colours all the other edges with an extra colour 0 . It is clear that $\gamma_{\text {match }, n} \in \mathcal{L}_{n}^{(2)}\left(K_{5}, 3\right)$, because any copy of a K_{5} can contain at most two matching edges, whereas $\left|\operatorname{im}\left(\gamma_{\text {match }, n}\right)\right|=$ $\lfloor n / 2\rfloor+1$. Thus, when we move from $t\left(K_{5}, 2, n\right)$ to $t\left(K_{5}, 3, n\right)$, the function suddenly changes from bounded to unbounded.
2.2. Finite local colourings. One of the aims of this paper is to determine, for a given r-uniform hypergraph H, the maximal integer k for which $t(H, k, n)$ is bounded. Formally, we are interested in

$$
\begin{aligned}
& \operatorname{Fin}(H):=\max \{k \in \mathbb{N}: \exists T \in \mathbb{N} \text { such that for every } n \in \mathbb{N} \\
&\text { every } \left.\gamma \in \mathcal{L}_{n}^{(r)}(H, k) \text { is such that }|\operatorname{im}(\gamma)| \leq T\right\}
\end{aligned}
$$

The earlier discussion shows that $\operatorname{Fin}\left(K_{5}\right)=2$. A theorem by Clapsadle and Schelp gives a nice description of $\operatorname{Fin}(H)$ for any graph H.
Theorem 1 (Clapsadle \& Schelp [2]). Let H be a graph with at least two edges. Let $\nu(H)$ denote the cardinality of a maximum matching in H and $\Delta(H)$ the maximum degree of a vertex in H. Then

$$
\operatorname{Fin}(H)=\min \{\nu(H), \Delta(H)\}
$$

Clapsadle and Schelp were especially interested in the situation when $t(H, k, n)=$ k. They observed that in that case H must contain every graph on k edges as a subgraph and conjectured that the converse is also true.

One of the aims of this paper is to generalize Theorem 1 to hypergraphs. For this we introduce the following definitions. An r-uniform sunflower (or Δ-system) with core L is an r-uniform hypergraph with set of edges $\left\{e_{1}, \ldots, e_{s}\right\}$ such that $e_{i} \cap e_{j}=L$ for all $i \neq j$. We allow $L=\emptyset$; in that case, a sunflower is simply a matching. The sets e_{i} are the edges and the sets $p_{i}:=e_{i} \backslash L$ are the petals. The cardinality of the core $|L|$ is the type and s, the number of edges (or petals), is the size of the sunflower. If $\ell=|L|$ is the type and s is the size of the sunflower, we shall speak of an (ℓ, s)-sunflower and we shall denote it by $S=\left(L, p_{1}, \ldots, p_{s}\right)$.

Furthermore, for $\ell=0, \ldots, r$ we denote by $\Delta_{\ell}(H)$ the maximum size of a sunflower of type ℓ in a hypergraph H. Obviously if H is a graph, i.e., $r=2$, then we have $\Delta_{1}(H)=\Delta(H)$ and $\Delta_{0}(H)=\nu(H)$. Consequently, the following theorem is an extension of Theorem 1 from graphs to r-uniform hypergraphs.
Theorem 2. For any r-uniform hypergraph H with at least two edges we have

$$
\begin{equation*}
\operatorname{Fin}(H)=\min _{0 \leq \ell<r} \Delta_{\ell}(H) \tag{2.2}
\end{equation*}
$$

The upper bound, $\operatorname{Fin}(H) \leq \min _{0 \leq \ell<r} \Delta_{\ell}(H)$, is easy to verify and we give the proof below. The lower bound is harder to obtain. Its proof can be found in Section 4.

Proof of the upper bound in Theorem 2. Suppose H is an r-uniform hypergraph with at least two edges. We shall show that

$$
\begin{equation*}
\operatorname{Fin}(H)<\min _{0 \leq \ell<r} \Delta_{\ell}(H)+1=: k \tag{2.3}
\end{equation*}
$$

In order to verify (2.3) we give an example of a sequence of (H, k)-local colourings $\gamma_{n} \in \mathcal{C}_{n}^{(r)}$ such that $\left|\operatorname{im}\left(\gamma_{n}\right)\right|$ is unbounded.

By definition of k in (2.3) there is some $\ell_{0} \in\{0, \ldots, r-1\}$ so that $k>\Delta_{\ell_{0}}(H)$. Fix in $K_{n}^{(r)}$ an $\left(\ell_{0}, \bar{n}\right)$-sunflower $S=\left(L, p_{1}, \ldots, p_{\bar{n}}\right)$, with $\bar{n}:=\left\lfloor\left(n-\ell_{0}\right) /\left(r-\ell_{0}\right)\right\rfloor$. Now consider the following colourings $\gamma_{n} \in \mathcal{C}_{n}^{(r)}$: colour the edges of S with colours $1, \ldots, \bar{n}$ and colour all other edges with colour 0 . As H contains no $\left(\ell_{0}, k\right)$-sunflower, every copy of H in $K_{n}^{(r)}$ cannot see more than $k-1$ colours from those appearing in S, and thus at most k different colours in total. Hence γ_{n} is (H, k)-local, but obviously $\left|\operatorname{im}\left(\gamma_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$.
2.3. Essentially finite colourings. Let us return to our warm-up example. Notice that in the $\left(K_{5}, 3\right)$-local colouring $\gamma_{\text {match, } n}$ all but one colour was in fact only used once. In other words, $\gamma_{\text {match }, n}$ did use an unbounded number of colours, but only in a very sparse way. We would like to know how large we can make k before there exists a colouring in $\mathcal{L}_{n}^{(r)}(H, k)$ that uses a lot of colours in an "essential way," by which we mean that there are still unboundedly many colours after removing, say, some $f(n)$ edges.

For a moment suppose $f(n)$ is of order $o\left(n^{2}\right)$. We modify the colouring $\gamma_{\text {match }, n}$ and consider $\gamma_{\text {match }, n}^{\prime} \in \mathcal{C}_{n}^{(2)}$, where we have $n^{2} /(8 f(n))$ vertex disjoint copies of the complete bipartite graph $K_{4 f(n) / n, 4 f(n) / n}$, each of its own colour, and the other edges receive colour 0 . It is easy to check that $\gamma_{\text {match }, n}^{\prime}$ uses an unbounded number of colours, even after the deletion of any $f(n)$ edges. On the other hand, $\gamma_{\text {match }, n}^{\prime}$ is still $\left(K_{5}, 3\right)$-local. Summarizing the above, we note that while the original colouring $\gamma_{\text {match }, n}$ was an example of a $\left(K_{5}, 3\right)$-local colouring which remains unbounded after deleting up to $c n$ edges for any $c<\frac{1}{2}$, the modified colouring $\gamma_{\text {match }, n}^{\prime}$ witnesses that the same remains true if we remove up to $o\left(n^{2}\right)$ edges. Hence, if we want to guarantee that our colouring γ uses boundedly many colours after deleting up to $o\left(n^{2}\right)$ edges, we cannot allow more colours locally. Hence for $r=2$ let us consider functions $f(n)=\varepsilon\binom{n}{2}$ for some $\varepsilon>0$ and, more generally, we allow the deletion of up to $\varepsilon\binom{n}{r}$ edges in $K_{n}^{(r)}$.
Definition 3. Let $r \geq 2$ be an integer, $t \in \mathbb{N}$ and $\varepsilon>0$. We say a colouring $\gamma \in \mathcal{C}_{n}^{(r)}$ is (ε, t)-bounded if there exists a subgraph $G \subseteq K_{n}^{(r)}$ such that $|G| \geq(1-\varepsilon)\binom{n}{r}$ and $|\gamma(G)| \leq t$. Moreover, we say that a family of colourings $\left\{\gamma_{n} \in \mathcal{C}_{n}^{(r)}: n \in \mathbb{N}\right\}$ is essentially finite if for every $\varepsilon>0$ there is an integer T such that any γ_{n} in the family is (ε, T)-bounded. Otherwise, we say that the family is essentially infinite. When there is no danger of confusion, we refer to the colourings themselves as essentially finite and essentially infinite.

For a given r-uniform hypergraph H, we are interested in the maximum integer k that guarantees that every (H, k)-local colouring is (ε, T)-bounded for every $\varepsilon>0$ and $T=T(\varepsilon)$. More precisely, we define

$$
\begin{aligned}
\operatorname{EssFin}(H):=\max \{k \in \mathbb{N}: \forall \varepsilon>0 \exists T & \in \mathbb{N} \text { such that for every } n \in \mathbb{N} \\
& \text { every } \left.\gamma \in \mathcal{L}_{n}^{(r)}(H, k) \text { is }(\varepsilon, T) \text {-bounded }\right\} .
\end{aligned}
$$

Although the definition of $\operatorname{EssFin}(H)$ looks a little overwhelming at first, observe that it is similar to that of $\operatorname{Fin}(H)$, except that we are now allowed to remove $\varepsilon\binom{n}{r}$
edges before we count the colours. This way we may be able to allow for a larger number of colours locally while remaining essentially finite globally.

In order to get used to $\operatorname{EssFin}(H)$, we return to our example $H=K_{5}$ and show that

$$
\begin{equation*}
\operatorname{EssFin}\left(K_{5}\right)=3 . \tag{2.4}
\end{equation*}
$$

For that we consider the following two colourings $\gamma_{\min , n}$ and $\gamma_{\mathrm{bip}, n} \in \mathcal{C}_{n}^{(2)}$. For every edge $e=\{x, y\} \in\binom{[n]}{2}$ with $x<y$, let

$$
\begin{aligned}
& \gamma_{\min , n}(e):=x \\
& \gamma_{\mathrm{bip}, n}(e):= \begin{cases}x & \text { if } x \leq \frac{n}{2}<y \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Observe that both $\left\{\gamma_{\min , n}: n \in \mathbb{N}\right\}$ and $\left\{\gamma_{\text {bip }, n}: n \in \mathbb{N}\right\}$ are essentially infinite. Moreover, $\gamma_{\min , n}$ is $\left(K_{5}, 4\right)$-local, but not $\left(K_{5}, 3\right)$-local; $\gamma_{\text {bip }, n}$ is not even $\left(K_{5}, 4\right)$ local. Therefore, $\gamma_{\min , n}$ shows that $\operatorname{EssFin}\left(K_{5}\right)<4$.

On the other hand, let us sketch the proof of $\operatorname{EssFin}\left(K_{5}\right) \geq 3$. We need to show that for every $\varepsilon>0$ there exists an integer T so that every $\left(K_{5}, 3\right)$-local colouring γ is (ε, T)-bounded. So suppose $\left\{\gamma_{n} \in \mathcal{C}_{n}^{(r)}: n \in \mathbb{N}\right\}$ is essentially infinite. Then it follows from the results in [1] that for sufficiently large n the colouring γ_{n} must exhibit a "local spot" that is (in some sense) at least as rich in colours as either $\gamma_{\min , n}$ or $\gamma_{\text {bip }, n}$. But then γ_{n} cannot be $\left(K_{5}, 3\right)$-local, as neither $\gamma_{\min , n}$ nor $\gamma_{\text {bip }, n}$ are, which yields $\operatorname{EssFin}\left(K_{5}\right) \geq 3$.

In order to formalize this for arbitrary hypergraphs, we generalize the colourings $\gamma_{\text {min }, n}$ and $\gamma_{\text {bip }, n}$ and describe a family $\mathcal{C E I} \mathcal{C}_{n}^{(r)} \subseteq \mathcal{C}_{n}^{(r)}$ of canonical essentially infinite colourings of $K_{n}^{(r)}$, which turn out to be unavoidable for every essentially infinite colouring.
Definition 4. Let $r \geq 2$ and $\ell \in[r]$. A vector $\tau=\left(\tau_{1}, \ldots, \tau_{\ell}\right) \in \mathbb{N}_{0}^{\ell}$ of non-negative integers is an ℓ-type if $\sum_{i \in[\ell]} \tau_{i}=r$. We call τ degenerate if $\tau_{i}=0$ for some $i \in[l]$ and non-degenerate otherwise. We denote the set of all non-degenerate types by

$$
\mathcal{T}^{(r)}=\bigcup_{\ell \in[r]}\left\{\tau=\left(\tau_{1}, \ldots, \tau_{\ell}\right): \sum_{i \in[\ell]} \tau_{i}=r \text { and } \tau_{i}>0 \text { for all } i \in[\ell]\right\}
$$

For a family of mutually disjoint sets $W_{1}, \ldots, W_{\ell} \subseteq[n]$ and an ℓ-type τ we say an edge $e \in K_{n}^{(r)}$ has type τ if $\left|e \cap W_{i}\right|=\tau_{i}$ for every $i \in[\ell]$. We denote the family of all edges of type τ by $\left(W_{1}, \ldots, W_{\ell}\right)\langle\tau\rangle$.

For fixed integers r and n we consider for every $\ell \in[r]$ a partition Π_{ℓ} of $[n]$ with ℓ partition classes $I_{i}(\ell, n)$ for $i \in[\ell]$ defined by

$$
I_{i}(\ell, n):=\left\{\left\lfloor\frac{(i-1) n}{\ell}\right\rfloor+1, \ldots,\left\lfloor\frac{i n}{\ell}\right\rfloor\right\} \quad 1 \leq i \leq \ell \leq r .
$$

Now we define the canonical essentially infinite colourings $\chi_{\tau, j_{1}, n}^{(r)}$ for every nondegenerate ℓ-type $\tau=\left(\tau_{1}, \ldots, \tau_{\ell}\right)$ and $j_{1} \in\left[\tau_{1}\right]$ by setting, for every $e=\left\{v_{1}<\right.$ $\left.\cdots<v_{r}\right\} \in K_{n}^{(r)}$,

$$
\chi_{\tau, j_{1}, n}^{(r)}(e):= \begin{cases}v_{j_{1}} & \text { if } e \in\left(I_{1}(\ell, n), \ldots, I_{\ell}(\ell, n)\right)\langle\tau\rangle \tag{2.5}\\ 0 & \text { otherwise }\end{cases}
$$

We let

$$
\mathcal{C E I} \mathcal{C}_{n}^{(r)}:=\left\{\chi_{\tau, j_{1}, n}^{(r)}: \tau \in \mathcal{T}^{(r)} \text { and } j_{1} \in\left[\tau_{1}\right]\right\}
$$

Note that for example $\gamma_{\min , n}=\chi_{\tau, j_{1}, n}^{(2)}$ for the 1-type $\tau=(2)$ with $j_{1}=1 \in[2]$, and $\gamma_{\mathrm{bip}, n}$ corresponds to $\chi_{\tau, j_{1}, n}^{(2)}$ for the 2-type $\tau=(1,1)$ with $j_{1}=1 \in[1]$.

It is easy to see that for any $\tau \in \mathcal{T}^{(r)}$ and $j_{1} \in\left[\tau_{1}\right]$ the family $\left\{\chi_{\tau, j_{1}, n}^{(r)}: n \in \mathbb{N}\right\}$ is essentially infinite. (Note that $\tau \in \mathcal{T}^{(r)}$ yields $\tau_{1}>0$ here.) Consequently,

$$
\begin{equation*}
\operatorname{EssFin}(H)<\max \left\{\left|\chi_{\tau, j_{1}, n}^{(r)}\left(H_{0}\right)\right|: H_{0} \text { is a copy of } H \text { in } K_{n}^{(r)}\right\} \tag{2.6}
\end{equation*}
$$

for any $\tau \in \mathcal{T}^{(r)}, j_{1} \in\left[\tau_{1}\right]$, and $n \geq r \cdot v_{H}$. Let us set

$$
\Xi(H):=\min _{\tau, j_{1}} \max _{H_{0}}\left|\chi_{\tau, j_{1}, r \cdot v_{H}}^{(r)}\left(H_{0}\right)\right|,
$$

where the minimum is taken over all $\tau \in \mathcal{T}^{(r)}$ and $j_{1} \in\left[\tau_{1}\right]$ and the maximum is taken over all copies H_{0} of H in $K_{r \cdot v_{H}}^{(r)}$. The following theorem states that the upper bound in (2.6) is almost tight.
Theorem 5. For every r-uniform hypergraph H on v_{H} vertices with at least two edges

$$
\begin{equation*}
\Xi(H)-2 \leq \operatorname{EssFin}(H) \leq \Xi(H)-1 \tag{2.7}
\end{equation*}
$$

Moreover, if $r=2$, then

$$
\begin{equation*}
\operatorname{EssFin}(H)=\min \left\{\max _{H_{0}}\left\{\left|\gamma_{\min , 2 v_{H}}\left(H_{0}\right)\right|\right\}, \max _{H_{0}}\left\{\left|\gamma_{\text {bip }, 2 v_{H}}\left(H_{0}\right)\right|\right\}\right\}-1 \tag{2.8}
\end{equation*}
$$

where the maxima are taken over all copies H_{0} of H in $K_{r \cdot v_{H}}^{(2)}$.
By definition $\operatorname{EssFin}(H) \geq \operatorname{Fin}(H)$ for every hypergraph H. The next corollary says that, in fact, the inequality is strict for "most" graphs $(r=2)$. For an integer $\ell \geq 2$ we denote by $M C_{\ell}$ the "matched clique" of order ℓ, i.e., the graph with 2ℓ vertices $\left\{v_{1}, \ldots, v_{\ell}, u_{1}, \ldots, u_{\ell}\right\}$ with v_{1}, \ldots, v_{ℓ} spanning a complete graph K_{ℓ} and additional matching edges $\left\{v_{i}, u_{i}\right\}$ for every $i \in[\ell]$.
Corollary 6. Suppose H is a connected graph with at least two edges and $v_{H} \geq 6$ vertices. If, moreover, one of the following holds:
(i) $\max \{\nu(H), \Delta(H)\} \geq \min \{\nu(H), \Delta(H)\}+2$, or
(ii) v_{H} is odd, or
(iii) v_{H} is even, but H is not a subgraph of $M C_{v_{H} / 2}$, then $\operatorname{EssFin}(H)>\operatorname{Fin}(H)$.

On the other hand, $\operatorname{EssFin}\left(M C_{\ell}\right)=\operatorname{Fin}\left(M C_{\ell}\right)$ for every $\ell \geq 2$.
Corollary 6 follows from Theorems 1 and 5 . While (i) and the last statement are immediate, (ii) and (iii) require some additional arguments, which will be omitted.

Recall from the short discussion about $\operatorname{EssFin}\left(K_{5}\right)=3$ (see (2.4)) that the main work in determining $\operatorname{EssFin}(H)$ and thus in establishing Theorem 5 is needed for the lower bound, and that our approach is to show that any essentially infinite colouring must exhibit a local spot that is at least as colourful as a colouring in $\mathcal{C E I C}{ }_{m}^{(r)}$ for some sufficiently large m. To make this precise, we need a few more definitions. For any edge $e=\left\{v_{1}, \ldots, v_{r}\right\} \subseteq[n]$ with $v_{1}<\cdots<v_{r}$ and any set of indices $J=\left\{j_{1}, \ldots, j_{\ell}\right\} \subseteq[r]$ we let $e[J]:=\left\{v_{j_{1}}, \ldots, v_{j_{\ell}}\right\}$. Moreover, if $J=\emptyset$, then $e[J]=\emptyset$. With that notation a classical theorem of Erdős and Rado can be stated as follows.

Theorem 7 (Erdős \& Rado [5]). For all integers $q \geq r \geq 2$, there exists an integer $n=n(q, r)$ so that for every colouring $\gamma \in \mathcal{C}_{n}^{(r)}$ there is a set $W \subseteq[n]$ with $|W|=q$ and there is a set $J \subseteq[r]$ such that

$$
\gamma(e)=\gamma\left(e^{\prime}\right) \Leftrightarrow e[J]=e^{\prime}[J]
$$

for all edges $e, e^{\prime} \in\binom{W}{r}$.
In this context, Ramsey's theorem [12] says that if the total number of colours used by γ is bounded, then one can ask for $J=\emptyset$ or, equivalently, for a monochromatic complete subgraph of order q. With the aim of proving Theorem 5, among others, we shall prove a complementary result: if γ is sufficiently rich in colours, then we can ask for $J \neq \emptyset$ or, equivalently, for a multicoloured subgraph. As we shall see in Section 5.4, Theorem 5 is a simple consequence of the following theorem, which is one of the main results of this paper.
Theorem 8. For all integers $q \geq r \geq 2$ and for every $\varepsilon>0$, there are integers T and n_{0} so that for every $n \geq n_{0}$ and every colouring $\gamma \in \mathcal{C}_{n}^{(r)}$ that is not (ε, T) bounded, there exist an integer $\ell \in[r]$, a non-degenerate ℓ-type $\tau=\left(\tau_{1}, \ldots, \tau_{\ell}\right)$, a set $\emptyset \neq J_{1} \subseteq\left[\tau_{1}\right]$, and a family $\mathcal{W}=\left\{W_{1}, \ldots, W_{\ell}\right\}$ of mutally disjoint sets, each of cardinality q, such that for all edges $e, e^{\prime} \in\left(W_{1}, \ldots, W_{\ell}\right)\langle\tau\rangle$

$$
\gamma(e)=\gamma\left(e^{\prime}\right) \Rightarrow\left(e \cap W_{1}\right)\left[J_{1}\right]=\left(e^{\prime} \cap W_{1}\right)\left[J_{1}\right] .
$$

Moreover, if $e \in\left(W_{1}, \ldots, W_{\ell}\right)\left\langle\tau^{\prime}\right\rangle$ for a degenerate ℓ-type τ^{\prime} then $\gamma(e) \notin\{\gamma(f): f \in$ $\left.\left(W_{1}, \ldots, W_{\ell}\right)\langle\tau\rangle\right\}$.

Theorem 8 extends earlier results of Bollobás, Kohayakawa, and Schelp [1] from graphs to hypergraphs. For the proof of Theorem 8, presented in Section 5, we shall develop a partite version of the result of Erdős and Rado, which might be of independent interest (see Theorem 25).

Theorem 5 may be deduced from Theorem 8. We postpone this proof to Section 5.4.
2.4. Rainbow colourings of arithmetic progressions. We also obtain a very much related result for arithmetic progressions. The following result of Erdős and Graham (see also [11] for an elementary proof) can be viewed as an analogue of Theorem 7 for arithmetic progressions.
Theorem 9 (Erdős \& Graham [4]). For every integer $k \geq 3$ there exists an integer n_{0} such that for every $n \geq n_{0}$ and every colouring $\gamma:[n] \rightarrow \mathbb{Z}$ there exists a k-term arithmetic progression $A \subseteq[n]$ which is either monochromatic or injective, i.e., $|\gamma(A)|$ is either 1 or k.

This can be viewed as a canonical version of van der Waerden's theorem [15], which says that if $|\operatorname{im}(\gamma)|$ is bounded (independent of n), then one can ask for a monochromatic arithmetic progression. Following the same approach as in the preceeding section, we are looking for a condition on the colouring that guarantees an injective arithmetic progression.

Let us first observe that it is not enough to simply require that the colouring would use an unbounded number of colours. Consider the colouring $\gamma_{\mathrm{AP}, n}:[n] \rightarrow \mathbb{Z}$, which assigns colour i to every integer $m=3^{i} x$, where x is not divisible by 3 . Clearly, $\left|\operatorname{im} \gamma_{\mathrm{AP}, n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. Moreover, let us observe that $\gamma_{\mathrm{AP}, n}$ yields no 3 -term arithmetic using three colours. Indeed suppose for a contradiction that the
integers $3^{a} x<3^{b} y<3^{c} z$ receive the three distinct colours a, b, and c and form a 3 -term arithmetic progression. Suppose first that $a<c$. Then $2 \cdot 3^{b} y=3^{a} x+3^{c} z=$ $3^{a}\left(3^{c-a} z+x\right)$. As y and x are not divisible by 3 , this implies that $b=a$. The same argument works for the case $a>c$.

Hence, similarly to the graph and hypergraph cases, we need a condition that guarantees that the colouring uses a lot of colours in an "essential way." Here we say a colouring $\gamma:[n] \rightarrow \mathbb{Z}$ is (ε, t)-bounded if there exists a set $X \subseteq[n]$ with $|X| \geq n-\varepsilon n$, such that $|\gamma(X)| \leq t$. This can be viewed as a natural addition to Definition 3 for "1-uniform hypergraphs."

Theorem 10. For every integer $k \geq 3$ and for every real $\varepsilon>0$, there exist integers n_{0} and T such that for every $n \geq n_{0}$ and every colouring $\gamma:[n] \rightarrow \mathbb{Z}$ the following holds. If γ is not (ε, T)-bounded, then there exists an injective k-term arithmetic progression in $[n]$.

Notice that for every function $f(n)$ of order $o(n)$ and $X \subseteq[n]$ with $|X| \geq n-f(n)$ we have that the colouring $\gamma_{\mathrm{AP}, n}$ defined above satisfies $\left|\gamma_{\mathrm{AP}, n}(X)\right| \geq T$ for any T and for sufficiently large n. Consequently, the condition of Theorem 10 is best possible. The proof of Theorem 10 is based on a quantitative version of Szemerédi's theorem [13]. We present this proof in the next section.

3. Essentially unbounded colourings of the integers

In this short section, we present the proof of Theorem 10. We shall use the following quantitative version of Szemerédi's theorem, which was proved for 3-term arithmetic progressions by Varnavides [16] and for k-term progressions by Frankl, Graham, and Rödl [7].

Theorem 11 (Quantitative version of Szemerédi's theorem). For every integer $k \geq 3$ and $\varepsilon>0$ there exists $d=d(k, \varepsilon)$ and $n_{1}=n_{1}(k, \varepsilon)$ such that for every $n \geq n_{1}$, every subset $X \subseteq[n]$ with $|X| \geq \varepsilon n$ contains at least dn ${ }^{2}$ arithmetic progressions with k elements.
Proof of Theorem 10. Let $k \geq 3$ and $\varepsilon>0$ be given. We set

$$
\begin{equation*}
n_{0}=n_{1}(k, \varepsilon), \quad T=\left\lfloor\frac{1}{d(k, \varepsilon)}\binom{k}{2}\right\rfloor+1 \tag{3.1}
\end{equation*}
$$

where $n_{1}(k, \varepsilon)$ and $d(k, \varepsilon)$ are given by Theorem 11.
Let $n \geq n_{0}$ and $\gamma:[n] \rightarrow \mathbb{Z}$ be a colouring that is not (ε, T)-bounded. We denote by $C_{i} \subseteq[n]$ the set of integers that receive colour i, i.e., $C_{i}=\gamma^{-1}(i)$ and let $c_{i}:=\left|C_{i}\right|$. Without loss of generality we may assume that $c_{i}=0$ for every $i \leq 0$ and $c_{i} \geq c_{i+1}$ for every $i \geq 1$. Moreover, for every $i \geq T$ we have $T \cdot c_{i} \leq \sum_{j=1}^{T} c_{j} \leq n$ and hence

$$
\begin{equation*}
c_{i} \leq \frac{n}{T} \quad \text { for all } \quad i \geq T \tag{3.2}
\end{equation*}
$$

Next let $Y=C_{1} \cup \cdots \cup C_{T}$. Clearly, $|\gamma(Y)| \leq T$ and since γ is not (ε, T)-bounded

$$
|Y|=\sum_{i=1}^{T} c_{i}<n-\varepsilon n
$$

Therefore $\sum_{i>T} c_{i}>\varepsilon n$ and we can apply Theorem 11 to the set $X=\bigcup_{i>T} C_{i}$. By Theorem 11 we obtain $d n^{2}$ arithmetic progressions with k elements inside X, where $d=d(k, \varepsilon)$. If one of them is injective, i.e., uses k colours, then we are
done. Suppose that none of them is injective, so that each of them contains a monochromatic pair. In general, every monochromatic pair can prevent at most $\binom{k}{2}$ different k-term arithmetic progressions from being injective, which implies the following bounds:

$$
d n^{2}\binom{k}{2}^{-1} \leq \#\{\text { monochromatic pairs in } X\} \leq \sum_{i>T}\binom{c_{i}}{2} \leq \sum_{i>T} c_{i}^{2} \leq T\left(\frac{n}{T}\right)^{2}
$$

where for the last step we used the fact that the above sum is maximized when as many summands as possible take the maximum possible value as given by (3.2). This yields that $T \leq\binom{ k}{2} / d$, contradicting our choice of T in (3.1).

4. Globally bounded local colourings

In this section we prove Theorem 2. We split this section in a few subsections to make the reading a little easier. In Section 4.1, we give some further definitions and state the auxiliary lemmas that we shall need. In particular, we state Lemmas 15 and 17 , which are central to the proof. In this section, we also sketch the approach we take in the proof of Theorem 2. The actual proof of this theorem is given in Section 4.2. Finally, we give the proofs of Lemmas 15 and 17 in Section 4.3.
4.1. Auxiliary lemmas. We first recall and extend some of the definitions given earlier. A sunflower with core L is an r-uniform hypergraph whose edges e_{1}, \ldots, e_{s} satisfy the property $e_{i} \cap e_{j}=L$ for all $i \neq j$. The sets $p_{i}:=e_{i} \backslash L$ are the petals, $|L|$ is the type, and the number of edges (or petals) is the size of the sunflower. If $\ell=|L|$ is the type and s is the size of the sunflower, we shall speak of an (ℓ, s) sunflower and we shall denote it by $S=\left(L, p_{1}, \ldots, p_{s}\right)$. Observe that we shall be talking about sunflowers both in $K_{n}^{(r)}$ and in H.*
Definition 12. For a given colouring $\gamma \in \mathcal{C}_{n}^{(r)}$, an (ℓ, k)-sunflower $S\left(L, p_{1}, \ldots, p_{k}\right) \subseteq$ $K_{n}^{(r)}$ will be called injective if all its k edges receive different colours. We say γ is (ℓ, k)-local if it yields no injective $(\ell, k+1)$-sunflower in $K_{n}^{(r)}$. In other words, γ is (ℓ, k)-local if it is $\left(S_{\ell}, k\right)$-local for every sunflower S_{ℓ} of type ℓ. Moreover, if γ is (ℓ, k)-local for every $\ell=0, \ldots, r-1$, then it will be called k-local.

To prove Theorem 2, it suffices to verify the lower bound in (2.2). (For the proof of the upper bound, see the paragraph following Theorem 2 in Section 2.2.) In other words, we have to show that for every r-uniform hypergraph H with at least two edges

$$
\begin{equation*}
\operatorname{Fin}(H) \geq \min _{0 \leq \ell<r} \Delta_{\ell}(H)=: s_{H} \tag{4.1}
\end{equation*}
$$

where $\Delta_{\ell}(H)$ is the maximum size of a sunflower of type ℓ in H. This means we have to show that for every n, every $\left(H, s_{H}\right)$-local colouring $\gamma \in \mathcal{C}_{n}^{(r)}$ is T-bounded, i.e., $|\operatorname{im}(\gamma)| \leq T$ for some constant $T=T(H)$ independent of n. The next proposition shows that it is sufficient to show that every $\left(H, s_{H}\right)$-local colouring γ is k-local for some constant $k=k(H)$, i.e, it does not yield an injective $(\ell, k+1)$-sunflower for all $0 \leq \ell<r$.
${ }^{*}$ A remark on notation: we shall mark sub-hypergraphs in H by dashes, e.g., $S^{\prime}=$ $\left(L^{\prime}, p_{1}^{\prime} \ldots, p_{s}^{\prime}\right)$. Moreover, the letter k (as well as $\widehat{k}, \widetilde{k}, \bar{k}$) will denote bounds on the local number of colours in sunflowers contained in $K_{n}^{(r)}$, whereas T will give bounds on the global number of colours used in $K_{n}^{(r)}$, i.e., $|\operatorname{im}(\gamma)|$.

Proposition 13. For all integers $k, r \geq 2$ there exists an integer $T=T(k, r)$ such that for every n and every k-local colouring $\gamma \in \mathcal{C}_{n}^{(r)}$ we have $|\operatorname{im}(\gamma)| \leq T$.

We easily deduce Proposition 13 from the following theorem of Erdős and Rado.
Theorem 14 (Erdős \& Rado [6]). If an r-uniform hypergraph contains more than $r!k^{r}$ edges, then it contains an $(\ell, k+1)$-sunflower for some $0 \leq \ell<r$.

In fact for $k=3$ Erdős offered $\$ 1000$ for the proof that r ! can be replaced by c^{r} for some constant c independent of r. This conjecture is still open and currently the best bound for $k=3$ is due to Kostochka [9].

Proof of Proposition 13. Let integers $k, r \geq 2$ be given. Set $T=r!k^{r}$ and suppose that $\gamma \in \mathcal{C}_{n}^{(r)}$ is k-local, but fails to satisfy $|\operatorname{im}(\gamma)| \leq T$. Then Theorem 14 immediately implies that any collection of $|\operatorname{im}(\gamma)|$ mutually different coloured hyperedges of $K_{n}^{(r)}$ contains an injective $(\ell, k+1)$-sunflower for some $0 \leq \ell<r$, which is a contradiction to the assumption that γ is k-local.

We deduce (4.1) from Lemmas 15 and 17 . Before we formally state these somewhat "dry" lemmas let us briefly describe them and discuss their relevance for the proof of (4.1) under the assumption $s_{H} \geq 2$. Recall that $\mathcal{L}_{n}^{(r)}\left(H, s_{H}\right)$ denotes the set of all $\left(H, s_{H}\right)$-local colourings of $K_{n}^{(r)}$. In view of Proposition 13 it suffices to show that every colouring $\gamma \in \mathcal{L}_{n}^{(r)}\left(H, s_{H}\right)$ is k-local for some constant $k=k(H)$. Lemma 15 roughly says that if $\gamma \in \mathcal{L}_{n}^{(r)}\left(H, s_{H}\right)$ is such that it yields an injective $\left(i, k_{i}\right)$-sunflower in $K_{n}^{(r)}$ for some "large" k_{i}, then it either admits an injective $\left(j, k_{i}-r\right)$-sunflower with $j>i$ (see part (a) of Lemma 15) or we infer that H contains a subhypergraph H^{\prime} with a special structure (see part (b)). The structure of H^{\prime} and the existence of a "large" injective $\left(i, k_{i}\right)$-sunflower in $K_{n}^{(r)}$ under γ, then (see Lemma 17) also imply that there is an injective (j, \bar{k})-sunflower with $j>i$, where \bar{k} is of similar order as k.

In other words, Lemmas 15 and 17 show that if an $\left(H, s_{H}\right)$-local colouring γ is not k-local for some "large" k, i.e., γ admits a "large" injective sunflower of type i for some $i=0, \ldots, r-1$, then it necessarily admits a similarly "large" sunflower of type $j>i$ and, consequently, by repeated application of both lemmas, a "large" sunflower of type $r-1$. On the other hand, Lemma 15 also bounds the maximum size of an injective sunflower of type $r-1$ for any $\gamma \in \mathcal{L}_{n}^{(r)}\left(H, s_{H}\right)$ by some constants $\widetilde{k}_{r-1}=\widetilde{k}_{r-1}(H)$. Hence, it follows that every $\gamma \in \mathcal{L}_{n}^{(r)}\left(H, s_{H}\right)$ must be k-local for some $k=k(H)$.

Lemma 15. Let H be an r-uniform hypergraph and suppose $2 \leq \min _{0 \leq \ell<r} \Delta_{\ell}(H)=$ $s_{H}=: s$. For every $i=0, \ldots, r-1$ there exists an integer $\widetilde{k}_{i}=\widetilde{k}_{i}(H)>r$ such that for every $k_{i} \geq \widetilde{k}_{i}$, for every positive integer n, and for every colouring $\gamma \in \mathcal{L}_{n}^{(r)}(H, s)$ that yields an injective $\left(i, k_{i}\right)$-sunflower S_{i} in $K_{n}^{(r)}$, one of the following is true:
(a) there exists $j>i$ and an injective $\left(j, k_{i}-r\right)$-sunflower S_{j} in $K_{n}^{(r)}$, or
(b) there exists a subgraph $H_{i}^{\prime}=S^{\prime}+e^{\prime} \subseteq H$ with the following properties:
(b1) S^{\prime} is an (i, s)-sunflower in H, and we write $S^{\prime}=\left(L^{\prime}, p_{1}^{\prime}, \ldots, p_{s}^{\prime}\right)$,
(b2) e^{\prime} contains at least i vertices outside the petals of S^{\prime}, i.e., $\left|e^{\prime} \backslash \bigcup_{\sigma=1}^{s} p_{\sigma}^{\prime}\right| \geq$ i, and
(b3) e^{\prime} intersects at least two petals, i.e., there are σ_{1} and $\sigma_{2}, 1 \leq \sigma_{1}<$ $\sigma_{2} \leq s$, so that $e^{\prime} \cap p_{\sigma_{1}}^{\prime} \neq \emptyset$ and $e^{\prime} \cap p_{\sigma_{2}}^{\prime} \neq \emptyset$.
In particular, for $i=r-1$ the above $\widetilde{k}_{r-1}=\widetilde{k}_{r-1}(H)>r$ is such that for every positive integer n every $\gamma \in \mathcal{L}_{n}^{(r)}(H, s)$ is also $\left(r-1, \widetilde{k}_{r-1}-1\right)$-local.

Remark 16. To see that the last part of Lemma 15 also holds, note that if $i=r-1$, then e^{\prime} (in part (b)) cannot have $r-1$ vertices outside the petals and intersect two petals at the same time. Furthermore, conclusion (a) of Lemma 15 cannot hold either since $k_{r-1} \geq \widetilde{k}_{r-1}>r$. Consequently, the assumptions of Lemma 15 can never hold for $i=r-1$.

Lemma 17. Let H be an r-uniform hypergraph and suppose $2 \leq \min _{0 \leq \ell<r} \Delta_{\ell}(H)=$ $s_{H}=: s$. For every $0 \leq i \leq r-2$ and every integer \bar{k} there exists a positive integer $\widehat{k}_{i}=\widehat{k}_{i}(s, \bar{k})$ such that the following is true for every positive integer n. If
(i) H contains a subgraph $H_{i}^{\prime}=S^{\prime}+e^{\prime}$ satisfying (b1)-(b3) of Lemma 15 and
(ii) $\gamma \in \mathcal{L}_{n}^{(r)}(H, s)$ yields an injective ($\left.i, \widehat{k}_{i}\right)$-sunflower,
then γ gives rise to an injective (j, \bar{k})-sunflower in $K_{n}^{(r)}$ for some $j>i$.
We defer the proofs of Lemmas 15 and 17 to Section 4.3. We close this section with the following simple but useful observation, to be used in the proof of (4.1) in the next section.

Proposition 18. Suppose $n \geq 3 r-1^{\dagger}$ and $\gamma \in \mathcal{C}_{n}^{(r)}$ is a colouring such that $|\operatorname{im}(\gamma)| \geq 2$. Then for every $i=0, \ldots, r-1$ there are two edges $e_{1}, e_{2} \in K_{n}^{(r)}$ satisfying

$$
\left|e_{1} \cap e_{2}\right|=i \quad \text { and } \quad \gamma\left(e_{1}\right) \neq \gamma\left(e_{2}\right) .
$$

Proof. Let $n \geq 3 r-1$ and $\gamma \in \mathcal{C}_{n}^{(r)}$ be a colouring such that $|\operatorname{im}(\gamma)| \geq 2$. First we consider the case $i=0$. Since $|\operatorname{im}(\gamma)| \geq 2$, there are two edges e_{1} and e_{2} in $K_{n}^{(r)}$ such that $\gamma\left(e_{1}\right) \neq \gamma\left(e_{2}\right)$. If $e_{1} \cap e_{2}=\emptyset$ then we are done. On the other hand, if $e_{1} \cap e_{2} \neq \emptyset$ then $\left|e_{1} \cup e_{2}\right| \leq 2 r-1$. Since $n \geq 3 r-1$ there is some edge $e_{3} \in K_{n}^{(r)}$ disjoint from both e_{1} and e_{2} and either $\gamma\left(e_{1}\right) \neq \gamma\left(e_{3}\right)$ or $\gamma\left(e_{2}\right) \neq \gamma\left(e_{3}\right)$, which concludes the case $i=0$.

We now proceed by induction. Let $0<i \leq r-1$ be fixed. By induction assumption there are two edges e_{1} and e_{2} in $K_{n}^{(r)}$ such that $\left|e_{1} \cap e_{2}\right|=i-1$ and $\gamma\left(e_{1}\right) \neq \gamma\left(e_{2}\right)$. Let $v_{1} \in e_{1} \backslash e_{2}$ and $v_{2} \in e_{2} \backslash e_{1}$. Clearly, $\left|\left(e_{1} \cap e_{2}\right) \cup\left\{v_{1}, v_{2}\right\}\right|=i+1 \leq$ r. Now simply consider some edge $e_{3} \in K_{n}^{(r)}$ which contains $\left(e_{1} \cap e_{2}\right) \cup\left\{v_{1}, v_{2}\right\}$ and $r-(i+1)$ points from $[n] \backslash\left(e_{1} \cup e_{2}\right)$. Then, $\left|e_{3} \cap e_{1}\right|=\left|\left(e_{1} \cap e_{2}\right) \cup\left\{v_{1}\right\}\right|=i$ and, similarly, $\left|e_{3} \cap e_{2}\right|=\left|\left(e_{1} \cap e_{2}\right) \cup\left\{v_{2}\right\}\right|=i$. (Such an edge e_{3} exists indeed since $(2 r-(i-1))+(r-(i+1))=3 r-2 i<3 r-1 \leq n$.) Clearly, $\gamma\left(e_{3}\right)$ must differ from either $\gamma\left(e_{1}\right)$ or $\gamma\left(e_{2}\right)$, which finishes the proof.
4.2. Proof of Theorem 2. Recall that all we have left to do to complete the proof of Theorem 2 is to prove the lower bound (4.1).

Proof of (4.1). Let H be an r-uniform hypergraph with at least two edges. In order to verify (4.1), we have to show that there exists some constant $T=T(H)$

[^1]such that for every integer n and every colouring $\gamma \in \mathcal{L}_{n}^{(r)}\left(H, s_{H}\right)$ (see (4.1) for the definition of s_{H})
\[

$$
\begin{equation*}
|\operatorname{im}(\gamma)| \leq T \tag{4.2}
\end{equation*}
$$

\]

We distinguish two cases depending on the size of s_{H}.
Case $1\left(s_{H}=1\right)$. Here we set $T=\binom{3 r-1}{r}$. Now let n be some positive integer and let $\gamma \in \mathcal{L}_{n}^{(r)}(H, 1)$ be given. Clearly, $|\operatorname{im}(\gamma)| \leq T$ as long as $n \leq 3 r-1$. So let $n>3 r-1$ and suppose for the moment that $|\operatorname{im}(\gamma)| \geq 2$. Then Proposition 18 implies that γ yields an injective $(\ell, 2)$-sunflower for every $\ell=0, \ldots, r-1$. From the fact that H has at least two edges, it then follows that γ is not $(H, 1)$-local, i.e., $\gamma \notin \mathcal{L}_{n}^{(r)}(H, 1)$. Consequently, if $n>3 r-1$, then $|\operatorname{im}(\gamma)| \leq 1<T$.

Case $2\left(s_{H}>1\right)$. In this case the definition of $T=T(H)$ is a little more complicated. We first recursively define integers k_{r-1}, \ldots, k_{0} as follows:

$$
k_{i}=\left\{\begin{aligned}
\widetilde{k}_{r-1}(\operatorname{Lem} \cdot 15(H)) & \text { if } \quad i=r-1, \\
\max \left\{k_{i+1}+r, \widehat{k}_{i}\left(\operatorname{Lem} .17\left(s=s_{H}, \bar{k}=k_{i+1}\right)\right),\right. & \\
\left.\widetilde{k}_{i}(\operatorname{Lem} .15(H))\right\} & \text { if } \quad i=r-2, \ldots, 0,
\end{aligned}\right.
$$

where $\widetilde{k}_{r-1}, \widetilde{k}_{i}$, and \widehat{k}_{i} for $i=r-2, \ldots, 0$ are given by Lemmas 15 and 17 , respectively. Note that by definition the sequence k_{0}, \ldots, k_{r-1} is not only monotone decreasing, but also satisfies

$$
\begin{equation*}
k_{i+1} \leq k_{i}-r \quad \text { for } \quad i=r-2, \ldots, 0 \tag{4.3}
\end{equation*}
$$

We then define the promised constant T by setting

$$
\begin{equation*}
T=T\left(\text { Prop. } 13\left(k=k_{0}-1, r\right)\right) \tag{4.4}
\end{equation*}
$$

Now let n be some positive integer and let $\gamma \in \mathcal{L}_{n}^{(r)}\left(H, s_{H}\right)$ be given. We first show the following.

Claim 19. The colouring γ is $\left(i, k_{i}-1\right)$-local for every $i=0, \ldots, r-1$.
Proof. Assume for a contradiction that i_{0} is the largest index i so that γ is not $\left(i, k_{i}-1\right)$-local. Due to the definition of k_{r-1} and the last part of Lemma 15 we have that $i_{0}<r-1$. Furthermore, by definition of i_{0} there exists an injective $\left(i_{0}, k_{i_{0}}\right)$-sunflower, and as $k_{i_{0}} \geq \widetilde{k}_{i_{0}}(\operatorname{Lem} .15(H))$, we can apply Lemma 15 . Now part (a) of Lemma 15 is impossible, since for any $j>i_{0}$ we have $k_{j} \leq k_{i_{0}}-r$ (cf. (4.3)) and thus an injective ($j, k_{i_{0}}-r$)-sunflower would contain an injective $\left(j, k_{j}\right)$-sunflower, contradicting the maximality of i_{0}.

Hence case (b) of Lemma 15 must occur. By definition of $k_{i_{0}}$ we have $k_{i_{0}} \geq$ $\widehat{k}_{i_{0}}$ (Lem.17 $\left.\left(s=s_{H}, \bar{k}=k_{i_{0}+1}\right)\right)$. Hence both assumptions (i) and ($i i$) of Lemma 17 are satisfied for $\bar{k}=k_{i_{0}+1}$. Thus Lemma 17 yields an injective ($j, k_{i_{0}+1}$)-sunflower. Again, as $j>i_{0}$, we have $k_{j} \leq k_{i_{0}+1}$, and thus we have an injective $\left(j, k_{j}\right)$-sunflower, contradicting the maximality of i_{0} again. This proves Claim 19.

Now Claim 19 and (4.3) assert that γ is a $\left(k_{0}-1\right)$-local colouring and, therefore, the choice of T in (4.4) and Proposition 13 now imply $|\operatorname{im}(\gamma)| \leq T$ in this case, Case 2.

Having verified (4.1) in both cases, we have concluded the proof of the lower bound in Theorem 2, based on Lemmas 15 and 17.
4.3. Proofs of Lemmas 15 and 17. In this section we prove Lemmas 15 and 17 stated in Section 4.1 and used in Section 4.2.
4.3.1. Proof of Lemma 15. Let H be an r-uniform hypergraph and

$$
\begin{equation*}
s:=s_{H}=\min _{0 \leq \ell<r} \Delta_{\ell}(H) \geq 2 \tag{4.5}
\end{equation*}
$$

Let i be a fixed integer in the interval $[0, r-1]$ and set

$$
\begin{equation*}
\widetilde{k}_{i}=\max \left\{s+1+r+i^{2}, 3 r-1\right\} \tag{4.6}
\end{equation*}
$$

Moreover, let integers $k_{i} \geq \widetilde{k}_{i}$ and n and a colouring $\gamma \in \mathcal{L}_{n}^{(r)}(H, s)$ be given. Suppose $S_{i}=\left(L, p_{1}, \ldots, p_{k_{i}}\right) \subseteq K_{n}^{(r)}$ is an injective $\left(i, k_{i}\right)$-sunflower under γ.

For the rest of the proof we assume that γ does not contain an injective $\left(j, k_{i}-r\right)$ sunflower for any $j>i$, i.e., we assume that conclusion (a) of Lemma 15 fails and we are going to deduce (b). By the definition of s there exists an (i, s)-sunflower $S^{\prime}=\left(L^{\prime}, p_{1}^{\prime}, \ldots, p_{s}^{\prime}\right)$ in H, as claimed in (b1). We first show that there is an edge $e^{\prime} \in H \backslash S^{\prime}$ which satisfies property (b2).

Claim 20. There is an edge $e^{\prime} \in H \backslash S^{\prime}$ with $\left|e^{\prime} \backslash \bigcup_{\sigma=1}^{s} p_{\sigma}^{\prime}\right| \geq i$.
Proof. If $i=0$, then it follows from $s \geq 2$ that $H \backslash S^{\prime} \neq \emptyset$ (otherwise H contains no (j, s)-sunflower for $j \geq 1$, which contradicts the assumption $s=s_{H} \geq 2$) and, hence, there is an edge e^{\prime} which trivially satisfies the conclusion of the claim.

So let $i>0$. By the definition of s there exists a matching $M^{\prime} \subseteq H$ of size s. On average the edges of M^{\prime} have at least

$$
\frac{1}{\left|M^{\prime}\right|}\left|\bigcup_{f^{\prime} \in M^{\prime}} f^{\prime} \backslash \bigcup_{\sigma \in[s]} p_{\sigma}^{\prime}\right| \geq \frac{1}{s}(s r-s(r-i))=i
$$

vertices outside the petals of S^{\prime}. Consequently, there is an edge $e^{\prime} \in M^{\prime}$ which has at least i vertices outside the petals of S^{\prime}. If $e^{\prime} \notin S^{\prime}$ then we found our edge. If, however, $e^{\prime} \in S^{\prime} \cap M^{\prime}$, then we can repeat the argument with $M^{\prime} \backslash\left\{e^{\prime}\right\}$ and $S^{\prime} \backslash\{e\}^{\prime}$. Indeed, on average the edges of $M^{\prime} \backslash\left\{e^{\prime}\right\}$ have at least

$$
\frac{1}{s-1}((s-1) r-(s-1)(r-i))=i
$$

vertices outside the petals of $S^{\prime} \backslash\left\{e^{\prime}\right\}$. Hence, there must be an edge $e^{\prime \prime} \in M^{\prime} \backslash\left\{e^{\prime}\right\}$ which has at least i vertices outside the petals of $S^{\prime} \backslash\left\{e^{\prime}\right\}$. Moreover, since $e^{\prime} \cap e^{\prime \prime}=\emptyset$ (both are edges in the matching M^{\prime}) and since we assumed that $e^{\prime} \in S^{\prime}$, we have that $e^{\prime \prime} \notin S^{\prime}$.

Fix e^{\prime} as in Claim 20. It remains to show that e^{\prime} has non-empty intersection with at least two petals of S^{\prime}. Our proof is by contradiction. So let us first assume that

$$
\begin{equation*}
e^{\prime} \cap p_{\sigma}^{\prime}=\emptyset \quad \text { for every } \quad \sigma \in[s] . \tag{4.7}
\end{equation*}
$$

In this case, let e be an edge of $K_{n}^{(r)}$ which satisfies $|e \cap L|=\left|e^{\prime} \cap L^{\prime}\right|$. Since $k_{i} \geq$ $\widetilde{k}_{i} \geq s+1+r$ (cf. (4.6)), after removing those edges f from S_{i} for which $\gamma(f)=\gamma(e)$ or $(f \backslash L) \cap e \neq \emptyset$ there must be an injective (i, s)-sunflower $S_{i}^{*} \subseteq S_{i} \subseteq K_{n}^{(r)}$ for which $\gamma(e) \notin \gamma\left(S_{i}^{*}\right)$ and $e \cap V\left(S_{i}^{*}\right)=e \cap L$. Consequently, $e \cup S_{i}^{*}$ (which is a copy of $\left.e^{\prime} \cup S^{\prime} \subseteq H\right)$ picks up $s+1$ colours, which contradicts the assumption $\gamma \in \mathcal{L}_{n}^{(r)}(H, s)$. Hence, assumption (4.7) must fail.

Next we assume that e^{\prime} intersects precisely one petal of S^{\prime}. With an appropriate relabelling we assume

$$
\begin{equation*}
e^{\prime} \cap p_{1}^{\prime} \neq \emptyset \quad \text { and } \quad e^{\prime} \cap p_{\sigma}^{\prime}=\emptyset \quad \text { for every } \quad \sigma=2, \ldots, s \tag{4.8}
\end{equation*}
$$

Set

$$
\begin{equation*}
i_{L}=\left|e^{\prime} \cap L^{\prime}\right|, \quad i_{O}=\left|e^{\prime} \backslash V\left(S^{\prime}\right)\right|, \quad \text { and } \quad i_{1}=\left|e^{\prime} \cap p_{1}\right| \tag{4.9}
\end{equation*}
$$

Note that $r=i_{L}+i_{O}+i_{1}$ and since $e^{\prime} \notin S^{\prime}$ (see Claim 20), we have

$$
\begin{equation*}
i_{O}>0 \quad \text { and, consequently, } \quad i_{L}+i_{1}<r \tag{4.10}
\end{equation*}
$$

We shall need the following claims to derive a contradiction from assumption (4.8).
Claim 21. For every edge e of $K_{n}^{(r)}$ satisfying $|e \cap L|=i_{L}$ and $\left|e \cap p_{\lambda}\right|=i_{1}$ for some $\lambda \in\left[k_{i}\right]$ we have $\gamma(e)=\gamma\left(p_{\lambda} \cup L\right)$.
Proof. Let e and p_{λ} be as in the hypothesis of the claim. Since $k_{i} \geq \widetilde{k}_{i} \geq s+1+r \geq$ $s+1+i_{O}$, there is an injective ($i, s-1$)-sunflower $S_{i}^{*} \subseteq S_{i}$ satisfying the following:

- S_{i}^{*} does not contain the petal p_{λ},
- none of the petals of S_{i}^{*} intersects e, and
- $\gamma(e) \notin \gamma\left(S_{i}^{*}\right)$.

We then observe that if $\gamma(e) \neq \gamma\left(p_{\lambda} \cup L\right)$, then $e \cup S_{i}^{*} \cup\left\{L \cup p_{\lambda}\right\}^{\ddagger}$ uses $s+1$ colours, which contradicts the fact that $\gamma \in \mathcal{L}_{n}^{(r)}(H, s)$, since $e \cup S_{i}^{*} \cup\left\{L \cup p_{\lambda}\right\}$ forms a copy of $e^{\prime} \cup S_{i}^{\prime} \subset H$.

The simple observation in Claim 21 has the following corollary, Claim 22. It asserts that $i_{L}+i_{O}=i$ and, more importantly, that any set L^{*} of i vertices in $K_{n}^{(r)}$ is, roughly speaking, the core of a 'large' injective sunflower.

Claim 22. We have $i_{L}+i_{O}=i$ and for all sets $L^{*} \subseteq[n]$ with $\left|L^{*}\right|=i$ there is an injective $(i, s+1+r)$-sunflower S_{i}^{*} with core L^{*}.

Proof. First we show that $i_{L}+i_{O}=i$. Note that

$$
\begin{equation*}
i_{L}+i_{O}=i \quad \stackrel{(4.9)}{\Longleftrightarrow} \quad i_{1}=r-i . \tag{4.11}
\end{equation*}
$$

Clearly, $i_{L}+i_{O}=\left|e^{\prime} \cap L^{\prime}\right|+\left|e^{\prime} \backslash V\left(S^{\prime}\right)\right| \geq i$ since by Claim 20 the edge e^{\prime} contains at least i vertices outside the petals of S^{\prime}. If $i_{L}+i_{O}>i$, then fix some set O of cardinality i_{O} in $[n] \backslash L$ and some set \bar{L} of cardinality i_{L} in L. Moreover, for every $\lambda \in\left[k_{i}\right]$ fix i_{1} vertices I_{λ} in every petal p_{λ}. Then, apply Claim 21 for every $e_{\lambda}=O \cup \bar{L} \cup I_{\lambda}$ for which $p_{\lambda} \cap O=\emptyset$. Since there are at least $k_{i}-i_{O} \geq k_{i}-r$ such petals, the above yields an injective $\left(j, k_{i}-r\right)$-sunflower S_{j} for $j=i_{L}+i_{O}>i$, which is a contradiction, as we assumed that (a) does not hold. Thus we do indeed have $i_{L}+i_{O}=i$, as claimed in the first part of Claim 22.

We now focus on the second part of the claim. For that let $L^{*} \subseteq[n]$ be a set of size i. We fix a sequence of sets L_{1}, \ldots, L_{b} in $[n]$ with $b \leq i+1$ so that

$$
L_{1}=L, \quad\left|L_{a}\right|=i, \quad\left|L_{a} \cap L_{a+1}\right|=i_{L} \text { for } a=1, \ldots, b-1, \quad \text { and } \quad L_{b}=L^{*} .
$$

Note that such a sequence exists since $i_{L}=i-i_{O}<i$ (cf. (4.10)). For convenience we define for $a=1, \ldots, b$

$$
k(a)=k_{i}-(a-1) i_{O} .
$$

[^2]We now show inductively that for every $a=1, \ldots, b$ there exists an injective $(i, k(a))$-sunflower $S(a)$ with core L_{a}. As $k(b)=k_{i}-(b-1) i_{O} \geq k_{i}-i^{2} \geq \widetilde{k}_{i}-i^{2} \geq$ $s+1+r$ this yields Claim 22.

Setting $S(1)=S_{i}$ gives the induction start. So suppose there is an injective $(i, k(a))$-sunflower $S(a)$ with core L_{a} and petals $p_{1}^{a}, \ldots p_{k(a)}^{a}$. Note that $\left|L_{a+1} \backslash L_{a}\right|=$ $i-i_{L}=i_{O}$. We set $\Lambda=\left\{\lambda \in[k(a)]: p_{\lambda}^{a} \cap L_{a+1}=\emptyset\right\}$. Obviously, $|\Lambda| \geq k(a)-i_{O}$. For every $\lambda \in \Lambda$ set $p_{\lambda}^{a+1}:=p_{\lambda}^{a}$. It is easy to see that the p_{λ}^{a+1} together with the core L_{a+1} form an injective $(i,|\Lambda|)$-sunflower $S(a+1)$. Indeed, simply apply Claim 21 with $L:=L_{a}$ for every edge $e:=p_{\lambda}^{a+1} \cup L_{a+1}$ and $p_{\lambda}:=p_{\lambda}^{a}$. This will yield that $\gamma\left(p_{\lambda}^{a+1} \cup L_{a+1}\right)=\gamma\left(p_{\lambda}^{a} \cup L_{a}\right)$, and hence the injectivity of $S(a+1)$ is inherited from that of $S(a)$, and the induction step follows from the definition of $k(a+1)$.

Based on Claim 22 we now show that our assumption (4.8) contradicts $\gamma \in$ $\mathcal{L}_{n}^{(r)}(H, s)$, thus finishing the proof of Lemma 15 . Since by $(4.6) k_{i} \geq 3 r-1$ we have $n \geq 3 r-1$ and $|\operatorname{im}(\gamma)|>1$. Therefore, Proposition 18 ensures the existence of two edges $e, f \in K_{n}^{(r)}$ satisfying $|f \cap e|=i_{L}+i_{1}<r$ and $\gamma(f) \neq \gamma(e)$. Let $\bar{p} \cup \bar{L}$ be a partition of $e \cap f$ with

$$
|\bar{p}|=i_{1} \quad \text { and } \quad|\bar{L}|=i_{L}
$$

Set $L^{*}=\bar{L} \cup(f \backslash e)$ and note that

$$
(e \cup f) \backslash L^{*} \subseteq e \quad \text { and } \quad\left|L^{*}\right|=i_{L}+\left(r-i_{L}-i_{1}\right)=r-i_{1}=i_{O}+i_{L}=i
$$

where we used the first part of Claim 22 for the last identity. We then apply the second part of Claim 22 with L^{*}, which yields an injective $(i, s+1+r)$-sunflower S_{i}^{*} with core L^{*}. Therefore, after removing those edges of S_{i}^{*} which have the colour of e or f and those which intersect $(e \cup f) \backslash L^{*}$ there still exists an injective ($i, s-1$)-sunflower $S_{i}^{* *} \subseteq S_{i}^{*}$ with core L^{*} satisfying

$$
\gamma\left(S_{i}^{* *}\right) \cap\{\gamma(f), \gamma(e)\}=\emptyset \quad \text { and } \quad V\left(S_{i}^{* *}\right) \cap\left((e \cup f) \backslash L^{*}\right)=\emptyset
$$

Consequently, $S_{i}^{* *} \cup f$ is an injective (i, s)-sunflower with core L^{*} and additional petal $f \backslash L^{*}=\bar{p}$. Moreover, the definitions of $\bar{p}, \bar{L} \subseteq e \cap f, L^{*}=\bar{L} \cup(f \backslash e)$, and $S_{i}^{* *}$ imply that $|e \cap \bar{p}|=|\bar{p}|=i_{1},\left|e \cap L^{*}\right|=|\bar{L}|=i_{L}$, and $\left|e \backslash\left(V\left(S_{i}^{* *}\right) \cup f\right)\right|=$ $|e \backslash f|=r-i_{1}-i_{L}=i_{O}$. In other words, $e \cup S_{i}^{* *} \cup f$ is isomorphic to $e^{\prime} \cup S^{\prime}$. Since $\left|\gamma\left(e \cup S_{i}^{* *} \cup f\right)\right|=s+1$ this contradicts the fact that $\gamma \in \mathcal{L}_{n}^{(r)}(H, s)$. Therefore, assumption (4.8) cannot hold and e^{\prime} must intersect at least two petals of S^{\prime}.

As observed in Remark 16, the last assertion in Lemma 15 follows easily from the first part. Therefore, the proof of Lemma 15 is complete.
4.3.2. Proof of Lemma 17. Let an r-uniform hypergraph H satisfying $s:=s_{H}=$ $\min _{0 \leq \ell<s} \Delta_{\ell}(H) \geq 2$ and integers $i, 0 \leq i \leq r-2$, and \bar{k} be given. We set

$$
\begin{equation*}
\widetilde{k}=\max _{2 \leq u \leq r} R^{(u)}(\bar{k}+r-1 ; u) \quad \text { and } \quad \widehat{k}_{i}=\widetilde{k}+r \tag{4.12}
\end{equation*}
$$

where $R^{(u)}(\bar{k}+r-1 ; u)$ is the Ramsey number which ensures that every u-colouring of the complete u-uniform hypergraph on $R^{(u)}(\bar{k}+r-1 ; u)$ vertices yields a monochromatic copy of $K_{\bar{k}+r-1}^{(u)}$.

Let $H_{i}^{\prime}=S^{\prime}+e^{\prime}$ be a subhypergraph of H which satisfies (b1)-(b3) of Lemma 15. Moreover, let $\gamma \in \mathcal{L}_{n}^{(r)}(H, s)$ be an (H, s)-local colouring of $K_{n}^{(r)}$ which yields an
injective $\left(i, \widehat{k}_{i}\right)$-sunflower. We have to ensure the existence of an injective (j, \bar{k}) sunflower in $K_{n}^{(r)}$ for some $j>i$.

Consider first the sub-hypergraph $H_{i}^{\prime}=S^{\prime}+e^{\prime}$ of H. By property (b1) the hypergraph $S^{\prime}=\left(L^{\prime}, p_{1}^{\prime}, \ldots, p_{s}^{\prime}\right)$ is an (i, s)-sunflower, with core L^{\prime} and petals $p_{1}^{\prime}, \ldots, p_{s}^{\prime}$. We set

$$
\begin{equation*}
i_{L}=\left|e^{\prime} \cap L^{\prime}\right|, \quad i_{O}=\left|e^{\prime} \backslash V\left(S^{\prime}\right)\right|, \quad \text { and } \quad i_{\sigma}=\left|e^{\prime} \cap p_{\sigma}^{\prime}\right| \text { for every } \sigma \in[s] \tag{4.13}
\end{equation*}
$$

We may assume w.l.o.g. that $i_{1} \geq \cdots \geq i_{u}>0$ and $i_{u+1}=\cdots=i_{s}=0$, We know from (b3) that $u \geq 2$. Observe that

$$
\begin{equation*}
i_{O}+i_{L}+i_{1}+\cdots+i_{u}=r \tag{4.14}
\end{equation*}
$$

and clearly $u \leq r$.
Now we turn back to $K_{n}^{(r)}$ and γ. Let L be the core of an injective $\left(i, \widehat{k}_{i}\right)$ sunflower in $K_{n}^{(r)}$. First fix a set O of i_{O} vertices in $V\left(K_{n}^{(r)}\right) \backslash L$ and a set \bar{L} of i_{L} vertices inside the core L. Since $i_{O}<r$ (cf. (4.14)) and $\widehat{k}_{i}=\widetilde{k}+r$, there still exists an injective (i, \widetilde{k})-sunflower $S \subseteq K_{n}^{(r)}$ with core L satisfying $V(S) \cap O=\emptyset$. Let $p_{1}, \ldots, p_{\widetilde{k}}$ be the petals of that sunflower, i.e., $S=\left(L, p_{1}, \ldots, p_{\widetilde{k}}\right)$.

Appealing to the fact that $\gamma \in \mathcal{L}_{n}^{(r)}(H, s)$ and following the line of proof of Claim 21 one can show the following claim.
Claim 23. Suppose $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{u}\right\} \subseteq[\widetilde{k}]$, and suppose e is an edge of $K_{n}^{(r)}$ satisfying $|e \cap L|=i_{L}$ and $\left|e \cap p_{\lambda_{\sigma}}\right|=i_{\sigma}$ for every $\sigma \in[u]$. Then there exists $\sigma(\Lambda) \in$ $[u]$ such that $\gamma(e)=\gamma\left(p_{\lambda_{\sigma}(\Lambda)} \cup L\right)$.

For every $\lambda \in[\widetilde{k}]$ we fix u not necessarily disjoint subsets $B_{\lambda, 1}, \ldots, B_{\lambda, u} \subseteq p_{\lambda}$ in such a way that

$$
\begin{equation*}
\left|B_{\lambda, \sigma}\right|=i_{\sigma} \quad \text { for every } \sigma \in[u] \text { and } \lambda \in[\widetilde{k}] \tag{4.15}
\end{equation*}
$$

From Claim 23 we infer that for every $\Lambda=\left\{\lambda_{1}<\cdots<\lambda_{u}\right\} \subseteq[\widetilde{k}]$ we have

$$
\begin{equation*}
\gamma\left(\bar{L} \cup O \cup \bigcup_{\sigma \in[u]} B_{\lambda_{\sigma}, \sigma}\right)=\gamma\left(L \cup p_{\lambda_{\sigma(\Lambda)}}\right) \quad \text { for some } \sigma(\Lambda) \in[u] \tag{4.16}
\end{equation*}
$$

Note that the assertion above states that for every set $\Lambda=\left\{\lambda_{1}<\cdots<\lambda_{u}\right\} \subseteq[\widetilde{k}]$ there exists a $\sigma(\Lambda)$ determining the colour of $\bar{L} \cup O \cup \bigcup_{\sigma \in[u]} B_{\lambda_{\sigma}, \sigma}$. While the above $\sigma(\Lambda)$ depends on Λ, a Ramsey type argument ensures a strengthening in which $\sigma(\Lambda)$ is independent of $\Lambda \subseteq X$ for a suitable subset $X \subseteq[\widetilde{k}]$. More precisely, we shall prove the following.

Claim 24. There exist a subset $X \subseteq[\widetilde{k}]$ with $|X|=\bar{k}+u-1$ and a $\sigma_{0} \in[u]$ such that for every $\left\{\lambda_{1}<\cdots<\lambda_{u}\right\} \subseteq X$ we have

$$
\gamma\left(\bar{L} \cup O \cup \bigcup_{\sigma \in[u]} B_{\lambda_{\sigma}, \sigma}\right)=\gamma\left(L \cup p_{\lambda_{\sigma_{0}}}\right)
$$

We prove Claim 24 momentarily, but first we deduce Lemma 17 from it. Let $X=\left\{x_{1}<\cdots<x_{\bar{k}+u-1}\right\}$ and $\sigma_{0} \in[u]$ be as in Claim 24. Set

$$
L^{*}=\bar{L} \cup O \cup \bigcup_{\sigma=1}^{\sigma_{0}-1} B_{x_{\sigma}, \sigma} \cup \bigcup_{\sigma=\sigma_{0}+1}^{u} B_{x_{\bar{k}+\sigma-1}, \sigma}
$$

and

$$
p_{\tau}^{*}=B_{x_{\sigma_{0}+\tau-1}, \sigma_{0}} \quad \text { for } \tau=1, \ldots, \bar{k}
$$

Recall that $B_{x, \sigma} \subseteq p_{x}$ and, therefore, $B_{x, \sigma} \cap B_{x^{\prime}, \sigma^{\prime}}=\emptyset$ whenever $x \neq x^{\prime}$. Moreover, by (4.15)

$$
\left|L^{*}\right|=i_{L}+i_{O}+\sum_{\sigma \in[u] \backslash\left\{\sigma_{0}\right\}} i_{\sigma}=r-i_{\sigma_{0}}=: j
$$

and $j>i$ since $i_{L}+i_{O}=i, u \geq 2$, and $i_{\sigma}>0$ for every $\sigma \in[u]$. Moreover, the choice of p_{τ}^{*} and the definition of L^{*} imply that $\left|L^{*} \cup p_{\tau}^{*}\right|=j+i_{\sigma_{0}}=r$ and, hence,

$$
S^{*}=\left(L^{*}, p_{1}^{*}, \ldots, p_{\bar{k}}^{*}\right)
$$

is a (j, \bar{k})-sunflower in $K_{n}^{(r)}$. Furthermore, it follows from Claim 24 that

$$
\gamma\left(L^{*} \cup p_{\tau}^{*}\right)=\gamma\left(L \cup p_{x_{\sigma_{0}+\tau-1}}\right)
$$

for every $\tau \in[\bar{k}]$. Since S is injective by assumption this implies that S^{*} is an injective (j, \bar{k})-sunflower in $K_{n}^{(r)}$ and the proof of Lemma 17 is complete, except for the proof of Claim 24.

Proof of Claim 24. Recall that Claim 23 guarantees for every $\Lambda=\left\{\lambda_{1}<\cdots<\right.$ $\left.\lambda_{u}\right\} \subseteq[\widetilde{k}]$ a $\sigma(\Lambda) \in[u]$ such that

$$
\gamma\left(\bar{L} \cup O \cup \bigcup_{\sigma \in[u]} B_{\lambda_{\sigma}, \sigma}\right)=\gamma\left(L \cup p_{\lambda_{\sigma(\Lambda)}}\right) .
$$

In other words we may view σ as a u-edge colouring of the complete u-uniform hypergraph with vertex set $[\widetilde{k}]$. By the choice of \widetilde{k} in (4.12) we infer from Ramsey's theorem [12] that there exist a subset $X \subseteq[\widetilde{k}]$ of size $|X|=\bar{k}+r-1$ and a $\sigma_{0} \in[u]$ such that $\sigma(\Lambda)=\sigma_{0}$ for every $\Lambda=\left\{\lambda_{1}<\cdots<\lambda_{u}\right\} \subseteq X$.

5. Essentially unbounded colourings

In this section we prove Theorem 8 (Section 5.3) and Theorem 5 (Section 5.4). Behind the scene we shall need a partite version of the canonical theorem of Erdős and Rado, Theorem 7; see Theorem 25 below.
5.1. A partite version of the Erdős-Rado canonical theorem. For a given ℓ-type τ (see Definition 4) we call a vector $\mathcal{J}=\left(J_{1}, \ldots, J_{\ell}\right)$ of sets an τ-trace if $J_{i} \subseteq\left[\tau_{i}\right]$ for every $i \in[\ell]$. Finally, we recall that for a set $\left(e \cap W_{i}\right)=\left\{v_{1}<\cdots<v_{\tau_{i}}\right\}$ and $J_{i}=\left\{j_{1}, \ldots, j_{x}\right\} \subseteq\left[\tau_{i}\right]$ we write $\left(e \cap W_{i}\right)\left[J_{i}\right]$ to denote the set $\left\{v_{j_{1}}, \ldots, v_{j_{x}}\right\}$ and $\left(e \cap W_{i}\right)\left[J_{i}\right]=\emptyset$ if and only if $J_{i}=\emptyset$.

Theorem 25. For all integers $q \geq r \geq 2$ and $\ell \in[r]$ and every ℓ-type τ there exists an integer $n=n(q, r, \ell, \tau)$ so that for every colouring $\gamma \in \mathcal{C}_{\ell \cdot n}^{(r)}$ and every partition of the vertex set into classes V_{1}, \ldots, V_{ℓ} of cardinality $\left|V_{i}\right|=n$ each, there exists a family W_{1}, \ldots, W_{ℓ} of disjoint sets $W_{i} \subset V_{i}$ with $\left|W_{i}\right|=q$ and a τ-trace $\mathcal{J}=\mathcal{J}(\tau)=\left(J_{1}, \ldots, J_{\ell}\right)$, such that for all edges $e, e^{\prime} \in\left(W_{1}, \ldots, W_{\ell}\right)\langle\tau\rangle$

$$
\gamma(e)=\gamma\left(e^{\prime}\right) \Leftrightarrow\left(e \cap W_{i}\right)\left[J_{i}\right]=\left(e^{\prime} \cap W_{i}\right)\left[J_{i}\right] \quad \forall i \in[\ell] .
$$

Observe that in the case $\ell=1$ of Theorem 25 is exactly Theorem 7, since then $\tau=(r)$ is the only 1-type and then Theorem 25 guarantees for every colouring γ a set W and a set $J \subseteq[r]$ so that two edges $e, e^{\prime} \subseteq W$ receive the same colour iff $e[J]=e^{\prime}[J]$.

Proof of Theorem 25. Let integers q, r, and ℓ and an ℓ-type $\tau=\left(\tau_{1}, \ldots, \tau_{\ell}\right)$ be given. We set n to be the integer $n(q \ell, r)$ guaranteed by Theorem 7 applied with $q \cdot \ell$ and r. Let γ be colouring $K_{\ell \cdot n}^{(r)} \rightarrow \mathbb{Z}$ and let V_{1}, \ldots, V_{ℓ} be an arbitrary partition of the vertex set of $K_{\ell \cdot n}^{(r)}$.

We treat the sets V_{1}, \ldots, V_{ℓ} as (pairwise disjoint) copies of $[n]$ and denote by \widehat{V} another copy of $[n]$. Consider the natural projection $\bigcup_{i \in[k]} V_{i} \rightarrow \widehat{V}$, where all the ℓ copies of $x \in[n]$ in $\bigcup_{i \in[k]} V_{i}$ are mapped onto the same $x \in \widehat{V}$. Restricting that projection to $\left(V_{1}, \ldots, V_{\ell}\right)\langle\tau\rangle$ gives rise to

$$
\begin{equation*}
\pi:\left(V_{1}, \ldots, V_{\ell}\right)\langle\tau\rangle \rightarrow\binom{\widehat{V}}{\leq r} \tag{5.1}
\end{equation*}
$$

where $\binom{\widehat{V}}{\leq r}$ is the family of all subsets of \widehat{V} with cardinality at most r.
Let us define an "inverse" π^{-1} of π on $\binom{\widehat{V}}{r}$ as follows. Lift $\widehat{e} \in\binom{\widehat{V}}{r}$ to the element $\pi^{-1}(\widehat{e})=e \in\left(V_{1}, \ldots, V_{\ell}\right)\langle\tau\rangle$ such that $\pi(e)=\widehat{e}$ and

$$
\pi\left(e \cap V_{1}\right)<\cdots<\pi\left(e \cap V_{\ell}\right)
$$

where as usual we write $X<Y$ for two sets $X, Y \subseteq[n]$ to denote $\max X<\min Y$.
Based on π^{-1} and the given colouring γ, we define an auxiliary colouring $\widehat{\gamma}:\binom{\widehat{V}}{r} \rightarrow$ \mathbb{Z} by setting for every $\widehat{e} \in\binom{\widehat{V}}{r}$

$$
\begin{equation*}
\widehat{\gamma}(\widehat{e}):=\gamma\left(\pi^{-1}(\widehat{e})\right) . \tag{5.2}
\end{equation*}
$$

Apply Theorem 7 to $\widehat{\gamma}$. We obtain a subset $\widehat{W} \subset \widehat{V}$ with $|\widehat{W}|=q \ell$ and a set $\widehat{J} \subset[r]$ such that for all $\widehat{e}, \widehat{e}^{\prime} \in\binom{\widehat{W}}{r}$

$$
\begin{equation*}
\widehat{\gamma}(\widehat{e})=\widehat{\gamma}\left(\widehat{e}^{\prime}\right) \Leftrightarrow \widehat{e}[\widehat{J}]=\widehat{e}^{\prime}[\widehat{J}] . \tag{5.3}
\end{equation*}
$$

View \widehat{J} as the corresponding characteristic vector in $\{0,1\}^{r}$, and partition this vector by letting J_{1} consist of the first τ_{1} components, J_{2} ofthe next τ_{2} components, up to J_{ℓ}. Finally view the sets J_{i} as subsets of τ_{i} and fix the promised τ-trace $\mathcal{J}=\mathcal{J}(\tau)=\left(J_{1}, \ldots, J_{\ell}\right)$. We obtain the sets $W_{i} \subseteq V_{i}$ from \widehat{W} in a similar manner: simply partition \widehat{W} into ℓ sets $\widehat{W}_{1}, \ldots \widehat{W}_{\ell}$ of the same cardinality q so that for every $i=1, \ldots, \ell-1$

$$
\widehat{W}_{1}<\cdots<\widehat{W}_{\ell}
$$

and lift \widehat{W}_{i} to V_{i} in the natural way, i.e., W_{i} equals to the copy of \widehat{W}_{i} in V_{i}. Thus we obtain $W_{i} \subset V_{i}$ for all $i \in[\ell]$.

Observe that

$$
\begin{equation*}
\pi \text { is injective on }\left(W_{1}, \ldots, W_{\ell}\right)\langle\tau\rangle \tag{5.4}
\end{equation*}
$$

and that, since $\widehat{W}_{i} \cap \widehat{W}_{j}=\emptyset$, we have $\pi(e) \in\binom{\widehat{V}}{r}$ for every $e \in\left(W_{1}, \ldots, W_{\ell}\right)\langle\tau\rangle$. Moreover, for every $e \in\left(W_{1}, \ldots, W_{\ell}\right)\langle\tau\rangle$ we have

$$
\begin{equation*}
\pi^{-1}(\pi(e))=e \tag{5.5}
\end{equation*}
$$

Also for every $\widehat{e} \in\binom{\widehat{V}}{r}$

$$
\begin{equation*}
\widehat{e}[\widehat{J}]=\left(\left(\widehat{e} \cap \widehat{W}_{1}\right)\left[J_{1}\right]<\cdots<\left(\widehat{e} \cap \widehat{W}_{\ell}\right)\left[J_{\ell}\right]\right) \tag{5.6}
\end{equation*}
$$

Finally, we show that the W_{1}, \ldots, W_{ℓ} together with $\mathcal{J}=\left(J_{1}, \ldots, J_{\ell}\right)$ satisfy the conclusion of Theorem 25. For all edges $e, e^{\prime} \in\left(W_{1}, \ldots, W_{\ell}\right)\langle\tau\rangle$ we have

$$
\begin{aligned}
\gamma(e)=\gamma\left(e^{\prime}\right) & \Leftrightarrow \widehat{\gamma}(\pi(e))=\widehat{\gamma}\left(\pi\left(e^{\prime}\right)\right) & & \text { by }(5.5) \text { and (5.2) } \\
& \Leftrightarrow \pi(e)[\widehat{J}]=\pi\left(e^{\prime}\right)[\widehat{J}] & & \text { by }(5.3) \text { and (5.4) } \\
& \Leftrightarrow \forall i \in[\ell]:\left(\pi(e) \cap \widehat{W}_{i}\right)\left[J_{i}\right]=\left(\pi\left(e^{\prime}\right) \cap \widehat{W}_{i}\right)\left[J_{i}\right] & & \text { by (5.6) } \\
& \Leftrightarrow \forall i \in[\ell]:\left(e \cap W_{i}\right)\left[J_{i}\right]=\left(e^{\prime} \cap W_{i}\right)\left[J_{i}\right] & & \text { by choice of } W_{i} .
\end{aligned}
$$

5.2. Further auxiliary lemmas. Besides Theorem 25 from the last section, we need a few tecnical lemmas for the proof of Theorem 8 . We start with an auxiliary result relating ($r-1, k$)-local colourings (see Definition 12) and (ε, T)-bounded colourings (see Definition 3). Roughly speaking, Lemma 26 asserts that unbounded colourings are not local.

Lemma 26. For all integers $r \geq 2$ and $k \geq 1$ and every $\varepsilon>0$ there exists an integer $T=T(r, k, \varepsilon)$ such that for every $n \in \mathbb{N}$, every $(r-1, k)$-local colouring $\gamma \in \mathcal{C}_{n}^{(r)}$ is (ε, T)-bounded.

Proof. Roughly speaking, this proof resembles the beginning of the proof of Theorem 10. Let $r \geq 2, k \geq 1$, and $\varepsilon>0$ be given and set

$$
T=\left\lfloor\left(\frac{k r^{r}}{\varepsilon}\right)^{r}\right\rfloor+1
$$

Assume for a contradiction that for some $n \in \mathbb{N}$ there exists an $(r-1, k)$-local colouring $\gamma \in \mathcal{C}_{n}^{(r)}$ which is not (ε, T)-bounded. Denote by c_{i} the number of edges of colour i. After renumbering we may assume that $c_{i}=0$ for every $i \leq 0$ and $c_{i} \geq c_{i+1}$ for every $i \geq 1$. Moreover,

$$
\begin{equation*}
\sum_{i>T} c_{i}>\varepsilon\binom{n}{r} \tag{5.7}
\end{equation*}
$$

since otherwise γ would be (ε, T)-bounded.
As there are c_{i} edges of colour i, by the Kruskal-Katona theorem [8, 10] there are at least $c_{i}^{(r-1) / r}$ sets $L \in\binom{[n]}{r-1}$ seeing colour i, i.e., each such L is contained in some edge of colour i. On the other hand, since γ is $(r-1, k)$-local, each such set L sees at most k different colours, and so combining these two arguments we have that

$$
\begin{equation*}
\sum_{i \geq 1} c_{i}^{1-1 / r} \leq \sum_{L \in\binom{[n]}{r-1}} \#\{\text { different colours seen by } L\} \leq k\binom{n}{r-1} \leq k n^{r-1} \tag{5.8}
\end{equation*}
$$

Furthermore, for every $i>T$ we have

$$
\begin{equation*}
c_{i} \leq c_{T} \leq \frac{1}{T} \sum_{j \in[T]} c_{j} \leq \frac{1}{T}\binom{n}{r} \leq \frac{n^{r}}{T} \tag{5.9}
\end{equation*}
$$

Combining (5.7), (5.8), and (5.9), we obtain

$$
\varepsilon\binom{n}{r} \stackrel{(5.7)}{\leq} \sum_{i>T} c_{i}=\sum_{i>T} c_{i}^{1 / r} c_{i}^{1-1 / r} \stackrel{(5.9)}{\leq} \frac{n}{\sqrt[r]{T}} \sum_{i>T} c_{i}^{1-1 / r} \stackrel{(5.8)}{\leq} \frac{k n^{r}}{\sqrt[r]{T}} \leq \frac{k r^{r}}{\sqrt[r]{T}}\binom{n}{r}
$$

which contradicts the choice of T.
Suppose $\gamma \in \mathcal{C}_{n}^{(r)}$ and $L \in\binom{[n]}{r-1}$. Let $C_{L, i}$ be the set of those vertices $v \in[n] \backslash L$ for which $\gamma(L \cup\{v\})=i$. Again we may assume (after renumbering if necessary) that $C_{L, i}=\emptyset$ for $i \leq 0$ and $i \geq n+1$ and $\left|C_{L, i}\right| \geq\left|C_{L, i+1}\right|$ for every $i \geq 1$. For a given integer $k \geq 1$ and $\alpha>0$ we call $L(k, \alpha, \gamma)$-good, if

$$
\begin{equation*}
\sum_{i>k}\left|C_{L, i}\right| \geq \alpha n \tag{5.10}
\end{equation*}
$$

and (k, α, γ) - $b a d$ otherwise. In other words, a set L is good if its "smaller colour classes" $C_{L, i}(i>k)$ add up a positive fraction. We first show (see Proposition 27) that, in this case $[n] \backslash L$ can be partitioned into classes of sensible sizes with disjoint colour ranges. Then we prove (see Lemma 28) that every unbounded colouring must contain many good sets L.
Proposition 27. For all integers $r \geq 2$ and $k \geq 1$, every $\alpha>0$ and every colouring $\gamma \in \mathcal{C}_{n}^{(r)}$ the following holds. If $L \in\binom{[n]}{r-1}$ is (k, α, γ)-good, then $[n] \backslash L$ can be partitioned into classes U_{1}, \ldots, U_{k} such that
(i) $\left|U_{i}\right| \geq \alpha n /(2 k)$ and
(ii) for all $1 \leq i<j \leq k$ and all $x \in U_{i}$ and $y \in U_{j}$ we have $\gamma(L \cup\{x\}) \neq$ $\gamma(L \cup\{y\})$.

Proof. Let constants $r \geq 2, k \geq 1, \alpha>0$, a colouring $\gamma \in \mathcal{C}_{n}^{(r)}$ and a (k, α, γ)-good set $L \in\binom{[n]}{r-1}$ be given. Moreover, let $C_{L, i}$ be defined as before.

First note that if $\left|C_{L, k}\right| \geq \alpha n /(2 k)$ then we are done by setting

$$
U_{i}= \begin{cases}C_{L, i} & \text { if } \quad i=1, \ldots, k-1 \\ \bigcup_{j \geq k} C_{L, j} & \text { if } \quad i=k\end{cases}
$$

Therefore, assume that $\left|C_{L, k}\right|<\alpha n /(2 k)$. Let $\left\{X_{1}, \ldots, X_{k}\right\}$ be a partition of $\{k+1, \ldots, n\}$ such that

$$
M:=\max _{1 \leq i<j \leq k}\left|\sum_{x \in X_{i}}\right| C_{L, x}\left|-\sum_{y \in X_{j}}\right| C_{L, y}| |
$$

is minimized. Note that, $\left|C_{L, x}\right| \leq\left|C_{L, k}\right|<\alpha n /(2 k)$ for any $x>k$, we have

$$
\begin{equation*}
M \leq \frac{\alpha n}{2 k} \tag{5.11}
\end{equation*}
$$

Assume for a conradiction that $\left|\sum_{x \in X_{i}}\right| C_{L, x} \mid<\alpha n /(2 k)$ for some $i_{0} \in[k]$. Then (5.11) would imply that

$$
\sum_{x \in X_{i}}\left|C_{L, x}\right|<\left|\sum_{x \in X_{i_{0}}}\right| C_{L, x} \left\lvert\,+\frac{\alpha n}{2 k} \leq \frac{\alpha n}{k}\right.
$$

for every $i \in[k]$, and, consequently,

$$
\sum_{i>k}\left|C_{L, i}\right|<\frac{\alpha n}{2 k}+(k-1) \frac{\alpha n}{k}<\alpha n
$$

which contradicts the fact that L is (k, α, γ)-good. Hence, $\sum_{x \in X_{i}}\left|C_{L, x}\right| \geq \alpha n /(2 k)$ for every $i \in k$ and setting for every $i \in[k]$

$$
U_{i}=\bigcup_{x \in X_{i}} C_{L, x} \cup C_{L, i}
$$

satisfies (i) and (ii).
Lemma 28. For all integers $r \geq 2$ and $k \geq 1$, and every $\varepsilon>0$ there exists an integer $T=T(r, k, \varepsilon)$ and a real $\alpha=\alpha(r, k, \varepsilon)>0$ such that for every $n \in \mathbb{N}$ and every colouring $\gamma \in \mathcal{C}_{n}^{(r)}$ which is not (ε, T)-bounded, there are more than $\frac{\varepsilon}{3 r^{r}}\binom{n}{r-1}$ sets in $\binom{[n]}{r-1}$, which are (k, α, γ)-good.

Proof. Let $r \geq 2, k \geq 1$, and $\varepsilon>0$ be given. Set $T=T(r, k+1, \varepsilon / 3)$ as given by Lemma 26 and set $\alpha=\varepsilon /\left(3 r^{r}\right)$. Assume for a contradiction that for some not (ε, T)-bounded colouring $\gamma \in \mathcal{C}_{n}^{(r)}$ there are at most $\left(\varepsilon /\left(3 r^{r}\right)\right)\binom{n}{r-1}$ sets $L \in\binom{[n]}{r-1}$ which are (k, α, γ)-good.

For simplicity we assume that $\operatorname{im}(\gamma) \subseteq \mathbb{N}$ and for every $L \in\binom{[n]}{r-1}$ let $\pi=$ $\pi_{L}: \mathbb{N} \rightarrow \mathbb{N}$ be a bijection for which $\left|C_{L, \pi(1)}\right| \geq\left|C_{L, \pi(2)}\right| \ldots$, where as above, $C_{L, \pi(i)}=\{v \in[n] \backslash L: \gamma(L \cup\{v\})=\pi(i)\}$. This way for every (k, α, γ)-bad set $L \in\binom{[n]}{r-1}$ we have

$$
\begin{equation*}
\sum_{i>k}\left|C_{L, \pi(i)}\right|<\alpha n=\frac{\varepsilon}{3 r^{r}} n \tag{5.12}
\end{equation*}
$$

We define an auxiliary colouring $\bar{\gamma}$ by setting for every $e \in K_{n}^{(r)}$

$$
\bar{\gamma}(e)=\left\{\begin{array}{l}
\quad \begin{cases}\text { if } & e \text { contains a }(k, \alpha, \gamma) \text {-good set or } \\
\text { if } \quad \gamma(e)=\pi_{L}(i) \text { for some } i>k\end{cases} \\
\gamma(e) \quad \begin{array}{l}
\text { and some }(k, \alpha, \gamma) \text {-bad set } L \in\binom{e}{r-1},
\end{array} \\
\text { otherwise } .
\end{array}\right.
$$

Since by assumption there are at most $\left(\varepsilon /\left(3 r^{r}\right)\right)\binom{n}{r-1}$ different (k, α, γ)-good sets and since (5.12) holds, we have

$$
\left|\bar{\gamma}^{-1}(0)\right| \leq \frac{\varepsilon}{3 r^{r}}\binom{n}{r-1} \times n+\alpha n \times\binom{ n}{r-1} \leq \frac{2 \varepsilon n^{r}}{3 r^{r}} \leq \frac{2 \varepsilon}{3}\binom{n}{r}
$$

Thus in total we recoloured at most $(2 / 3) \varepsilon\binom{n}{r}$ edges in $\bar{\gamma}$. On the other hand, by definition the colouring $\bar{\gamma}$ is $(r-1, k+1)$-local and, hence, by Lemma 26 it is $(\varepsilon / 3, T)$-local. But this implies that the original colouring γ must be (ε, T) bounded (as it differs from $\bar{\gamma}$ on at most $(2 / 3) \varepsilon\binom{n}{r}$ edges), which contradicts our assumption.
5.3. Proof of Theorem 8. In this section we prove Theorem 8. However, we shall first prove a slightly weaker result, namely, Lemma 30 below. For the proof of this lemma, we need the following well known result of Erdős, which says that every sufficiently large and dense r-uniform hypergraph contains every r-partite r uniform hypergraph of fixed order. We denote by $K^{(r)}(k ; r)$ the complete r-partite r-uniform hypergraph with vertex classes of size k.

Theorem 29 (Erdős [3]). For all integers $r \geq 2$ and $k \geq 1$ and every $\delta>0$ there is some $n_{0}=n_{0}(r, k, \delta)$ such that every r-uniform hypergraph G on $|V(G)|=n \geq n_{0}$ vertices with at least $\delta\binom{n}{r}$ edges, contains a copy of $K^{(r)}(k ; r)$.

We now state and prove Lemma 30, which deals with edges of the unique, nondegenerate r-type $1^{r}=(1, \ldots, 1)$ and proves the first part of Theorem 8.

Lemma 30. For all integers $q \geq r \geq 2$ and every $\varepsilon>0$, there exist integers $T=T(r, q, \varepsilon)$ and $n_{0}=n_{0}(r, q, \varepsilon)$ so that for every $n \geq n_{0}$ and every colouring $\gamma \in \mathcal{C}_{n}^{(r)}$ which is not (ε, T)-bounded the following holds. There exists a family $\mathcal{V}=\left\{V_{1}, \ldots, V_{r}\right\}$ of mutually disjoint sets, each of cardinality q, such that with $\tau=(1, \ldots, 1) \in \mathbb{N}^{r}$ for all edges $e, e^{\prime} \in\left(V_{1}, \ldots, V_{r}\right)\langle\tau\rangle$

$$
\gamma(e)=\gamma\left(e^{\prime}\right) \Rightarrow e \cap V_{1}=e^{\prime} \cap V_{1}
$$

Proof. Let $q \geq r \geq 2$ and $\varepsilon>0$ be given. Fix an integer k sufficiently large so that

$$
\begin{equation*}
k^{q r-1}<\binom{k}{q}^{r} \tag{5.13}
\end{equation*}
$$

We set the promised constant T to $T(r, k, \varepsilon)$ given by Lemma 28. Moreover, let $\alpha=\alpha(r, k, \varepsilon)$ be given by Lemma 28. We fix auxiliary constants s and δ by letting

$$
\begin{equation*}
s=\left\lceil\frac{\varepsilon}{3 r^{r}}\binom{n}{r-1}\right\rceil \quad \text { and } \quad \delta=\frac{\varepsilon}{3 r^{r}}\left(\frac{\alpha}{2 k}\right)^{k} . \tag{5.14}
\end{equation*}
$$

Finally, we set n_{0} to $n_{0}(r-1, k, \delta)$ given by Theorem 29.
After we fixed the promised constants T and n_{0}, let $\gamma \in \mathcal{C}_{n}^{(r)}$ for $n \geq n_{0}$ be a not (ε, T)-bounded colouring. Due to the choice of the constants above, Lemma 28 implies that there exist at least s sets $L^{1}, \ldots, L^{s} \in\binom{n}{r-1}$, which are (k, α, γ)-good. For each such $L^{\sigma}, \sigma \in[s]$, we are guaranteed by Proposition 27 to have a partition $\left\{U_{1}^{\sigma}, \ldots, U_{k}^{\sigma}\right\}$ of $[n] \backslash L^{\sigma}$ satisfying properties (i) and (ii) of Proposition 27. In particular, property (ii) implies that for any set $P=\left\{p_{1}^{\sigma}, \ldots, p_{k}^{\sigma}\right\} \in U_{1}^{\sigma} \times \cdots \times U_{k}^{\sigma}$ the $(r-1, k)$-sunflower $S_{P}^{\sigma}=\left(L^{\sigma}, p_{1}^{\sigma}, \ldots, p_{k}^{\sigma}\right)$ is an injective sunflower. Since by property (i) the sets $\left|U_{i}^{\sigma}\right| \geq \alpha n /(2 k)$ for every $\sigma \in[s]$ and $i \in[k]$, we thus obtain

$$
s \times\left(\frac{\alpha n}{2 k}\right)^{k} \stackrel{(5.14)}{\geq} \delta n^{k}\binom{n}{r-1}
$$

distinct, injective $(r-1, k)$-sunflowers. As there are less than n^{k} ways to choose k petals, there must be a set $W_{1}=\left\{p_{1}, \ldots, p_{k}\right\} \in\binom{[n]}{k}$ with more than $\delta\binom{n}{r-1}$ such injective $(r-1, k)$-sunflowers using p_{1}, \ldots, p_{k}, the elements of W_{1}, for the k petals. The kernels of those sunflowers give rise to an auxiliary ($r-1$)-uniform hypergraph G on the vertex set $[n]$ with $\delta\binom{n}{r-1}$ edges. By the choice of n_{0} and $n \geq n_{0}$ appealing to Theorem 29, we infer that G contains a copy of the complete $(r-1)$-partite hypergraph $K^{(r-1)}(k ; r-1)$. Let $W_{2}, \ldots, W_{r} \subseteq[n]$ be the vertex classes of cardinality k of that copy of $K^{(r-1)}(k ; r-1)$. Recalling that the edges of G are actually kernels of $(r-1, k)$-sunflowers with the k petals coming from $W_{1}=\left\{p_{1}, \ldots, p_{k}\right\}$ implies that $W_{1} \cap W_{i}=\emptyset$ for every $i=2, \ldots, r$ and, hence, W_{1}, \ldots, W_{r} is a family of mutually disjoint sets of cardinality k. Moreover, for every $L \in W_{2} \times \cdots \times W_{r}$ the $(r-1, k)$-sunflower $S=\left(L, p_{1}, \ldots, p_{k}\right)$ is injective, thus for all $x, x^{\prime} \in W_{1}$ with $x \neq x^{\prime}$ we have

$$
\begin{equation*}
\gamma(L \cup\{x\}) \neq \gamma\left(L \cup\left\{x^{\prime}\right\}\right) \tag{5.15}
\end{equation*}
$$

Our aim is to find sets $V_{i} \in\binom{W_{i}}{q}$ for all $i \in[r]$ such that for all not necessarily disjoint $L, L^{\prime} \in V_{2} \times \cdots \times V_{r}$ and all distinct $x \neq x^{\prime} \in W_{1}$ we have

$$
\begin{equation*}
\gamma(L \cup\{x\}) \neq \gamma\left(L^{\prime} \cup\left\{x^{\prime}\right\}\right) \tag{5.16}
\end{equation*}
$$

For that we call a family $\mathcal{V}=\left\{V_{1}, \ldots, V_{r}\right\}$ of sets $V_{i} \in\binom{W_{i}}{q}$ faulty if the above condition is not satisfied. We count all faulty families. By definition, every faulty
family contains two sets $L, L^{\prime} \in V_{2} \times \ldots V_{r}$ and two points $x, x^{\prime} \in V_{1}$ so that $\gamma(L \cup\{x\})=\gamma\left(L^{\prime} \cup\left\{x^{\prime}\right\}\right)$. There are at most $k^{\left|L \cup L^{\prime}\right|+1}$ ways to choose L, L^{\prime} and x. Once these are given, there is only one choice for x^{\prime}, because if there were two distinct choices, say x^{\prime} and $x^{\prime \prime}$, then $\gamma(L \cup\{x\})=\gamma\left(L^{\prime} \cup\left\{x^{\prime}\right\}\right)$ and $\gamma(L \cup\{x\})=$ $\gamma\left(L^{\prime} \cup\left\{x^{\prime \prime}\right\}\right)$ would imply $\gamma\left(L^{\prime} \cup\left\{x^{\prime}\right\}\right)=\gamma\left(L^{\prime} \cup\left\{x^{\prime \prime}\right\}\right)$, which contradicts (5.15). So our choice of x^{\prime} is forced. Now the remaining points in the family can be chosen arbitrarily, and there are at most k^{q-2} ways to complete V_{1} and $k^{(r-1) q-\left|L \cup L^{\prime}\right|}$ ways to complete V_{2}, \ldots, V_{r}. But since

$$
k^{\left|L \cup L^{\prime}\right|+1} \times k^{q-2} \times k^{(r-1) q-\left|L \cup L^{\prime}\right|}=k^{q r-1} \stackrel{(5.13)}{<}\binom{k}{q}^{r}
$$

thers is at least one family $\mathcal{V}=\left\{V_{1}, \ldots, V_{r}\right\}$, with $V_{i} \in\binom{W_{i}}{q}$ for $i \in[r]$, which is not faulty, i.e., it satisfies (5.16).

We are finally able to give the proof of Theorem 8, which is based on Lemma 30 and Theorem 25.

Proof of Theorem 8. Let $q \geq r \geq 2$ and $\varepsilon>0$ be given. First we define the constants T and n_{0}. For that let $\tau(1), \ldots, \tau(\xi)$ be any list of all non-degenerate types (for r) in which each ℓ-type $(\ell \in[r])$ appears $\binom{r}{\ell}$ times. It will be convenient to assume that $\tau(\xi)=(1, \ldots, 1)$ is the single copy of the unique non-degenerate r-type. Furthermore, let $\ell(i) \in[r]$ be so that $\tau(i)$ is an $\ell(i)$-type, i.e., let $\ell(i)$ denote the dimension of the vector $\tau(i)$. Finally, let $\Lambda(i)=\left\{\lambda_{1}(i)<\cdots<\lambda_{\ell(i)}(i)\right\} \subseteq[r]$ be an ordered subset of $\ell(i)$ indices in $[r]$ so that every two copies $\tau\left(i_{1}\right)$ and $\tau\left(i_{2}\right)$ of the same type get different sets, i.e., $\Lambda\left(i_{1}\right) \neq \Lambda\left(i_{2}\right)$.

We define the following sequence of integers $q(\xi) \leq \cdots \leq q(1)$ recursively by setting

$$
q(i)= \begin{cases}q+\xi & \text { if } \quad i=\xi \tag{5.17}\\ n(\operatorname{Thm} \cdot 25(q(i+1), r, \ell(i), \tau(i))) & \text { if } \quad i=\xi-1, \ldots, 1\end{cases}
$$

where $n(q, r, \ell, \tau)$ is given by Theorem 25. Finally, we fix the promised constants T and n_{0} by appealing to Lemma 30 with $q(1)$ and ε. In fact, we set

$$
\begin{equation*}
T=T(\operatorname{Lem} \cdot 30(q(1), \varepsilon)) \quad \text { and } \quad n_{0}=n_{0}(\operatorname{Lem} \cdot 30(q(1), \varepsilon)) \tag{5.18}
\end{equation*}
$$

Having defined the constants T and n_{0}, we let $\gamma \in \mathcal{C}_{n}^{(r)}$, for some $n \geq n_{0}$, be a not (ε, T)-bounded colouring.

Clearly, by our choice of T and n_{0} in (5.18) we can apply Lemma 30. Consequently, there exists a family $\mathcal{V}(1)=\left\{V_{1}(1), \ldots, V_{r}(1)\right\}$ of mutually disjoint sets, with

$$
\begin{equation*}
\left|V_{1}(1)\right|=\cdots=\left|V_{r}(1)\right|=q(1) \tag{5.19}
\end{equation*}
$$

so that for all edges $e, e^{\prime} \in\left(V_{1}(1), \ldots, V_{r}(1)\right)\langle\tau(\xi)\rangle$

$$
\begin{equation*}
\gamma(e)=\gamma\left(e^{\prime}\right) \Rightarrow e \cap V_{1}(1)=e^{\prime} \cap V_{1}(1) \tag{5.20}
\end{equation*}
$$

Notice that this would already prove the first assertion of the theorem by choosing $\ell=r$ and $\tau=\tau(\xi)=(1, \ldots, 1) \in \mathbb{N}^{r}$. However, at this point we cannot guarantee that all edges of degenerate r-type receive a colour different from the ones used so far, which we need for the moreover-part of Theorem 8. The idea to find the right value for ℓ is, roughly spoken, to go down with $\ell=r, r-1, \ldots$ and stop just before all $J_{j}(i)=\emptyset$.

Next we apply Theorem 25 for consequtively for $i=1, \ldots, \xi-1$ to obtain a family $\mathcal{V}(i+1)=\left\{V_{1}(i+1), \ldots, V_{r}(i+1)\right\}$, each of cardinality at least $q(i+1)$ and $V(i+1) \subseteq V(i)$. More precisely, given a family $\mathcal{V}(i)=\left\{V_{1}(i), \ldots, V_{r}(i)\right\}$ of mutually disjoint sets, each of size $q(i)$, which exist for $i=1$ due to (5.19), we apply Theorem 25 with $q(i+1), r, \ell(i)$, and $\tau(i)$ to the family of sets $\left\{V_{j}: j \in \Lambda(i)\right\}$ and γ restricted to the union of those sets. Theorem 25 then gives rise to subsets $W_{j}(i) \subseteq V_{j}(i)$ for $j \in \Lambda(i)=\left\{\lambda_{1}(i)<\cdots<\lambda_{\ell(i)}(i)\right.$ and a $\tau(i)$-trace $\mathcal{J}(\tau(i))=$ $\left(J_{1}(i), \ldots, J_{\ell(i)}(i)\right)$, so that for all edges $e, e^{\prime} \in\left(W_{\lambda_{1}(i)}(i), \ldots, W_{\lambda_{\ell(i)}}(i)\right)\langle\tau(i)\rangle$

$$
\begin{equation*}
\gamma(e)=\gamma\left(e^{\prime}\right) \Leftrightarrow\left(e \cap W_{j}(i)\right)\left[J_{j}\right]=\left(e^{\prime} \cap W_{j}(i)\right)\left[J_{j}\right] \quad \forall j \in[\ell(i)] . \tag{5.21}
\end{equation*}
$$

We conclude the inductive definition of $\mathcal{V}(i)$ by setting

$$
V_{j}(i+1)=\left\{\begin{array}{lll}
W_{j}(i) & \text { if } & j \in \Lambda(i) \\
V_{j}(i) & \text { if } & j \notin \Lambda(i)
\end{array}\right.
$$

We call a $\tau(i)$-trace $\mathcal{J}(\tau(i))=\left(J_{1}(i), \ldots, J_{\ell(i)}(i)\right)$ monochromatic, if $J_{j}(i)=\emptyset$ for every $j \in[\ell(i)]$, as in this case all $e \in\left(W_{\lambda_{1}(i)}(i), \ldots, W_{\lambda_{\ell(i)}}(i)\right)\langle\tau(i)\rangle$ receive the same colour. Fixing the $(\tau(\xi)=(1, \ldots, 1))$-trace $\mathcal{J}(\tau(\xi))=(\{1\}, \ldots,\{1\})$, we have, in view of (5.20), a non-monochromatic trace for the unique non-degenerate r-type. Therefore, there exists a minimum integer $\ell_{0} \in[r]$ for which there exists an ℓ_{0}-type, say $\tau\left(i_{0}\right)$ with corressponding index set $\Lambda\left(i_{0}\right)$, with a non-monochromatic trace $\mathcal{J}\left(\tau\left(i_{0}\right)\right)$.

From the choice of ℓ_{0} it follows that if $\Lambda(i) \subsetneq \Lambda\left(i_{0}\right)$, then $\mathcal{J}(\tau(i))$ is monochromatic. In particular, there exists a relabelling $U_{1}, \ldots, U_{\ell_{0}}$ of the sets $W_{j}\left(i_{0}\right)=$ $V_{j}\left(i_{0}+1\right)$ for $j \in \Lambda\left(i_{0}\right)$ such that for every degenerate ℓ_{0}-type τ the colouring γ is monochromatic on $\left(U_{1}, \ldots, U_{\ell_{0}}\right)\langle\tau\rangle$ and if $U_{1}=W_{j}\left(i_{0}\right)$ then $J_{j}\left(i_{0}\right) \neq \emptyset$, which is possible since $\mathcal{J}\left(\tau\left(i_{0}\right)\right)$ is non-monochromatic. Let $\tau^{*}=\left(\tau_{1}^{*}, \ldots, \tau_{\ell_{0}}^{*}\right)$ be the vector which we obtain from $\tau\left(i_{0}\right)=\left(\tau_{1}\left(i_{0}\right), \ldots, \tau_{\ell_{0}}\left(i_{0}\right)\right)$ after reshuffeling the entries corresponding to the relabelling above, i.e., if $U_{j}^{*}=W_{\lambda_{j}\left(i_{0}\right)}\left(i_{0}\right)$, then $\tau_{j}^{*}=\tau_{j}\left(i_{0}\right)$. Similarly, let $\mathcal{J}\left(\tau^{*}\right)=\left(J_{1}^{*}, \ldots, J_{\ell_{0}}^{*}\right)$ be the coresponding reshuffeling of $\mathcal{J}\left(\tau\left(i_{0}\right)\right)$, where $J_{1}^{*} \neq \emptyset$. Therefore, from (5.21) we infer the first part of Theorem 8, i.e, for all edges $e, e^{\prime} \in\left(U_{1}, \ldots, U_{\ell_{0}}\right)\left\langle\tau^{*}\right\rangle$

$$
\gamma(e)=\gamma\left(e^{\prime}\right) \Rightarrow\left(e \cap U_{1}\right)\left[J_{1}^{*}\right]=\left(e^{\prime} \cap U_{1}\right)\left[J_{1}^{*}\right]
$$

Moreover, due to the choice of the integers $q(i)$ in (5.17), we have $\left|U_{j}\right| \geq q\left(i_{0}+1\right) \geq$ $q+\xi$ for all $j \in\left[\ell_{0}\right]$. Since there are less than ξ colours used by degenerate $\ell_{0^{-}}$ types, the deletion of at most ξ many vertices from each U_{j} will produce the final family \mathcal{W}.
5.4. Proof of Theorem 5. In this section, we deduce Theorem 5 from Theorem 8.

Proof of Theorem 5. Let H be an r-uniform hypergraph with at least two edges and v_{H} vertices and set

$$
\begin{equation*}
k:=\Xi(H)=\min _{\substack{\tau \in \mathcal{T}^{(r)} \\ j_{1} \in\left[\tau_{1}\right]}} \max \left\{\left|\chi_{\tau, j_{1}, r \cdot v_{H}}^{(r)}\left(H_{0}\right)\right|: H_{0} \subseteq K_{r \cdot v_{H}}^{(r)}\right\} \tag{5.22}
\end{equation*}
$$

In (5.22) above as well as later in this proof, H_{0} denotes a copy of H in some "large enough" complete hypergraph. We have to show that $k-2 \leq \operatorname{EssFin}(H)<k$. We first prove the upper bound. For that it suffices to give an example of a family of (H, k)-local colourings, that are not (ε, T)-bounded for a given $\varepsilon>0$ and every T.

For that we note that for fixed $\varepsilon<r!/ r^{r}$ and given T the colouring $\chi_{\tau, j_{1}, n}^{(r)}$ is not (ε, T)-bounded for any $\tau \in \mathcal{T}^{(r)}, j_{1} \in\left[\tau_{1}\right]$, and $n=n(\varepsilon, T)$ sufficiently large. Moreover, by definition of k in (5.22) there is some $\tau_{0} \in \mathcal{T}^{(r)}$ and some $j_{1} \in\left[\tau_{1}\right]$ such that $\chi_{\tau_{0}, j_{1}, n}^{(r)}$ is (H, k)-local and, hence,

$$
\begin{equation*}
\operatorname{EssFin}(H)<k \tag{5.23}
\end{equation*}
$$

We prove the lower bound by contradiction. So assume $\operatorname{EssFin}(H)<k-2$, i.e., there is an $\varepsilon>0$ such that for every T there exist an n and a colouring $\gamma \in \mathcal{L}_{n}^{(r)}(H, k-2)$ that is not (ε, T)-bounded. Let such an $\varepsilon>0$ be given. For $q=v_{H}, r$, and ε Theorem 8 yields T and n_{0}. Now suppose for some $n \geq n_{0}$ there exist some $\gamma \in \mathcal{L}_{n}^{(r)}(H, k-2) \subseteq \mathcal{C}_{n}^{(r)}$ which is not (ε, T)-bounded. Then by Theorem 8 there exist an integer $\ell_{0} \in[r]$, a non-degenerate ℓ_{0}-type $\tau=\left(\tau_{1}, \ldots, \tau_{\ell_{0}}\right)$, a set $\emptyset \neq J_{1} \subseteq\left[\tau_{1}\right]$, and a family $\mathcal{W}=\left\{W_{1}, \ldots, W_{\ell_{0}}\right\}$ of mutually disjoint sets of cardinality q such that for all edges $e, e^{\prime} \in\left(W_{1}, \ldots, W_{\ell_{0}}\right)\langle\tau\rangle$

$$
\begin{equation*}
\gamma(e)=\gamma\left(e^{\prime}\right) \Rightarrow\left(e \cap W_{1}\right)\left[J_{1}\right]=\left(e^{\prime} \cap W_{1}\right)\left[J_{1}\right] \tag{5.24}
\end{equation*}
$$

Consequently, for $j_{1}=\min J_{1}$ we have

$$
\begin{gather*}
\max _{H_{0} \subseteq K_{n}^{(r)}}\left|\gamma\left(H_{0}\right)\right| \tag{5.25}\\
\stackrel{\geq m a x}{ }\left\{\left|\gamma\left(H_{0}\right)\right|: H_{0} \text { induced on } \bigcup_{i \in\left[\ell_{0}\right]} W_{i}\right\} \\
\stackrel{(5.24)}{\geq}-1+\max _{H_{0} \subseteq K_{\ell_{0} \cdot q}^{(r)}}\left|\chi_{\tau, j_{1}, \ell_{0} \cdot q}^{(r)}\left(H_{0}\right)\right|
\end{gather*}
$$

Note that the " -1 " is needed, because H_{0} may contain edges of a non-degenerate ℓ_{0}-type $\tau^{\prime} \neq \tau$. Theorem 8 gives us no control over the colour of those edges, but $\chi_{\tau, j_{1}, \ell_{0} \cdot q}^{(r)}\left(H_{0}\right)$ insists on a colour different from those used for the edges of type τ. However, if $r=2$, then there exist only one non-degenerate 1-type $(\tau=(2))$ and only one non-degenerate 2 -type $(\tau=(1,1))$. Hence, for $r=2$ we infer

$$
\begin{equation*}
\max _{H_{0} \subseteq K_{n}^{(2)}}\left|\gamma\left(H_{0}\right)\right| \geq \max _{H_{0} \subseteq K_{\ell_{0} \cdot q}^{(2)}}\left|\chi_{\tau, j_{1}, \ell_{0} \cdot q}^{(2)}\left(H_{0}\right)\right| \tag{5.26}
\end{equation*}
$$

Moreover, since $\tau \in \mathcal{T}^{(r)}$ and $q \geq v_{H}$, we infer from (5.25) that

$$
\max _{H_{0} \subseteq K_{n}^{(r)}}\left|\gamma\left(H_{0}\right)\right| \geq-1+\min _{\substack{\tau \in \mathcal{T}^{(r)} \\ j_{1} \in\left[\tau_{1}\right]}} \max _{H_{0} \subseteq K_{r \cdot v_{H}}^{(r)}}\left|\chi_{\tau, j_{1}, r \cdot v_{H}}^{(r)}\left(H_{0}\right)\right| .
$$

But by definition of k in (5.22) this contradicts $\gamma \in \mathcal{L}_{n}^{(r)}(H, k-2)$. Hence $\operatorname{EssFin}(H) \geq$ $k-2$ and (2.7) follows from (5.23) and (5.22).

The moreover-part of Theorem 5 for $r=2$ follows in the same way. Colourings $\chi_{(2), 1, n}^{(2)}$ and $\chi_{(2), 2, n}^{(2)}$ are equivalent in the sense that

$$
\max _{H_{0} \subseteq K_{n}^{(2)}}\left|\chi_{(2), 1, n}^{(2)}\left(H_{0}\right)\right|=\max _{H_{0} \subseteq K_{n}^{(2)}}\left|\chi_{(2), 2, n}^{(2)}\left(H_{0}\right)\right|
$$

for every integer n. Recalling, that $\gamma_{\min , n}=\chi_{(2), 1, n}^{(2)}$ and $\gamma_{\mathrm{bip}, n}=\chi_{(1,1), 1, n}^{(2)}$ we infer from (5.23) and (5.22) that

$$
\operatorname{EssFin}(H) \leq-1+\min \left\{\max _{H_{0}}\left|\gamma_{\min , 2 v_{H}}\left(H_{0}\right)\right|, \max _{H_{0}}\left|\gamma_{\mathrm{bip}, 2 v_{H}}\left(H_{0}\right)\right|\right\}=k-1
$$

where the H_{0} range over all copies of H in $K_{n}^{(2)}$. Similarly, repeating the analysis as in the proof of $\operatorname{EssFin}(H) \geq k-2$ for general r above, but using (5.26) instead of (5.25), we infer $\operatorname{EssFin}(H) \geq k-1$ for $r=2$.

References

1. B. Bollobás, Y. Kohayakawa, and R. H. Schelp, Essentially infinite colourings of graphs, J. London Math. Soc. (2) 61 (2000), no. 3, 658-670. 1, 2.3, 2.3
2. R. A. Clapsadle and R. H. Schelp, Local edge colorings that are global, J. Graph Theory 18 (1994), no. 4, 389-399. 1, 1
3. P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183-190. 29
4. P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L'Enseignement Mathématique [Monographs of L'Enseignement Mathématique], vol. 28, Université de Genève L'Enseignement Mathématique, Geneva, 1980. 9
5. P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proc. London Math. Soc. (3) 2 (1952), 417-439. 7
6. P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90. 14
7. P. Frankl, R. L. Graham, and V. Rödl, Quantitative theorems for regular systems of equations, J. Combin. Theory Ser. A 47 (1988), no. 2, 246-261. 3
8. G. Katona, A theorem of finite sets, Theory of graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, 1968, pp. 187-207. 5.2
9. A. V. Kostochka, A bound of the cardinality of families not containing Δ-systems, The mathematics of Paul Erdős, II, Algorithms Combin., vol. 14, Springer, Berlin, 1997, pp. 229-235. 1
10. J. B. Kruskal, The number of simplices in a complex, Mathematical optimization techniques, Univ. of California Press, Berkeley, Calif., 1963, pp. 251-278. 5.2
11. H. J. Prömel and V. Rödl, An elementary proof of the canonizing version of Gallai-Witt's theorem, J. Combin. Theory Ser. A 42 (1986), no. 1, 144-149. 2.4
12. F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1930), 264-286. 2.3, 4.3.2
13. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199-245, Collection of articles in memory of Juriĭ Vladimirovič Linnik. 2.4
14. M. Truszczyński, Generalized local colorings of graphs, J. Combin. Theory Ser. B 54 (1992), no. 2, 178-188. 1
15. B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15 (1927), 212-216, German. 2.4
16. P. Varnavides, On certain sets of positive density, J. London Math. Soc. 34 (1959), 358-360. 3

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA, and Trinity College, Cambridge CB2 1TQ, UK

E-mail address: bollobas@msci.memphis.edu
Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-090 São Paulo, Brazil

E-mail address: yoshi@ime.usp.br
Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA

E-mail address: rodl@mathcs.emory.edu
Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, D10099 Berlin, Germany

E-mail address: schacht@informatik.hu-berlin.de
Zentrum Mathematik, Technische Universität München, Boltzmannstrasse 3, D-85747
Garching bei München, Germany
E-mail address: taraz@ma.tum.de

[^0]: Date: 25 January 2006.
 2000 Mathematics Subject Classification. Primary 05D10; Secondary 05C35.
 Key words and phrases. Uniform hypergraphs, local edge colourings, canonical colourings.
 The second author was partially supported by FAPESP and CNPq through a TemáticoProNEx project (Proc. FAPESP 2003/09925-5) and by CNPq (Proc. 306334/2004-6 and $479882 / 2004-5)$. The third author was partially supported by NSF grant DMS 0300529. The fourth author was partly supported by the DFG within the European graduate program 'Combinatorics, Geometry, and Computation' (No. GRK 588/2) and by DFG grant SCHA 1263/1-1. This work was supported in part by a CAPES/DAAD collaboration grant.

[^1]: ${ }^{\dagger}$ In fact a slightly more refined argument shows that $n \geq 2 r+1$ suffices, which is best possible. However, we make no effort to improve the constant here.

[^2]: ${ }^{\ddagger} H e r e ~ t h e ~ e x p r e s s i o n ~ " ~ e \cup S_{i}^{*} \cup\left\{L \cup p_{\lambda}\right\}$ " sort of mixes the standard notation with the convention of omitting $\}$ for singletons when the meaning is clear.

