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Abstract. We consider edge colourings of the complete r-uniform hypergraph

K
(r)
n on n vertices. How many colours may such a colouring have if we restrict

the number of colours locally? The local restriction is formulated as follows:
for a fixed hypergraph H and an integer k we call a colouring (H, k)-local if

every copy of H in the complete hypergraph K
(r)
n receives at most k different

colours.
We investigate the threshold for k that guarantees that every (H, k)-local

colouring of K
(r)
n must have a globally bounded number of colours as n →∞,

and we establish this threshold exactly. The following phenomenon is also
observed: for many H (at least in the case of graphs), if k is a little over this

threshold, the unbounded (H, k)-local colourings exhibit their colourfulness in

a “sparse way”; more precisely, a bounded number of colours are dominant
while all other colours are rare. Hence we study the threshold k0 for k that

guarantees that every (H, k)-local colouring γn of K
(r)
n with k ≤ k0 must have

a globally bounded number of colours after the deletion of up to εnr edges
for any fixed ε > 0 (the bound on the number of colours is allowed to depend

on H and ε only); we think of such colourings γn as “essentially finite”. As

it turns out, every essentially infinite colouring is closely related to a non-
monochromatic canonical Ramsey colouring of Erdős and Rado. This second

threshold is determined up to an additive error of 1 for every hypergraph H.

Our results extend earlier work for graphs by Clapsadle and Schelp [Local edge
colorings that are global, J. Graph Theory 18 (1994), no. 4, 389–399] and by

the first two authors and Schelp [Essentially infinite colourings of graphs, J.
London Math. Soc. (2) 61 (2000), no. 3, 658–670]. We also consider a related

question for colourings of the integers and arithmetic progressions.
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1. Introduction

For an integer r ≥ 2, let K
(r)
n be the complete r-uniform hypergraph with vertex

set [n] = {1, . . . , n}. We identify hypergraphs with their edge sets, e.g., K
(r)
n =

(
[n]
r

)
,

the family of all subsets of [n] with cardinality r. In the following, we consider
colourings γn : K

(r)
n → Z and the set of all such colourings will be denoted by C(r)

n .
For a given colouring, we say that a vertex x sees colour i in this colouring if x is
contained in an edge of colour i.

Fix an r-uniform hypergraph H and a positive integer k. A colouring γn ∈ C(r)
n of

K
(r)
n is called (H, k)-local if (the edges of) every copy of H in K

(r)
n are coloured with

at most k different colours. Local colourings were introduced by Truszczyński [14].
We shall denote the set of all such colourings by L(r)

n (H, k).
We are interested in the structure of the colourings in L(r)

n (H, k). In particu-
lar, we investigate what one can say about the total number of colours used in a
colouring in L(r)

n (H, k). It turns out that this total number is uniformly bounded
(as n →∞) as long as k is below a certain threshold Fin(H). Our first main result
gives a simple, explicit expression for Fin(H) (see Theorem 2 below). This result
generalizes a result of Clapsadle and Schelp [2], who investigated this problem for
graphs, that is, the case r = 2.

By definition, the (H, k)-local colourings γn of K
(r)
n with k just above the thresh-

old Fin(H) may use an unbounded number of colours (as n → ∞). However, for
many H, for k just a little above Fin(H), only a uniformly bounded number of
colours occur a large number of times in γn: if we restrict γn to some (1− o(1))

(
n
r

)
edges of K

(r)
n , we again have a uniformly bounded number of colours only. We call

such colourings γn “essentially finite.” To be precise, we call a family of colour-
ings {γn} essentially finite if for any ε > 0 there is an integer T such that all but
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at most ε
(
n
r

)
edges of K

(r)
n are coloured by at most T colours by all colourings γn

in the family.
We investigate a second threshold, which we denote by EssFin(H), related to

essential finiteness of colourings. We have EssFin(H) = k0 if and only if k0 is the
maximal integer such that every (H, k)-local colouring γn of K

(r)
n with k ≤ k0 is

essentially finite. In what follows, we determine EssFin(H) up to an additive error
of 1 (see Theorem 5). This result generalizes a result of the first and second authors
together with Schelp [1], who investigated the parameter EssFin(H) for graphs H.
As in that previous paper, most of the work will lie in identifying certain unavoid-
able substructures in essentially infinite colourings, that is, colourings that are not
essentially finite. The main result that we obtain in this direction has, unfortu-
nately, a somewhat technical look; see Theorem 8 in Section 2.3. Our estimate
for EssFin(H) follows directly from Theorem 8 (see Section 5.4).

By definition, we have
Fin(H) ≤ EssFin(H). (1.1)

We shall show that, at least in the case of graphs, we have strict inequality in (1.1)
in most cases (we also exhibit examples of graphs H for which equality holds). See
Corollary 6.

We also consider essentially infinite colourings of the integers, and we prove that
they necessarily contain arbitrarily long ‘rainbow’ (totally multicoloured) arith-
metic progressions (see Theorem 10). It turns out that this result is of a much
simpler form than the results for essentially infinite colourings of hypergraphs, and
the proof is correspondingly more pleasant.

In the next section, we shall give a detailed account of our results, together with
the necessary definitions, some of which will be introduced rather gently, as they do
require some getting used to. Mostly because of its length and simplicity, we then
move on to essentially infinite colourings of integers and long rainbow arithmetic
progressions. Most of the work will be in the two sections that follow. In Section 4,
we shall prove our explicit formula for Fin(H), and in Section 5 we shall investigate
essentially infinite colourings of hypergraphs and prove our estimate on EssFin(H).

2. Statement of the main results

2.1. Warm-up. Suppose one tries to colour the edges of K
(r)
n using as many colours

as possible, and the only restriction is that it has to be an (H, k)-local colouring.
Let us denote the maximum number of colours that one can achieve by

t(H, k, n) := max
{
| im(γ)| : γ ∈ L(r)

n (H, k)
}

.

For given H and k, we are interested in how t(H, k, n) behaves as a function in n.
To warm up, consider the following example. Let r = 2 and H = K5. We have

that
t(K5, 1, n) = 1 and t(K5, 2, n) = 2 . (2.1)

Indeed, the former is trivial and the latter is immediately verified as follows. Sup-
pose for a contradiction that a colouring γ ∈ L(2)

n (K5, 2) uses three different colours
c1, c2, and c3 on the edges {x1, y1}, {x2, y2}, and {x3, y3}. If these six vertices are
not pairwise distinct, then they are contained in a copy of K5 picking up 3 colours,
which is forbidden. Also, the edge {x1, x2} cannot have colour c3, so w.l.o.g. it has
colour c1. But then the vertices x1, x2, y2, x3, y3 span a K5 with 3 colours. This
shows that indeed t(K5, 2, n) = 2.
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Next we claim that
t(K5, 3, n) ≥

⌊n

2

⌋
+ 1 .

This can be verified by considering the colouring γmatch,n ∈ C(2)
n , which assigns to

each edge of a fixed matching of size bn/2c a new colour and colours all the other
edges with an extra colour 0. It is clear that γmatch,n ∈ L(2)

n (K5, 3), because any
copy of a K5 can contain at most two matching edges, whereas | im(γmatch,n)| =
bn/2c+1. Thus, when we move from t(K5, 2, n) to t(K5, 3, n), the function suddenly
changes from bounded to unbounded.

2.2. Finite local colourings. One of the aims of this paper is to determine, for
a given r-uniform hypergraph H, the maximal integer k for which t(H, k, n) is
bounded. Formally, we are interested in

Fin(H) := max
{
k ∈ N : ∃T ∈ N such that for every n ∈ N

every γ ∈ L(r)
n (H, k) is such that | im(γ)| ≤ T

}
.

The earlier discussion shows that Fin(K5) = 2. A theorem by Clapsadle and Schelp
gives a nice description of Fin(H) for any graph H.

Theorem 1 (Clapsadle & Schelp [2]). Let H be a graph with at least two edges. Let
ν(H) denote the cardinality of a maximum matching in H and ∆(H) the maximum
degree of a vertex in H. Then

Fin(H) = min{ν(H),∆(H)} . �

Clapsadle and Schelp were especially interested in the situation when t(H, k, n) =
k. They observed that in that case H must contain every graph on k edges as a
subgraph and conjectured that the converse is also true.

One of the aims of this paper is to generalize Theorem 1 to hypergraphs. For
this we introduce the following definitions. An r-uniform sunflower (or ∆-system)
with core L is an r-uniform hypergraph with set of edges {e1, . . . , es} such that
ei ∩ ej = L for all i 6= j. We allow L = ∅; in that case, a sunflower is simply a
matching. The sets ei are the edges and the sets pi := ei \ L are the petals. The
cardinality of the core |L| is the type and s, the number of edges (or petals), is the
size of the sunflower. If ` = |L| is the type and s is the size of the sunflower, we
shall speak of an (`, s)-sunflower and we shall denote it by S = (L, p1, . . . , ps).

Furthermore, for ` = 0, . . . , r we denote by ∆`(H) the maximum size of a sun-
flower of type ` in a hypergraph H. Obviously if H is a graph, i.e., r = 2, then we
have ∆1(H) = ∆(H) and ∆0(H) = ν(H). Consequently, the following theorem is
an extension of Theorem 1 from graphs to r-uniform hypergraphs.

Theorem 2. For any r-uniform hypergraph H with at least two edges we have

Fin(H) = min
0≤`<r

∆`(H) . (2.2)

The upper bound, Fin(H) ≤ min0≤`<r ∆`(H), is easy to verify and we give
the proof below. The lower bound is harder to obtain. Its proof can be found in
Section 4.

Proof of the upper bound in Theorem 2. Suppose H is an r-uniform hypergraph
with at least two edges. We shall show that

Fin(H) < min
0≤`<r

∆`(H) + 1 =: k . (2.3)
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In order to verify (2.3) we give an example of a sequence of (H, k)-local colourings
γn ∈ C(r)

n such that | im(γn)| is unbounded.
By definition of k in (2.3) there is some `0 ∈ {0, . . . , r − 1} so that k > ∆`0(H).

Fix in K
(r)
n an (`0, n̄)-sunflower S = (L, p1, . . . , pn̄), with n̄ := b(n− `0)/(r − `0)c.

Now consider the following colourings γn ∈ C(r)
n : colour the edges of S with colours

1, . . . , n̄ and colour all other edges with colour 0. As H contains no (`0, k)-sunflower,
every copy of H in K

(r)
n cannot see more than k − 1 colours from those appearing

in S, and thus at most k different colours in total. Hence γn is (H, k)-local, but
obviously | im(γn)| → ∞ as n →∞. �

2.3. Essentially finite colourings. Let us return to our warm-up example. No-
tice that in the (K5, 3)-local colouring γmatch,n all but one colour was in fact only
used once. In other words, γmatch,n did use an unbounded number of colours, but
only in a very sparse way. We would like to know how large we can make k before
there exists a colouring in L(r)

n (H, k) that uses a lot of colours in an “essential way,”
by which we mean that there are still unboundedly many colours after removing,
say, some f(n) edges.

For a moment suppose f(n) is of order o(n2). We modify the colouring γmatch,n

and consider γ′match,n ∈ C(2)
n , where we have n2/(8f(n)) vertex disjoint copies of

the complete bipartite graph K4f(n)/n,4f(n)/n, each of its own colour, and the other
edges receive colour 0. It is easy to check that γ′match,n uses an unbounded number
of colours, even after the deletion of any f(n) edges. On the other hand, γ′match,n is
still (K5, 3)-local. Summarizing the above, we note that while the original colouring
γmatch,n was an example of a (K5, 3)-local colouring which remains unbounded after
deleting up to cn edges for any c < 1

2 , the modified colouring γ′match,n witnesses
that the same remains true if we remove up to o(n2) edges. Hence, if we want to
guarantee that our colouring γ uses boundedly many colours after deleting up to
o(n2) edges, we cannot allow more colours locally. Hence for r = 2 let us consider
functions f(n) = ε

(
n
2

)
for some ε > 0 and, more generally, we allow the deletion of

up to ε
(
n
r

)
edges in K

(r)
n .

Definition 3. Let r ≥ 2 be an integer, t ∈ N and ε > 0. We say a colouring γ ∈ C(r)
n

is (ε, t)-bounded if there exists a subgraph G ⊆ K
(r)
n such that |G| ≥ (1 − ε)

(
n
r

)
and |γ(G)| ≤ t. Moreover, we say that a family of colourings {γn ∈ C(r)

n : n ∈ N}
is essentially finite if for every ε > 0 there is an integer T such that any γn in the
family is (ε, T )-bounded. Otherwise, we say that the family is essentially infinite.
When there is no danger of confusion, we refer to the colourings themselves as
essentially finite and essentially infinite.

For a given r-uniform hypergraph H, we are interested in the maximum integer k
that guarantees that every (H, k)-local colouring is (ε, T )-bounded for every ε > 0
and T = T (ε). More precisely, we define

EssFin(H) := max
{

k ∈ N : ∀ε > 0∃T ∈ N such that for every n ∈ N

every γ ∈ L(r)
n (H, k) is (ε, T )-bounded

}
.

Although the definition of EssFin(H) looks a little overwhelming at first, observe
that it is similar to that of Fin(H), except that we are now allowed to remove ε

(
n
r

)
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edges before we count the colours. This way we may be able to allow for a larger
number of colours locally while remaining essentially finite globally.

In order to get used to EssFin(H), we return to our example H = K5 and show
that

EssFin(K5) = 3 . (2.4)

For that we consider the following two colourings γmin,n and γbip,n ∈ C(2)
n . For

every edge e = {x, y} ∈
(
[n]
2

)
with x < y, let

γmin,n(e) := x,

γbip,n(e) :=

{
x if x ≤ n

2 < y ,

0 otherwise .

Observe that both {γmin,n : n ∈ N} and {γbip,n : n ∈ N} are essentially infinite.
Moreover, γmin,n is (K5, 4)-local, but not (K5, 3)-local; γbip,n is not even (K5, 4)-
local. Therefore, γmin,n shows that EssFin(K5) < 4.

On the other hand, let us sketch the proof of EssFin(K5) ≥ 3. We need to show
that for every ε > 0 there exists an integer T so that every (K5, 3)-local colouring
γ is (ε, T )-bounded. So suppose {γn ∈ C(r)

n : n ∈ N} is essentially infinite. Then
it follows from the results in [1] that for sufficiently large n the colouring γn must
exhibit a “local spot” that is (in some sense) at least as rich in colours as either
γmin,n or γbip,n. But then γn cannot be (K5, 3)-local, as neither γmin,n nor γbip,n

are, which yields EssFin(K5) ≥ 3.
In order to formalize this for arbitrary hypergraphs, we generalize the colourings

γmin,n and γbip,n and describe a family CEIC(r)
n ⊆ C(r)

n of canonical essentially
infinite colourings of K

(r)
n , which turn out to be unavoidable for every essentially

infinite colouring.

Definition 4. Let r ≥ 2 and ` ∈ [r]. A vector τ = (τ1, . . . , τ`) ∈ N`
0 of non-negative

integers is an `-type if
∑

i∈[`] τi = r. We call τ degenerate if τi = 0 for some i ∈ [l]
and non-degenerate otherwise. We denote the set of all non-degenerate types by

T (r) =
⋃

`∈[r]

{
τ = (τ1, . . . , τ`) :

∑
i∈[`]

τi = r and τi > 0 for all i ∈ [`]
}

For a family of mutually disjoint sets W1, . . . ,W` ⊆ [n] and an `-type τ we say an
edge e ∈ K

(r)
n has type τ if |e ∩Wi| = τi for every i ∈ [`]. We denote the family of

all edges of type τ by (W1, . . . ,W`)〈τ〉.

For fixed integers r and n we consider for every ` ∈ [r] a partition Π` of [n] with `
partition classes Ii(`, n) for i ∈ [`] defined by

Ii(`, n) :=
{⌊

(i− 1)n
`

⌋
+ 1, . . . ,

⌊
in

`

⌋}
1 ≤ i ≤ ` ≤ r .

Now we define the canonical essentially infinite colourings χ
(r)
τ,j1,n for every non-

degenerate `-type τ = (τ1, . . . , τ`) and j1 ∈ [τ1] by setting, for every e = {v1 <

· · · < vr} ∈ K
(r)
n ,

χ
(r)
τ,j1,n(e) :=

{
vj1 if e ∈ (I1(`, n), . . . , I`(`, n))〈τ〉 ,
0 otherwise .

(2.5)
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We let
CEIC(r)

n :=
{
χ

(r)
τ,j1,n : τ ∈ T (r) and j1 ∈ [τ1]

}
.

Note that for example γmin,n = χ
(2)
τ,j1,n for the 1-type τ = (2) with j1 = 1 ∈ [2], and

γbip,n corresponds to χ
(2)
τ,j1,n for the 2-type τ = (1, 1) with j1 = 1 ∈ [1].

It is easy to see that for any τ ∈ T (r) and j1 ∈ [τ1] the family {χ(r)
τ,j1,n : n ∈ N}

is essentially infinite. (Note that τ ∈ T (r) yields τ1 > 0 here.) Consequently,

EssFin(H) < max
{∣∣χ(r)

τ,j1,n(H0)
∣∣ : H0 is a copy of H in K(r)

n

}
(2.6)

for any τ ∈ T (r), j1 ∈ [τ1], and n ≥ r · vH . Let us set

Ξ(H) := min
τ, j1

max
H0

∣∣χ(r)
τ,j1,r·vH

(H0)
∣∣,

where the minimum is taken over all τ ∈ T (r) and j1 ∈ [τ1] and the maximum
is taken over all copies H0 of H in K

(r)
r·vH . The following theorem states that the

upper bound in (2.6) is almost tight.

Theorem 5. For every r-uniform hypergraph H on vH vertices with at least two
edges

Ξ(H)− 2 ≤ EssFin(H) ≤ Ξ(H)− 1. (2.7)
Moreover, if r = 2, then

EssFin(H) = min
{

max
H0

{
|γmin,2vH

(H0)|
}

, max
H0

{
|γbip,2vH

(H0)|
}}

− 1 , (2.8)

where the maxima are taken over all copies H0 of H in K
(2)
r·vH .

By definition EssFin(H) ≥ Fin(H) for every hypergraph H. The next corollary
says that, in fact, the inequality is strict for “most” graphs (r = 2). For an integer
` ≥ 2 we denote by MC ` the “matched clique” of order `, i.e., the graph with 2`
vertices {v1, . . . , v`, u1, . . . , u`} with v1, . . . , v` spanning a complete graph K` and
additional matching edges {vi, ui} for every i ∈ [`].

Corollary 6. Suppose H is a connected graph with at least two edges and vH ≥ 6
vertices. If, moreover, one of the following holds:

(i ) max{ν(H),∆(H)} ≥ min{ν(H) ,∆(H)}+ 2, or
(ii ) vH is odd, or
(iii ) vH is even, but H is not a subgraph of MC vH/2,

then EssFin(H) > Fin(H).
On the other hand, EssFin(MC `) = Fin(MC `) for every ` ≥ 2. �

Corollary 6 follows from Theorems 1 and 5. While (i ) and the last statement are
immediate, (ii ) and (iii ) require some additional arguments, which will be omitted.

Recall from the short discussion about EssFin(K5) = 3 (see (2.4)) that the main
work in determining EssFin(H) and thus in establishing Theorem 5 is needed for
the lower bound, and that our approach is to show that any essentially infinite
colouring must exhibit a local spot that is at least as colourful as a colouring in
CEIC(r)

m for some sufficiently large m. To make this precise, we need a few more
definitions. For any edge e = {v1, . . . , vr} ⊆ [n] with v1 < · · · < vr and any set of
indices J = {j1, . . . , j`} ⊆ [r] we let e[J ] := {vj1 , . . . , vj`

}. Moreover, if J = ∅, then
e[J ] = ∅. With that notation a classical theorem of Erdős and Rado can be stated
as follows.
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Theorem 7 (Erdős & Rado [5]). For all integers q ≥ r ≥ 2, there exists an
integer n = n(q, r) so that for every colouring γ ∈ C(r)

n there is a set W ⊆ [n] with
|W | = q and there is a set J ⊆ [r] such that

γ(e) = γ(e′) ⇔ e[J ] = e′[J ]

for all edges e, e′ ∈
(
W
r

)
. �

In this context, Ramsey’s theorem [12] says that if the total number of colours
used by γ is bounded, then one can ask for J = ∅ or, equivalently, for a monochro-
matic complete subgraph of order q. With the aim of proving Theorem 5, among
others, we shall prove a complementary result: if γ is sufficiently rich in colours,
then we can ask for J 6= ∅ or, equivalently, for a multicoloured subgraph. As we
shall see in Section 5.4, Theorem 5 is a simple consequence of the following theorem,
which is one of the main results of this paper.

Theorem 8. For all integers q ≥ r ≥ 2 and for every ε > 0, there are integers T

and n0 so that for every n ≥ n0 and every colouring γ ∈ C(r)
n that is not (ε, T )-

bounded, there exist an integer ` ∈ [r], a non-degenerate `-type τ = (τ1, . . . , τ`), a
set ∅ 6= J1 ⊆ [τ1], and a family W = {W1, . . . ,W`} of mutally disjoint sets, each of
cardinality q, such that for all edges e, e′ ∈ (W1, . . . ,W`)〈τ〉

γ(e) = γ(e′) ⇒ (e ∩W1)[J1] = (e′ ∩W1)[J1] .

Moreover, if e ∈ (W1, . . . ,W`)〈τ ′〉 for a degenerate `-type τ ′ then γ(e) 6∈
{
γ(f) : f ∈

(W1, . . . ,W`)〈τ〉
}
.

Theorem 8 extends earlier results of Bollobás, Kohayakawa, and Schelp [1] from
graphs to hypergraphs. For the proof of Theorem 8, presented in Section 5, we
shall develop a partite version of the result of Erdős and Rado, which might be of
independent interest (see Theorem 25).

Theorem 5 may be deduced from Theorem 8. We postpone this proof to Sec-
tion 5.4.

2.4. Rainbow colourings of arithmetic progressions. We also obtain a very
much related result for arithmetic progressions. The following result of Erdős and
Graham (see also [11] for an elementary proof) can be viewed as an analogue of
Theorem 7 for arithmetic progressions.

Theorem 9 (Erdős & Graham [4]). For every integer k ≥ 3 there exists an integer
n0 such that for every n ≥ n0 and every colouring γ : [n] → Z there exists a k-term
arithmetic progression A ⊆ [n] which is either monochromatic or injective, i.e.,
|γ(A)| is either 1 or k. �

This can be viewed as a canonical version of van der Waerden’s theorem [15],
which says that if | im(γ)| is bounded (independent of n), then one can ask for
a monochromatic arithmetic progression. Following the same approach as in the
preceeding section, we are looking for a condition on the colouring that guarantees
an injective arithmetic progression.

Let us first observe that it is not enough to simply require that the colouring
would use an unbounded number of colours. Consider the colouring γAP,n : [n] → Z,
which assigns colour i to every integer m = 3ix, where x is not divisible by 3.
Clearly, | im γAP,n| → ∞ as n →∞. Moreover, let us observe that γAP,n yields no
3-term arithmetic using three colours. Indeed suppose for a contradiction that the
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integers 3ax < 3by < 3cz receive the three distinct colours a, b, and c and form a
3-term arithmetic progression. Suppose first that a < c. Then 2 ·3by = 3ax+3cz =
3a(3c−az +x). As y and x are not divisible by 3, this implies that b = a. The same
argument works for the case a > c.

Hence, similarly to the graph and hypergraph cases, we need a condition that
guarantees that the colouring uses a lot of colours in an “essential way.” Here we
say a colouring γ : [n] → Z is (ε, t)-bounded if there exists a set X ⊆ [n] with
|X| ≥ n − εn, such that |γ(X)| ≤ t. This can be viewed as a natural addition to
Definition 3 for “1-uniform hypergraphs.”

Theorem 10. For every integer k ≥ 3 and for every real ε > 0, there exist in-
tegers n0 and T such that for every n ≥ n0 and every colouring γ : [n] → Z the
following holds. If γ is not (ε, T )-bounded, then there exists an injective k-term
arithmetic progression in [n].

Notice that for every function f(n) of order o(n) and X ⊆ [n] with |X| ≥ n−f(n)
we have that the colouring γAP,n defined above satisfies |γAP,n(X)| ≥ T for any
T and for sufficiently large n. Consequently, the condition of Theorem 10 is best
possible. The proof of Theorem 10 is based on a quantitative version of Szemerédi’s
theorem [13]. We present this proof in the next section.

3. Essentially unbounded colourings of the integers

In this short section, we present the proof of Theorem 10. We shall use the
following quantitative version of Szemerédi’s theorem, which was proved for 3-term
arithmetic progressions by Varnavides [16] and for k-term progressions by Frankl,
Graham, and Rödl [7].

Theorem 11 (Quantitative version of Szemerédi’s theorem). For every integer
k ≥ 3 and ε > 0 there exists d = d(k, ε) and n1 = n1(k, ε) such that for every
n ≥ n1, every subset X ⊆ [n] with |X| ≥ εn contains at least dn2 arithmetic
progressions with k elements. �

Proof of Theorem 10. Let k ≥ 3 and ε > 0 be given. We set

n0 = n1(k, ε), T =
⌊

1
d(k, ε)

(
k

2

)⌋
+ 1 , (3.1)

where n1(k, ε) and d(k, ε) are given by Theorem 11.
Let n ≥ n0 and γ : [n] → Z be a colouring that is not (ε, T )-bounded. We

denote by Ci ⊆ [n] the set of integers that receive colour i, i.e., Ci = γ−1(i) and let
ci := |Ci|. Without loss of generality we may assume that ci = 0 for every i ≤ 0 and
ci ≥ ci+1 for every i ≥ 1. Moreover, for every i ≥ T we have T · ci ≤

∑T
j=1 cj ≤ n

and hence
ci ≤

n

T
for all i ≥ T . (3.2)

Next let Y = C1 ∪ · · · ∪ CT . Clearly, |γ(Y )| ≤ T and since γ is not (ε, T )-bounded

|Y | =
T∑

i=1

ci < n− εn.

Therefore
∑

i>T ci > εn and we can apply Theorem 11 to the set X =
⋃

i>T Ci.
By Theorem 11 we obtain dn2 arithmetic progressions with k elements inside X,
where d = d(k, ε). If one of them is injective, i.e., uses k colours, then we are
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done. Suppose that none of them is injective, so that each of them contains a
monochromatic pair. In general, every monochromatic pair can prevent at most(
k
2

)
different k-term arithmetic progressions from being injective, which implies the

following bounds:

dn2

(
k

2

)−1

≤ #{ monochromatic pairs in X } ≤
∑
i>T

(
ci

2

)
≤

∑
i>T

c2
i ≤ T

( n

T

)2

,

where for the last step we used the fact that the above sum is maximized when as
many summands as possible take the maximum possible value as given by (3.2).
This yields that T ≤

(
k
2

)
/d, contradicting our choice of T in (3.1). �

4. Globally bounded local colourings

In this section we prove Theorem 2. We split this section in a few subsections to
make the reading a little easier. In Section 4.1, we give some further definitions and
state the auxiliary lemmas that we shall need. In particular, we state Lemmas 15
and 17, which are central to the proof. In this section, we also sketch the approach
we take in the proof of Theorem 2. The actual proof of this theorem is given in
Section 4.2. Finally, we give the proofs of Lemmas 15 and 17 in Section 4.3.

4.1. Auxiliary lemmas. We first recall and extend some of the definitions given
earlier. A sunflower with core L is an r-uniform hypergraph whose edges e1, . . . , es

satisfy the property ei ∩ ej = L for all i 6= j. The sets pi := ei \ L are the petals,
|L| is the type, and the number of edges (or petals) is the size of the sunflower. If
` = |L| is the type and s is the size of the sunflower, we shall speak of an (`, s)-
sunflower and we shall denote it by S = (L, p1, . . . , ps). Observe that we shall be
talking about sunflowers both in K

(r)
n and in H.∗

Definition 12. For a given colouring γ ∈ C(r)
n , an (`, k)-sunflower S(L, p1, . . . , pk) ⊆

K
(r)
n will be called injective if all its k edges receive different colours. We say γ is

(`, k)-local if it yields no injective (`, k + 1)-sunflower in K
(r)
n . In other words, γ

is (`, k)-local if it is (S`, k)-local for every sunflower S` of type `. Moreover, if γ is
(`, k)-local for every ` = 0, . . . , r − 1, then it will be called k-local.

To prove Theorem 2, it suffices to verify the lower bound in (2.2). (For the proof
of the upper bound, see the paragraph following Theorem 2 in Section 2.2.) In
other words, we have to show that for every r-uniform hypergraph H with at least
two edges

Fin(H) ≥ min
0≤`<r

∆`(H) =: sH , (4.1)

where ∆`(H) is the maximum size of a sunflower of type ` in H. This means we have
to show that for every n, every (H, sH)-local colouring γ ∈ C(r)

n is T -bounded, i.e.,
| im(γ)| ≤ T for some constant T = T (H) independent of n. The next proposition
shows that it is sufficient to show that every (H, sH)-local colouring γ is k-local for
some constant k = k(H), i.e, it does not yield an injective (`, k + 1)-sunflower for
all 0 ≤ ` < r.

∗A remark on notation: we shall mark sub-hypergraphs in H by dashes, e.g., S′ =

(L′, p′1 . . . , p′s). Moreover, the letter k (as well as bk, ek, k̄) will denote bounds on the local number

of colours in sunflowers contained in K
(r)
n , whereas T will give bounds on the global number of

colours used in K
(r)
n , i.e., | im(γ)|.
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Proposition 13. For all integers k, r ≥ 2 there exists an integer T = T (k, r) such
that for every n and every k-local colouring γ ∈ C(r)

n we have | im(γ)| ≤ T .

We easily deduce Proposition 13 from the following theorem of Erdős and Rado.

Theorem 14 (Erdős & Rado [6]). If an r-uniform hypergraph contains more than
r!kr edges, then it contains an (`, k + 1)-sunflower for some 0 ≤ ` < r. �

In fact for k = 3 Erdős offered $1000 for the proof that r! can be replaced by cr

for some constant c independent of r. This conjecture is still open and currently
the best bound for k = 3 is due to Kostochka [9].

Proof of Proposition 13. Let integers k, r ≥ 2 be given. Set T = r!kr and suppose
that γ ∈ C(r)

n is k-local, but fails to satisfy | im(γ)| ≤ T . Then Theorem 14 immedi-
ately implies that any collection of | im(γ)| mutually different coloured hyperedges
of K

(r)
n contains an injective (`, k + 1)-sunflower for some 0 ≤ ` < r, which is a

contradiction to the assumption that γ is k-local. �

We deduce (4.1) from Lemmas 15 and 17. Before we formally state these some-
what “dry” lemmas let us briefly describe them and discuss their relevance for the
proof of (4.1) under the assumption sH ≥ 2. Recall that L(r)

n (H, sH) denotes the
set of all (H, sH)-local colourings of K

(r)
n . In view of Proposition 13 it suffices to

show that every colouring γ ∈ L(r)
n (H, sH) is k-local for some constant k = k(H).

Lemma 15 roughly says that if γ ∈ L(r)
n (H, sH) is such that it yields an injec-

tive (i, ki)-sunflower in K
(r)
n for some “large” ki, then it either admits an injective

(j, ki − r)-sunflower with j > i (see part (a ) of Lemma 15) or we infer that H
contains a subhypergraph H ′ with a special structure (see part (b )). The structure
of H ′ and the existence of a “large” injective (i, ki)-sunflower in K

(r)
n under γ, then

(see Lemma 17) also imply that there is an injective (j, k̄)-sunflower with j > i,
where k̄ is of similar order as k.

In other words, Lemmas 15 and 17 show that if an (H, sH)-local colouring γ is
not k-local for some “large” k, i.e., γ admits a “large” injective sunflower of type i
for some i = 0, . . . , r − 1, then it necessarily admits a similarly “large” sunflower
of type j > i and, consequently, by repeated application of both lemmas, a “large”
sunflower of type r − 1. On the other hand, Lemma 15 also bounds the maximum
size of an injective sunflower of type r−1 for any γ ∈ L(r)

n (H, sH) by some constants
k̃r−1 = k̃r−1(H). Hence, it follows that every γ ∈ L(r)

n (H, sH) must be k-local for
some k = k(H).

Lemma 15. Let H be an r-uniform hypergraph and suppose 2 ≤ min0≤`<r ∆`(H) =
sH =: s. For every i = 0, . . . , r− 1 there exists an integer k̃i = k̃i(H) > r such that
for every ki ≥ k̃i, for every positive integer n, and for every colouring γ ∈ L(r)

n (H, s)
that yields an injective (i, ki)-sunflower Si in K

(r)
n , one of the following is true:

(a ) there exists j > i and an injective (j, ki − r)-sunflower Sj in K
(r)
n , or

(b ) there exists a subgraph H ′
i = S′ + e′ ⊆ H with the following properties:

(b1 ) S′ is an (i, s)-sunflower in H, and we write S′ = (L′, p′1, . . . , p
′
s),

(b2 ) e′ contains at least i vertices outside the petals of S′, i.e., |e′\
⋃s

σ=1 p′σ| ≥
i, and
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(b3 ) e′ intersects at least two petals, i.e., there are σ1 and σ2, 1 ≤ σ1 <
σ2 ≤ s, so that e′ ∩ p′σ1

6= ∅ and e′ ∩ p′σ2
6= ∅.

In particular, for i = r − 1 the above k̃r−1 = k̃r−1(H) > r is such that for every
positive integer n every γ ∈ L(r)

n (H, s) is also (r − 1, k̃r−1 − 1)-local.

Remark 16. To see that the last part of Lemma 15 also holds, note that if i = r−1,
then e′ (in part (b )) cannot have r− 1 vertices outside the petals and intersect two
petals at the same time. Furthermore, conclusion (a ) of Lemma 15 cannot hold
either since kr−1 ≥ k̃r−1 > r. Consequently, the assumptions of Lemma 15 can
never hold for i = r − 1.

Lemma 17. Let H be an r-uniform hypergraph and suppose 2 ≤ min0≤`<r ∆`(H) =
sH =: s. For every 0 ≤ i ≤ r − 2 and every integer k̄ there exists a positive integer
k̂i = k̂i(s, k̄) such that the following is true for every positive integer n. If

(i ) H contains a subgraph H ′
i = S′ + e′ satisfying (b1 )–(b3 ) of Lemma 15 and

(ii ) γ ∈ L(r)
n (H, s) yields an injective (i, k̂i)-sunflower,

then γ gives rise to an injective (j, k̄)-sunflower in K
(r)
n for some j > i.

We defer the proofs of Lemmas 15 and 17 to Section 4.3. We close this section
with the following simple but useful observation, to be used in the proof of (4.1) in
the next section.

Proposition 18. Suppose n ≥ 3r − 1† and γ ∈ C(r)
n is a colouring such that

| im(γ)| ≥ 2. Then for every i = 0, . . . , r − 1 there are two edges e1, e2 ∈ K
(r)
n

satisfying
|e1 ∩ e2| = i and γ(e1) 6= γ(e2).

Proof. Let n ≥ 3r − 1 and γ ∈ C(r)
n be a colouring such that | im(γ)| ≥ 2. First we

consider the case i = 0. Since | im(γ)| ≥ 2, there are two edges e1 and e2 in K
(r)
n

such that γ(e1) 6= γ(e2). If e1 ∩ e2 = ∅ then we are done. On the other hand, if
e1 ∩ e2 6= ∅ then |e1 ∪ e2| ≤ 2r − 1. Since n ≥ 3r − 1 there is some edge e3 ∈ K

(r)
n

disjoint from both e1 and e2 and either γ(e1) 6= γ(e3) or γ(e2) 6= γ(e3), which
concludes the case i = 0.

We now proceed by induction. Let 0 < i ≤ r − 1 be fixed. By induction
assumption there are two edges e1 and e2 in K

(r)
n such that |e1 ∩ e2| = i − 1 and

γ(e1) 6= γ(e2). Let v1 ∈ e1\e2 and v2 ∈ e2\e1. Clearly, |(e1∩e2)∪{v1, v2}| = i+1 ≤
r. Now simply consider some edge e3 ∈ K

(r)
n which contains (e1∩ e2)∪{v1, v2} and

r − (i + 1) points from [n] \ (e1 ∪ e2). Then, |e3 ∩ e1| = |(e1 ∩ e2) ∪ {v1}| = i and,
similarly, |e3 ∩ e2| = |(e1 ∩ e2) ∪ {v2}| = i. (Such an edge e3 exists indeed since
(2r − (i − 1)) + (r − (i + 1)) = 3r − 2i < 3r − 1 ≤ n.) Clearly, γ(e3) must differ
from either γ(e1) or γ(e2), which finishes the proof. �

4.2. Proof of Theorem 2. Recall that all we have left to do to complete the proof
of Theorem 2 is to prove the lower bound (4.1).

Proof of (4.1). Let H be an r-uniform hypergraph with at least two edges. In
order to verify (4.1), we have to show that there exists some constant T = T (H)

†In fact a slightly more refined argument shows that n ≥ 2r +1 suffices, which is best possible.

However, we make no effort to improve the constant here.
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such that for every integer n and every colouring γ ∈ L(r)
n (H, sH) (see (4.1) for the

definition of sH)
| im(γ)| ≤ T . (4.2)

We distinguish two cases depending on the size of sH .

Case 1 (sH = 1). Here we set T =
(
3r−1

r

)
. Now let n be some positive integer

and let γ ∈ L(r)
n (H, 1) be given. Clearly, | im(γ)| ≤ T as long as n ≤ 3r − 1. So

let n > 3r− 1 and suppose for the moment that | im(γ)| ≥ 2. Then Proposition 18
implies that γ yields an injective (`, 2)-sunflower for every ` = 0, . . . , r − 1. From
the fact that H has at least two edges, it then follows that γ is not (H, 1)-local,
i.e., γ 6∈ L(r)

n (H, 1). Consequently, if n > 3r − 1, then | im(γ)| ≤ 1 < T . ♦

Case 2 (sH > 1). In this case the definition of T = T (H) is a little more compli-
cated. We first recursively define integers kr−1, . . . , k0 as follows:

ki =


k̃r−1

(
Lem.15(H)

)
if i = r − 1 ,

max
{

ki+1 + r, k̂i

(
Lem.17(s = sH , k̄ = ki+1)

)
,

k̃i

(
Lem.15(H)

)}
if i = r − 2, . . . , 0 ,

where k̃r−1, k̃i, and k̂i for i = r − 2, . . . , 0 are given by Lemmas 15 and 17, re-
spectively. Note that by definition the sequence k0, . . . , kr−1 is not only monotone
decreasing, but also satisfies

ki+1 ≤ ki − r for i = r − 2, . . . , 0 . (4.3)

We then define the promised constant T by setting

T = T
(
Prop.13(k = k0 − 1, r)

)
. (4.4)

Now let n be some positive integer and let γ ∈ L(r)
n (H, sH) be given. We first

show the following.

Claim 19. The colouring γ is (i, ki − 1)-local for every i = 0, . . . , r − 1.

Proof. Assume for a contradiction that i0 is the largest index i so that γ is not
(i, ki − 1)-local. Due to the definition of kr−1 and the last part of Lemma 15 we
have that i0 < r − 1. Furthermore, by definition of i0 there exists an injective
(i0, ki0)-sunflower, and as ki0 ≥ k̃i0

(
Lem.15(H)

)
, we can apply Lemma 15. Now

part (a ) of Lemma 15 is impossible, since for any j > i0 we have kj ≤ ki0 − r
(cf. (4.3)) and thus an injective (j, ki0 − r)-sunflower would contain an injective
(j, kj)-sunflower, contradicting the maximality of i0.

Hence case (b ) of Lemma 15 must occur. By definition of ki0 we have ki0 ≥
k̂i0

(
Lem.17(s = sH , k̄ = ki0+1)

)
. Hence both assumptions (i ) and (ii ) of Lemma 17

are satisfied for k̄ = ki0+1. Thus Lemma 17 yields an injective (j, ki0+1)-sunflower.
Again, as j > i0, we have kj ≤ ki0+1, and thus we have an injective (j, kj)-sunflower,
contradicting the maximality of i0 again. This proves Claim 19. �

Now Claim 19 and (4.3) assert that γ is a (k0−1)-local colouring and, therefore,
the choice of T in (4.4) and Proposition 13 now imply | im(γ)| ≤ T in this case,
Case 2. ♦

Having verified (4.1) in both cases, we have concluded the proof of the lower
bound in Theorem 2, based on Lemmas 15 and 17. �
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4.3. Proofs of Lemmas 15 and 17. In this section we prove Lemmas 15 and 17
stated in Section 4.1 and used in Section 4.2.

4.3.1. Proof of Lemma 15. Let H be an r-uniform hypergraph and

s := sH = min
0≤`<r

∆`(H) ≥ 2 . (4.5)

Let i be a fixed integer in the interval [0, r − 1] and set

k̃i = max{s + 1 + r + i2, 3r − 1} . (4.6)

Moreover, let integers ki ≥ k̃i and n and a colouring γ ∈ L(r)
n (H, s) be given.

Suppose Si = (L, p1, . . . , pki
) ⊆ K

(r)
n is an injective (i, ki)-sunflower under γ.

For the rest of the proof we assume that γ does not contain an injective (j, ki−r)-
sunflower for any j > i, i.e., we assume that conclusion (a ) of Lemma 15 fails and
we are going to deduce (b ). By the definition of s there exists an (i, s)-sunflower
S′ = (L′, p′1, . . . , p

′
s) in H, as claimed in (b1 ). We first show that there is an edge

e′ ∈ H \ S′ which satisfies property (b2 ).

Claim 20. There is an edge e′ ∈ H \ S′ with
∣∣e′ \⋃s

σ=1 p′σ
∣∣ ≥ i.

Proof. If i = 0, then it follows from s ≥ 2 that H \ S′ 6= ∅ (otherwise H contains
no (j, s)-sunflower for j ≥ 1, which contradicts the assumption s = sH ≥ 2) and,
hence, there is an edge e′ which trivially satisfies the conclusion of the claim.

So let i > 0. By the definition of s there exists a matching M ′ ⊆ H of size s.
On average the edges of M ′ have at least

1
|M ′|

∣∣∣ ⋃
f ′∈M ′

f ′ \
⋃

σ∈[s]

p′σ

∣∣∣ ≥ 1
s

(
sr − s(r − i)

)
= i

vertices outside the petals of S′. Consequently, there is an edge e′ ∈ M ′ which has
at least i vertices outside the petals of S′. If e′ 6∈ S′ then we found our edge. If,
however, e′ ∈ S′∩M ′, then we can repeat the argument with M ′\{e′} and S′\{e}′.
Indeed, on average the edges of M ′ \ {e′} have at least

1
s− 1

(
(s− 1)r − (s− 1)(r − i)

)
= i

vertices outside the petals of S′ \{e′}. Hence, there must be an edge e′′ ∈ M ′ \{e′}
which has at least i vertices outside the petals of S′\{e′}. Moreover, since e′∩e′′ = ∅
(both are edges in the matching M ′) and since we assumed that e′ ∈ S′, we have
that e′′ 6∈ S′. �

Fix e′ as in Claim 20. It remains to show that e′ has non-empty intersection
with at least two petals of S′. Our proof is by contradiction. So let us first assume
that

e′ ∩ p′σ = ∅ for every σ ∈ [s] . (4.7)

In this case, let e be an edge of K
(r)
n which satisfies |e ∩ L| = |e′ ∩ L′|. Since ki ≥

k̃i ≥ s+1+r (cf. (4.6)), after removing those edges f from Si for which γ(f) = γ(e)
or (f \ L) ∩ e 6= ∅ there must be an injective (i, s)-sunflower S∗

i ⊆ Si ⊆ K
(r)
n for

which γ(e) 6∈ γ(S∗
i ) and e∩V (S∗

i ) = e∩L. Consequently, e∪S∗
i (which is a copy of

e′∪S′ ⊆ H) picks up s+1 colours, which contradicts the assumption γ ∈ L(r)
n (H, s).

Hence, assumption (4.7) must fail.
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Next we assume that e′ intersects precisely one petal of S′. With an appropriate
relabelling we assume

e′ ∩ p′1 6= ∅ and e′ ∩ p′σ = ∅ for every σ = 2, . . . , s . (4.8)

Set
iL = |e′ ∩ L′| , iO = |e′ \ V (S′)| , and i1 = |e′ ∩ p1| . (4.9)

Note that r = iL + iO + i1 and since e′ 6∈ S′ (see Claim 20), we have

iO > 0 and, consequently, iL + i1 < r . (4.10)

We shall need the following claims to derive a contradiction from assumption (4.8).

Claim 21. For every edge e of K
(r)
n satisfying |e ∩ L| = iL and |e ∩ pλ| = i1 for

some λ ∈ [ki] we have γ(e) = γ(pλ ∪ L).

Proof. Let e and pλ be as in the hypothesis of the claim. Since ki ≥ k̃i ≥ s+1+r ≥
s + 1 + iO, there is an injective (i, s− 1)-sunflower S∗

i ⊆ Si satisfying the following:
• S∗

i does not contain the petal pλ,
• none of the petals of S∗

i intersects e, and
• γ(e) 6∈ γ(S∗

i ).
We then observe that if γ(e) 6= γ(pλ∪L), then e∪S∗

i ∪{L∪pλ}‡ uses s+1 colours,
which contradicts the fact that γ ∈ L(r)

n (H, s), since e∪S∗
i ∪{L∪ pλ} forms a copy

of e′ ∪ S′
i ⊂ H. �

The simple observation in Claim 21 has the following corollary, Claim 22. It
asserts that iL + iO = i and, more importantly, that any set L∗ of i vertices in K

(r)
n

is, roughly speaking, the core of a ‘large’ injective sunflower.

Claim 22. We have iL + iO = i and for all sets L∗ ⊆ [n] with |L∗| = i there is an
injective (i, s + 1 + r)-sunflower S∗

i with core L∗.

Proof. First we show that iL + iO = i. Note that

iL + iO = i
(4.9)⇐⇒ i1 = r − i . (4.11)

Clearly, iL + iO = |e′ ∩L′|+ |e′ \ V (S′)| ≥ i since by Claim 20 the edge e′ contains
at least i vertices outside the petals of S′. If iL + iO > i, then fix some set O
of cardinality iO in [n] \ L and some set L̄ of cardinality iL in L. Moreover, for
every λ ∈ [ki] fix i1 vertices Iλ in every petal pλ. Then, apply Claim 21 for every
eλ = O∪ L̄∪ Iλ for which pλ ∩O = ∅. Since there are at least ki− iO ≥ ki− r such
petals, the above yields an injective (j, ki − r)-sunflower Sj for j = iL + iO > i,
which is a contradiction, as we assumed that (a ) does not hold. Thus we do indeed
have iL + iO = i, as claimed in the first part of Claim 22.

We now focus on the second part of the claim. For that let L∗ ⊆ [n] be a set of
size i. We fix a sequence of sets L1, . . . , Lb in [n] with b ≤ i + 1 so that

L1 = L , |La| = i , |La ∩ La+1| = iL for a = 1, . . . , b− 1, and Lb = L∗ .

Note that such a sequence exists since iL = i− iO < i (cf. (4.10)). For convenience
we define for a = 1, . . . , b

k(a) = ki − (a− 1)iO .

‡Here the expression “e∪S∗
i ∪{L∪pλ}” sort of mixes the standard notation with the convention

of omitting { } for singletons when the meaning is clear.
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We now show inductively that for every a = 1, . . . , b there exists an injective
(i, k(a))-sunflower S(a) with core La. As k(b) = ki− (b−1)iO ≥ ki− i2 ≥ k̃i− i2 ≥
s + 1 + r this yields Claim 22.

Setting S(1) = Si gives the induction start. So suppose there is an injective
(i, k(a))-sunflower S(a) with core La and petals pa

1 , . . . pa
k(a). Note that |La+1\La| =

i− iL = iO. We set Λ = {λ ∈ [k(a)] : pa
λ ∩ La+1 = ∅}. Obviously, |Λ| ≥ k(a)− iO.

For every λ ∈ Λ set pa+1
λ := pa

λ. It is easy to see that the pa+1
λ together with

the core La+1 form an injective (i, |Λ|)-sunflower S(a + 1). Indeed, simply apply
Claim 21 with L := La for every edge e := pa+1

λ ∪ La+1 and pλ := pa
λ. This will

yield that γ(pa+1
λ ∪ La+1) = γ(pa

λ ∪ La), and hence the injectivity of S(a + 1) is
inherited from that of S(a), and the induction step follows from the definition of
k(a + 1). �

Based on Claim 22 we now show that our assumption (4.8) contradicts γ ∈
L(r)

n (H, s), thus finishing the proof of Lemma 15. Since by (4.6)ki ≥ 3r − 1 we
have n ≥ 3r − 1 and | im(γ)| > 1. Therefore, Proposition 18 ensures the existence
of two edges e, f ∈ K

(r)
n satisfying |f ∩ e| = iL + i1 < r and γ(f) 6= γ(e). Let p̄∪ L̄

be a partition of e ∩ f with

|p̄| = i1 and |L̄| = iL .

Set L∗ = L̄ ∪ (f \ e) and note that

(e ∪ f) \ L∗ ⊆ e and |L∗| = iL + (r − iL − i1) = r − i1 = iO + iL = i ,

where we used the first part of Claim 22 for the last identity. We then apply the
second part of Claim 22 with L∗, which yields an injective (i, s + 1 + r)-sunflower
S∗

i with core L∗. Therefore, after removing those edges of S∗
i which have the

colour of e or f and those which intersect (e ∪ f) \L∗ there still exists an injective
(i, s− 1)-sunflower S∗∗

i ⊆ S∗
i with core L∗ satisfying

γ(S∗∗
i ) ∩ {γ(f), γ(e)} = ∅ and V (S∗∗

i ) ∩ ((e ∪ f) \ L∗) = ∅ .

Consequently, S∗∗
i ∪ f is an injective (i, s)-sunflower with core L∗ and additional

petal f \ L∗ = p̄. Moreover, the definitions of p̄, L̄ ⊆ e ∩ f , L∗ = L̄ ∪ (f \ e), and
S∗∗

i imply that |e ∩ p̄| = |p̄| = i1, |e ∩ L∗| = |L̄| = iL, and |e \ (V (S∗∗
i ) ∪ f)| =

|e \ f | = r− i1− iL = iO. In other words, e∪S∗∗
i ∪ f is isomorphic to e′ ∪S′. Since

|γ(e ∪ S∗∗
i ∪ f)| = s + 1 this contradicts the fact that γ ∈ L(r)

n (H, s). Therefore,
assumption (4.8) cannot hold and e′ must intersect at least two petals of S′.

As observed in Remark 16, the last assertion in Lemma 15 follows easily from
the first part. Therefore, the proof of Lemma 15 is complete.

4.3.2. Proof of Lemma 17. Let an r-uniform hypergraph H satisfying s := sH =
min0≤`<s ∆`(H) ≥ 2 and integers i, 0 ≤ i ≤ r − 2, and k̄ be given. We set

k̃ = max
2≤u≤r

R(u)(k̄ + r − 1;u) and k̂i = k̃ + r , (4.12)

where R(u)(k̄+r−1;u) is the Ramsey number which ensures that every u-colouring
of the complete u-uniform hypergraph on R(u)(k̄+r−1;u) vertices yields a monochro-
matic copy of K

(u)

k̄+r−1
.

Let H ′
i = S′+e′ be a subhypergraph of H which satisfies (b1 )–(b3 ) of Lemma 15.

Moreover, let γ ∈ L(r)
n (H, s) be an (H, s)-local colouring of K

(r)
n which yields an



ESSENTIALLY INFINITE COLOURINGS 17

injective (i, k̂i)-sunflower. We have to ensure the existence of an injective (j, k̄)-
sunflower in K

(r)
n for some j > i.

Consider first the sub-hypergraph H ′
i = S′+e′ of H. By property (b1 ) the hyper-

graph S′ = (L′, p′1, . . . , p
′
s) is an (i, s)-sunflower, with core L′ and petals p′1, . . . , p

′
s.

We set

iL = |e′ ∩ L′| , iO = |e′ \ V (S′)| , and iσ = |e′ ∩ p′σ| for every σ ∈ [s] . (4.13)

We may assume w.l.o.g. that i1 ≥ · · · ≥ iu > 0 and iu+1 = · · · = is = 0, We know
from (b3 ) that u ≥ 2. Observe that

iO + iL + i1 + · · ·+ iu = r (4.14)

and clearly u ≤ r.
Now we turn back to K

(r)
n and γ. Let L be the core of an injective (i, k̂i)-

sunflower in K
(r)
n . First fix a set O of iO vertices in V (K(r)

n ) \ L and a set L̄ of
iL vertices inside the core L. Since iO < r (cf. (4.14)) and k̂i = k̃ + r, there still
exists an injective (i, k̃)-sunflower S ⊆ K

(r)
n with core L satisfying V (S) ∩ O = ∅.

Let p1, . . . , pek be the petals of that sunflower, i.e., S = (L, p1, . . . , pek).
Appealing to the fact that γ ∈ L(r)

n (H, s) and following the line of proof of
Claim 21 one can show the following claim.

Claim 23. Suppose Λ = {λ1, . . . , λu} ⊆ [k̃], and suppose e is an edge of K
(r)
n

satisfying |e∩L| = iL and |e∩pλσ
| = iσ for every σ ∈ [u]. Then there exists σ(Λ) ∈

[u] such that γ(e) = γ(pλσ(Λ) ∪ L). �

For every λ ∈ [k̃] we fix u not necessarily disjoint subsets Bλ,1, . . . , Bλ,u ⊆ pλ in
such a way that

|Bλ,σ| = iσ for every σ ∈ [u] and λ ∈ [k̃] . (4.15)

From Claim 23 we infer that for every Λ = {λ1 < · · · < λu} ⊆ [k̃] we have

γ
(
L̄ ∪O ∪

⋃
σ∈[u]

Bλσ,σ

)
= γ(L ∪ pλσ(Λ)) for some σ(Λ) ∈ [u] . (4.16)

Note that the assertion above states that for every set Λ = {λ1 < · · · < λu} ⊆ [k̃]
there exists a σ(Λ) determining the colour of L̄∪O∪

⋃
σ∈[u] Bλσ,σ. While the above

σ(Λ) depends on Λ, a Ramsey type argument ensures a strengthening in which σ(Λ)
is independent of Λ ⊆ X for a suitable subset X ⊆ [k̃]. More precisely, we shall
prove the following.

Claim 24. There exist a subset X ⊆ [k̃] with |X| = k̄ + u− 1 and a σ0 ∈ [u] such
that for every {λ1 < · · · < λu} ⊆ X we have

γ
(
L̄ ∪O ∪

⋃
σ∈[u]

Bλσ,σ

)
= γ(L ∪ pλσ0

) .

We prove Claim 24 momentarily, but first we deduce Lemma 17 from it. Let
X = {x1 < · · · < xk̄+u−1} and σ0 ∈ [u] be as in Claim 24. Set

L∗ = L̄ ∪O ∪
σ0−1⋃
σ=1

Bxσ,σ ∪
u⋃

σ=σ0+1

Bxk̄+σ−1,σ
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and
p∗τ = Bxσ0+τ−1,σ0 for τ = 1, . . . , k̄ .

Recall that Bx,σ ⊆ px and, therefore, Bx,σ∩Bx′,σ′ = ∅ whenever x 6= x′. Moreover,
by (4.15) ∣∣L∗∣∣ = iL + iO +

∑
σ∈[u]\{σ0}

iσ = r − iσ0 =: j

and j > i since iL + iO = i, u ≥ 2, and iσ > 0 for every σ ∈ [u]. Moreover, the
choice of p∗τ and the definition of L∗ imply that |L∗ ∪ p∗τ | = j + iσ0 = r and, hence,

S∗ = (L∗, p∗1, . . . , p
∗
k̄)

is a (j, k̄)-sunflower in K
(r)
n . Furthermore, it follows from Claim 24 that

γ(L∗ ∪ p∗τ ) = γ(L ∪ pxσ0+τ−1)

for every τ ∈ [k̄]. Since S is injective by assumption this implies that S∗ is an
injective (j, k̄)-sunflower in K

(r)
n and the proof of Lemma 17 is complete, except for

the proof of Claim 24.

Proof of Claim 24. Recall that Claim 23 guarantees for every Λ = {λ1 < · · · <

λu} ⊆ [k̃] a σ(Λ) ∈ [u] such that

γ
(
L̄ ∪O ∪

⋃
σ∈[u]

Bλσ,σ

)
= γ(L ∪ pλσ(Λ)) .

In other words we may view σ as a u-edge colouring of the complete u-uniform
hypergraph with vertex set [k̃]. By the choice of k̃ in (4.12) we infer from Ramsey’s
theorem [12] that there exist a subset X ⊆ [k̃] of size |X| = k̄ + r− 1 and a σ0 ∈ [u]
such that σ(Λ) = σ0 for every Λ = {λ1 < · · · < λu} ⊆ X. �

5. Essentially unbounded colourings

In this section we prove Theorem 8 (Section 5.3) and Theorem 5 (Section 5.4).
Behind the scene we shall need a partite version of the canonical theorem of Erdős
and Rado, Theorem 7; see Theorem 25 below.

5.1. A partite version of the Erdős–Rado canonical theorem. For a given
`-type τ (see Definition 4) we call a vector J = (J1, . . . , J`) of sets an τ -trace if
Ji ⊆ [τi] for every i ∈ [`]. Finally, we recall that for a set (e∩Wi) = {v1 < · · · < vτi

}
and Ji = {j1, . . . , jx} ⊆ [τi] we write (e ∩ Wi)[Ji] to denote the set {vj1 , . . . , vjx}
and (e ∩Wi)[Ji] = ∅ if and only if Ji = ∅.

Theorem 25. For all integers q ≥ r ≥ 2 and ` ∈ [r] and every `-type τ there
exists an integer n = n(q, r, `, τ) so that for every colouring γ ∈ C(r)

`·n and every
partition of the vertex set into classes V1, . . . , V` of cardinality |Vi| = n each, there
exists a family W1, . . . ,W` of disjoint sets Wi ⊂ Vi with |Wi| = q and a τ -trace
J = J (τ) = (J1, . . . , J`), such that for all edges e, e′ ∈ (W1, . . . ,W`)〈τ〉

γ(e) = γ(e′) ⇔ (e ∩Wi)[Ji] = (e′ ∩Wi)[Ji] ∀i ∈ [`] .

Observe that in the case ` = 1 of Theorem 25 is exactly Theorem 7, since then
τ = (r) is the only 1-type and then Theorem 25 guarantees for every colouring γ
a set W and a set J ⊆ [r] so that two edges e, e′ ⊆ W receive the same colour iff
e[J ] = e′[J ].
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Proof of Theorem 25. Let integers q, r, and ` and an `-type τ = (τ1, . . . , τ`) be
given. We set n to be the integer n(q`, r) guaranteed by Theorem 7 applied with q ·`
and r. Let γ be colouring K

(r)
`·n → Z and let V1, . . . , V` be an arbitrary partition of

the vertex set of K
(r)
`·n.

We treat the sets V1, . . . , V` as (pairwise disjoint) copies of [n] and denote by V̂

another copy of [n]. Consider the natural projection
⋃

i∈[k] Vi → V̂ , where all the `

copies of x ∈ [n] in
⋃

i∈[k] Vi are mapped onto the same x ∈ V̂ . Restricting that
projection to (V1, . . . , V`)〈τ〉 gives rise to

π : (V1, . . . , V`)〈τ〉 →
(

V̂

≤ r

)
, (5.1)

where
( bV
≤r

)
is the family of all subsets of V̂ with cardinality at most r.

Let us define an “inverse” π−1 of π on
(bV

r

)
as follows. Lift ê ∈

(bV
r

)
to the element

π−1(ê) = e ∈ (V1, . . . , V`)〈τ〉 such that π(e) = ê and

π(e ∩ V1) < · · · < π(e ∩ V`) ,

where as usual we write X < Y for two sets X, Y ⊆ [n] to denote max X < minY .
Based on π−1 and the given colouring γ, we define an auxiliary colouring γ̂ :

(bV
r

)
→

Z by setting for every ê ∈
(bV

r

)
γ̂(ê) := γ(π−1(ê)) . (5.2)

Apply Theorem 7 to γ̂. We obtain a subset Ŵ ⊂ V̂ with |Ŵ | = q` and a set
Ĵ ⊂ [r] such that for all ê, ê′ ∈

(cW
r

)
γ̂(ê) = γ̂(ê′) ⇔ ê[Ĵ ] = ê′[Ĵ ] . (5.3)

View Ĵ as the corresponding characteristic vector in {0, 1}r, and partition this
vector by letting J1 consist of the first τ1 components, J2 ofthe next τ2 components,
up to J`. Finally view the sets Ji as subsets of τi and fix the promised τ -trace
J = J (τ) = (J1, . . . , J`). We obtain the sets Wi ⊆ Vi from Ŵ in a similar manner:
simply partition Ŵ into ` sets Ŵ1, . . . Ŵ` of the same cardinality q so that for every
i = 1, . . . , `− 1

Ŵ1 < · · · < Ŵ` ,

and lift Ŵi to Vi in the natural way, i.e., Wi equals to the copy of Ŵi in Vi. Thus
we obtain Wi ⊂ Vi for all i ∈ [`].

Observe that
π is injective on (W1, . . . ,W`)〈τ〉 (5.4)

and that, since Ŵi ∩ Ŵj = ∅, we have π(e) ∈
(bV

r

)
for every e ∈ (W1, . . . ,W`)〈τ〉.

Moreover, for every e ∈ (W1, . . . ,W`)〈τ〉 we have

π−1(π(e)) = e . (5.5)

Also for every ê ∈
(bV

r

)
ê[Ĵ ] =

(
(ê ∩ Ŵ1)[J1] < · · · < (ê ∩ Ŵ`)[J`]

)
. (5.6)
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Finally, we show that the W1, . . . ,W` together with J = (J1, . . . , J`) satisfy the
conclusion of Theorem 25. For all edges e, e′ ∈ (W1, . . . ,W`)〈τ〉 we have

γ(e) = γ(e′) ⇔ γ̂(π(e)) = γ̂(π(e′)) by (5.5) and (5.2)

⇔ π(e)[Ĵ ] = π(e′)[Ĵ ] by (5.3) and (5.4)

⇔ ∀i ∈ [`] : (π(e) ∩ Ŵi)[Ji] = (π(e′) ∩ Ŵi)[Ji] by (5.6)

⇔ ∀i ∈ [`] : (e ∩Wi)[Ji] = (e′ ∩Wi)[Ji] by choice of Wi.

�

5.2. Further auxiliary lemmas. Besides Theorem 25 from the last section, we
need a few tecnical lemmas for the proof of Theorem 8. We start with an auxiliary
result relating (r − 1, k)-local colourings (see Definition 12) and (ε, T )-bounded
colourings (see Definition 3). Roughly speaking, Lemma 26 asserts that unbounded
colourings are not local.

Lemma 26. For all integers r ≥ 2 and k ≥ 1 and every ε > 0 there exists an
integer T = T (r, k, ε) such that for every n ∈ N, every (r − 1, k)-local colouring
γ ∈ C(r)

n is (ε, T )-bounded.

Proof. Roughly speaking, this proof resembles the beginning of the proof of Theo-
rem 10. Let r ≥ 2, k ≥ 1, and ε > 0 be given and set

T =
⌊(

krr

ε

)r⌋
+ 1 .

Assume for a contradiction that for some n ∈ N there exists an (r − 1, k)-local
colouring γ ∈ C(r)

n which is not (ε, T )-bounded. Denote by ci the number of edges
of colour i. After renumbering we may assume that ci = 0 for every i ≤ 0 and
ci ≥ ci+1 for every i ≥ 1. Moreover,∑

i>T

ci > ε

(
n

r

)
, (5.7)

since otherwise γ would be (ε, T )-bounded.
As there are ci edges of colour i, by the Kruskal–Katona theorem [8, 10] there

are at least c
(r−1)/r
i sets L ∈

(
[n]

r−1

)
seeing colour i, i.e., each such L is contained in

some edge of colour i. On the other hand, since γ is (r − 1, k)-local, each such set
L sees at most k different colours, and so combining these two arguments we have
that∑

i≥1

c
1−1/r
i ≤

∑
L∈( [n]

r−1)
#{ different colours seen by L } ≤ k

(
n

r − 1

)
≤ knr−1.

(5.8)
Furthermore, for every i > T we have

ci ≤ cT ≤ 1
T

∑
j∈[T ]

cj ≤
1
T

(
n

r

)
≤ nr

T
. (5.9)

Combining (5.7), (5.8), and (5.9), we obtain

ε

(
n

r

)
(5.7)

≤
∑
i>T

ci =
∑
i>T

c
1/r
i c

1−1/r
i

(5.9)

≤ n
r
√

T

∑
i>T

c
1−1/r
i

(5.8)

≤ knr

r
√

T
≤ krr

r
√

T

(
n

r

)
,
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which contradicts the choice of T . �

Suppose γ ∈ C(r)
n and L ∈

(
[n]

r−1

)
. Let CL,i be the set of those vertices v ∈ [n] \L

for which γ(L ∪ {v}) = i. Again we may assume (after renumbering if necessary)
that CL,i = ∅ for i ≤ 0 and i ≥ n + 1 and |CL,i| ≥ |CL,i+1| for every i ≥ 1. For a
given integer k ≥ 1 and α > 0 we call L (k, α, γ)-good, if∑

i>k

|CL,i| ≥ αn, (5.10)

and (k, α, γ)-bad otherwise. In other words, a set L is good if its “smaller colour
classes” CL,i (i > k) add up a positive fraction. We first show (see Proposition 27)
that, in this case [n]\L can be partitioned into classes of sensible sizes with disjoint
colour ranges. Then we prove (see Lemma 28) that every unbounded colouring
must contain many good sets L.

Proposition 27. For all integers r ≥ 2 and k ≥ 1, every α > 0 and every colouring
γ ∈ C(r)

n the following holds. If L ∈
(

[n]
r−1

)
is (k, α, γ)-good, then [n] \ L can be

partitioned into classes U1, . . . , Uk such that
(i ) |Ui| ≥ αn/(2k) and
(ii ) for all 1 ≤ i < j ≤ k and all x ∈ Ui and y ∈ Uj we have γ(L ∪ {x}) 6=

γ(L ∪ {y}).

Proof. Let constants r ≥ 2, k ≥ 1, α > 0, a colouring γ ∈ C(r)
n and a (k, α, γ)-good

set L ∈
(

[n]
r−1

)
be given. Moreover, let CL,i be defined as before.

First note that if |CL,k| ≥ αn/(2k) then we are done by setting

Ui =

{
CL,i if i = 1, . . . , k − 1,⋃

j≥k CL,j if i = k .

Therefore, assume that |CL,k| < αn/(2k). Let {X1, . . . , Xk} be a partition of
{k + 1, . . . , n} such that

M := max
1≤i<j≤k

∣∣∣∣ ∑
x∈Xi

|CL,x| −
∑

y∈Xj

|CL,y|
∣∣∣∣

is minimized. Note that, |CL,x| ≤ |CL,k| < αn/(2k) for any x > k, we have

M ≤ αn

2k
. (5.11)

Assume for a conradiction that |
∑

x∈Xi0
|CL,x| < αn/(2k) for some i0 ∈ [k].

Then (5.11) would imply that∑
x∈Xi

|CL,x| < |
∑

x∈Xi0

|CL,x|+
αn

2k
≤ αn

k

for every i ∈ [k], and, consequently,∑
i>k

|CL,i| <
αn

2k
+ (k − 1)

αn

k
< αn ,

which contradicts the fact that L is (k, α, γ)-good. Hence,
∑

x∈Xi
|CL,x| ≥ αn/(2k)

for every i ∈ k and setting for every i ∈ [k]

Ui =
⋃

x∈Xi

CL,x ∪ CL,i
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satisfies (i ) and (ii ). �

Lemma 28. For all integers r ≥ 2 and k ≥ 1, and every ε > 0 there exists an
integer T = T (r, k, ε) and a real α = α(r, k, ε) > 0 such that for every n ∈ N and
every colouring γ ∈ C(r)

n which is not (ε, T )-bounded, there are more than ε
3rr

(
n

r−1

)
sets in

(
[n]

r−1

)
, which are (k, α, γ)-good.

Proof. Let r ≥ 2, k ≥ 1, and ε > 0 be given. Set T = T (r, k + 1, ε/3) as given
by Lemma 26 and set α = ε/(3rr). Assume for a contradiction that for some not
(ε, T )-bounded colouring γ ∈ C(r)

n there are at most (ε/(3rr))
(

n
r−1

)
sets L ∈

(
[n]

r−1

)
which are (k, α, γ)-good.

For simplicity we assume that im(γ) ⊆ N and for every L ∈
(

[n]
r−1

)
let π =

πL : N → N be a bijection for which |CL,π(1)| ≥ |CL,π(2)| . . . , where as above,
CL,π(i) = {v ∈ [n] \ L : γ(L ∪ {v}) = π(i)}. This way for every (k, α, γ)-bad set
L ∈

(
[n]

r−1

)
we have ∑

i>k

|CL,π(i)| < αn =
ε

3rr
n . (5.12)

We define an auxiliary colouring γ̄ by setting for every e ∈ K
(r)
n

γ̄(e) =


0


if e contains a (k, α, γ)-good set or
if γ(e) = πL(i) for some i > k

and some (k, α, γ)-bad set L ∈
(

e
r−1

)
,

γ(e) otherwise .

Since by assumption there are at most (ε/(3rr))
(

n
r−1

)
different (k, α, γ)-good sets

and since (5.12) holds, we have∣∣γ̄−1(0)
∣∣ ≤ ε

3rr

(
n

r − 1

)
× n + αn×

(
n

r − 1

)
≤ 2εnr

3rr
≤ 2ε

3

(
n

r

)
.

Thus in total we recoloured at most (2/3)ε
(
n
r

)
edges in γ̄. On the other hand,

by definition the colouring γ̄ is (r − 1, k + 1)-local and, hence, by Lemma 26 it
is (ε/3, T )-local. But this implies that the original colouring γ must be (ε, T )-
bounded (as it differs from γ̄ on at most (2/3)ε

(
n
r

)
edges), which contradicts our

assumption. �

5.3. Proof of Theorem 8. In this section we prove Theorem 8. However, we
shall first prove a slightly weaker result, namely, Lemma 30 below. For the proof
of this lemma, we need the following well known result of Erdős, which says that
every sufficiently large and dense r-uniform hypergraph contains every r-partite r-
uniform hypergraph of fixed order. We denote by K(r)(k; r) the complete r-partite
r-uniform hypergraph with vertex classes of size k.

Theorem 29 (Erdős [3]). For all integers r ≥ 2 and k ≥ 1 and every δ > 0 there is
some n0 = n0(r, k, δ) such that every r-uniform hypergraph G on |V (G)| = n ≥ n0

vertices with at least δ
(
n
r

)
edges, contains a copy of K(r)(k; r). �

We now state and prove Lemma 30, which deals with edges of the unique, non-
degenerate r-type 1r = (1, . . . , 1) and proves the first part of Theorem 8.
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Lemma 30. For all integers q ≥ r ≥ 2 and every ε > 0, there exist integers
T = T (r, q, ε) and n0 = n0(r, q, ε) so that for every n ≥ n0 and every colouring
γ ∈ C(r)

n which is not (ε, T )-bounded the following holds. There exists a family
V = {V1, . . . , Vr} of mutually disjoint sets, each of cardinality q, such that with
τ = (1, . . . , 1) ∈ Nr for all edges e, e′ ∈ (V1, . . . , Vr)〈τ〉

γ(e) = γ(e′) ⇒ e ∩ V1 = e′ ∩ V1 .

Proof. Let q ≥ r ≥ 2 and ε > 0 be given. Fix an integer k sufficiently large so that

kqr−1 <

(
k

q

)r

. (5.13)

We set the promised constant T to T (r, k, ε) given by Lemma 28. Moreover, let
α = α(r, k, ε) be given by Lemma 28. We fix auxiliary constants s and δ by letting

s =
⌈

ε

3rr

(
n

r − 1

)⌉
and δ =

ε

3rr

( α

2k

)k

. (5.14)

Finally, we set n0 to n0(r − 1, k, δ) given by Theorem 29.
After we fixed the promised constants T and n0, let γ ∈ C(r)

n for n ≥ n0 be a
not (ε, T )-bounded colouring. Due to the choice of the constants above, Lemma 28
implies that there exist at least s sets L1, . . . , Ls ∈

(
n

r−1

)
, which are (k, α, γ)-good.

For each such Lσ, σ ∈ [s], we are guaranteed by Proposition 27 to have a partition
{Uσ

1 , . . . , Uσ
k } of [n] \ Lσ satisfying properties (i ) and (ii ) of Proposition 27. In

particular, property (ii ) implies that for any set P = {pσ
1 , . . . , pσ

k} ∈ Uσ
1 × · · · ×Uσ

k

the (r − 1, k)-sunflower Sσ
P = (Lσ, pσ

1 , . . . , pσ
k) is an injective sunflower. Since by

property (i ) the sets |Uσ
i | ≥ αn/(2k) for every σ ∈ [s] and i ∈ [k], we thus obtain

s×
(αn

2k

)k (5.14)

≥ δnk

(
n

r − 1

)
distinct, injective (r − 1, k)-sunflowers. As there are less than nk ways to choose k

petals, there must be a set W1 = {p1, . . . , pk} ∈
(
[n]
k

)
with more than δ

(
n

r−1

)
such injective (r − 1, k)-sunflowers using p1, . . . , pk, the elements of W1, for the k
petals. The kernels of those sunflowers give rise to an auxiliary (r − 1)-uniform
hypergraph G on the vertex set [n] with δ

(
n

r−1

)
edges. By the choice of n0 and

n ≥ n0 appealing to Theorem 29, we infer that G contains a copy of the complete
(r − 1)-partite hypergraph K(r−1)(k; r − 1). Let W2, . . . ,Wr ⊆ [n] be the vertex
classes of cardinality k of that copy of K(r−1)(k; r − 1). Recalling that the edges
of G are actually kernels of (r − 1, k)-sunflowers with the k petals coming from
W1 = {p1, . . . , pk} implies that W1 ∩ Wi = ∅ for every i = 2, . . . , r and, hence,
W1, . . . ,Wr is a family of mutually disjoint sets of cardinality k. Moreover, for
every L ∈ W2 × · · · × Wr the (r − 1, k)-sunflower S = (L, p1, . . . , pk) is injective,
thus for all x, x′ ∈ W1 with x 6= x′ we have

γ(L ∪ {x}) 6= γ(L ∪ {x′}) . (5.15)

Our aim is to find sets Vi ∈
(
Wi

q

)
for all i ∈ [r] such that for all not necessarily

disjoint L, L′ ∈ V2 × · · · × Vr and all distinct x 6= x′ ∈ W1 we have

γ(L ∪ {x}) 6= γ(L′ ∪ {x′}) . (5.16)

For that we call a family V = {V1, . . . , Vr} of sets Vi ∈
(
Wi

q

)
faulty if the above

condition is not satisfied. We count all faulty families. By definition, every faulty
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family contains two sets L, L′ ∈ V2 × . . . Vr and two points x, x′ ∈ V1 so that
γ(L ∪ {x}) = γ(L′ ∪ {x′}). There are at most k|L∪L′|+1 ways to choose L, L′ and
x. Once these are given, there is only one choice for x′, because if there were two
distinct choices, say x′ and x′′, then γ(L ∪ {x}) = γ(L′ ∪ {x′}) and γ(L ∪ {x}) =
γ(L′ ∪{x′′}) would imply γ(L′ ∪{x′}) = γ(L′ ∪{x′′}), which contradicts (5.15). So
our choice of x′ is forced. Now the remaining points in the family can be chosen
arbitrarily, and there are at most kq−2 ways to complete V1 and k(r−1)q−|L∪L′| ways
to complete V2, . . . , Vr. But since

k|L∪L′|+1 × kq−2 × k(r−1)q−|L∪L′| = kqr−1
(5.13)
<

(
k

q

)r

,

thers is at least one family V = {V1, . . . , Vr}, with Vi ∈
(
Wi

q

)
for i ∈ [r], which is

not faulty, i.e., it satisfies (5.16). �

We are finally able to give the proof of Theorem 8, which is based on Lemma 30
and Theorem 25.

Proof of Theorem 8. Let q ≥ r ≥ 2 and ε > 0 be given. First we define the
constants T and n0. For that let τ(1), . . . , τ(ξ) be any list of all non-degenerate
types (for r) in which each `-type (` ∈ [r]) appears

(
r
`

)
times. It will be convenient

to assume that τ(ξ) = (1, . . . , 1) is the single copy of the unique non-degenerate
r-type. Furthermore, let `(i) ∈ [r] be so that τ(i) is an `(i)-type, i.e., let `(i) denote
the dimension of the vector τ(i). Finally, let Λ(i) = {λ1(i) < · · · < λ`(i)(i)} ⊆ [r]
be an ordered subset of `(i) indices in [r] so that every two copies τ(i1) and τ(i2)
of the same type get different sets, i.e., Λ(i1) 6= Λ(i2).

We define the following sequence of integers q(ξ) ≤ · · · ≤ q(1) recursively by
setting

q(i) =

{
q + ξ if i = ξ,

n
(
Thm.25

(
q(i + 1), r, `(i), τ(i)

))
if i = ξ − 1, . . . , 1,

(5.17)

where n(q, r, `, τ) is given by Theorem 25. Finally, we fix the promised constants
T and n0 by appealing to Lemma 30 with q(1) and ε. In fact, we set

T = T
(
Lem.30(q(1), ε)

)
and n0 = n0

(
Lem.30(q(1), ε)

)
. (5.18)

Having defined the constants T and n0, we let γ ∈ C(r)
n , for some n ≥ n0, be a not

(ε, T )-bounded colouring.
Clearly, by our choice of T and n0 in (5.18) we can apply Lemma 30. Conse-

quently, there exists a family V(1) = {V1(1), . . . , Vr(1)} of mutually disjoint sets,
with

|V1(1)| = · · · = |Vr(1)| = q(1) , (5.19)
so that for all edges e, e′ ∈ (V1(1), . . . , Vr(1))〈τ(ξ)〉

γ(e) = γ(e′) ⇒ e ∩ V1(1) = e′ ∩ V1(1) . (5.20)

Notice that this would already prove the first assertion of the theorem by choosing
` = r and τ = τ(ξ) = (1, . . . , 1) ∈ Nr. However, at this point we cannot guarantee
that all edges of degenerate r-type receive a colour different from the ones used so
far, which we need for the moreover-part of Theorem 8. The idea to find the right
value for ` is, roughly spoken, to go down with ` = r, r− 1, . . . and stop just before
all Jj(i) = ∅.
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Next we apply Theorem 25 for consequtively for i = 1, . . . , ξ − 1 to obtain a
family V(i + 1) = {V1(i + 1), . . . , Vr(i + 1)}, each of cardinality at least q(i + 1)
and V (i + 1) ⊆ V (i). More precisely, given a family V(i) = {V1(i), . . . , Vr(i)} of
mutually disjoint sets, each of size q(i), which exist for i = 1 due to (5.19), we apply
Theorem 25 with q(i + 1), r, `(i), and τ(i) to the family of sets {Vj : j ∈ Λ(i)}
and γ restricted to the union of those sets. Theorem 25 then gives rise to subsets
Wj(i) ⊆ Vj(i) for j ∈ Λ(i) = {λ1(i) < · · · < λ`(i)(i) and a τ(i)-trace J (τ(i)) =
(J1(i), . . . , J`(i)(i)), so that for all edges e, e′ ∈ (Wλ1(i)(i), . . . ,Wλ`(i)(i))〈τ(i)〉

γ(e) = γ(e′) ⇔ (e ∩Wj(i))[Jj ] = (e′ ∩Wj(i))[Jj ] ∀j ∈ [`(i)] . (5.21)

We conclude the inductive definition of V(i) by setting

Vj(i + 1) =

{
Wj(i) if j ∈ Λ(i),
Vj(i) if j 6∈ Λ(i).

We call a τ(i)-trace J (τ(i)) = (J1(i), . . . , J`(i)(i)) monochromatic, if Jj(i) = ∅
for every j ∈ [`(i)], as in this case all e ∈ (Wλ1(i)(i), . . . ,Wλ`(i)(i))〈τ(i)〉 receive
the same colour. Fixing the (τ(ξ) = (1, . . . , 1))-trace J (τ(ξ)) = ({1}, . . . , {1}), we
have, in view of (5.20), a non-monochromatic trace for the unique non-degenerate
r-type. Therefore, there exists a minimum integer `0 ∈ [r] for which there exists an
`0-type, say τ(i0) with corressponding index set Λ(i0) , with a non-monochromatic
trace J (τ(i0)).

From the choice of `0 it follows that if Λ(i) ( Λ(i0), then J (τ(i)) is monochro-
matic. In particular, there exists a relabelling U1, . . . , U`0 of the sets Wj(i0) =
Vj(i0 + 1) for j ∈ Λ(i0) such that for every degenerate `0-type τ the colouring γ is
monochromatic on (U1, . . . , U`0)〈τ〉 and if U1 = Wj(i0) then Jj(i0) 6= ∅, which is
possible since J (τ(i0)) is non-monochromatic. Let τ∗ = (τ∗1 , . . . , τ∗`0) be the vec-
tor which we obtain from τ(i0) = (τ1(i0), . . . , τ`0(i0)) after reshuffeling the entries
corresponding to the relabelling above, i.e., if U∗

j = Wλj(i0)(i0), then τ∗j = τj(i0).
Similarly, let J (τ∗) = (J∗

1 , . . . , J∗
`0

) be the coresponding reshuffeling of J (τ(i0)),
where J∗

1 6= ∅. Therefore, from (5.21) we infer the first part of Theorem 8, i.e, for
all edges e, e′ ∈ (U1, . . . , U`0)〈τ∗〉

γ(e) = γ(e′) ⇒ (e ∩ U1)[J∗
1 ] = (e′ ∩ U1)[J∗

1 ] .

Moreover, due to the choice of the integers q(i) in (5.17), we have |Uj | ≥ q(i0 +1) ≥
q + ξ for all j ∈ [`0]. Since there are less than ξ colours used by degenerate `0-
types, the deletion of at most ξ many vertices from each Uj will produce the final
family W. �

5.4. Proof of Theorem 5. In this section, we deduce Theorem 5 from Theorem 8.

Proof of Theorem 5. Let H be an r-uniform hypergraph with at least two edges
and vH vertices and set

k := Ξ(H) = min
τ∈T (r)

j1∈[τ1]

max
{∣∣χ(r)

τ,j1,r·vH
(H0)

∣∣ : H0 ⊆ K
(r)
r·vH

}
. (5.22)

In (5.22) above as well as later in this proof, H0 denotes a copy of H in some “large
enough” complete hypergraph. We have to show that k − 2 ≤ EssFin(H) < k. We
first prove the upper bound. For that it suffices to give an example of a family of
(H, k)-local colourings, that are not (ε, T )-bounded for a given ε > 0 and every T .
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For that we note that for fixed ε < r!/rr and given T the colouring χ
(r)
τ,j1,n is

not (ε, T )-bounded for any τ ∈ T (r), j1 ∈ [τ1], and n = n(ε, T ) sufficiently large.
Moreover, by definition of k in (5.22) there is some τ0 ∈ T (r) and some j1 ∈ [τ1]
such that χ

(r)
τ0,j1,n is (H, k)-local and, hence,

EssFin(H) < k . (5.23)

We prove the lower bound by contradiction. So assume EssFin(H) < k − 2,
i.e., there is an ε > 0 such that for every T there exist an n and a colouring
γ ∈ L(r)

n (H, k − 2) that is not (ε, T )-bounded. Let such an ε > 0 be given. For
q = vH , r, and ε Theorem 8 yields T and n0. Now suppose for some n ≥ n0

there exist some γ ∈ L(r)
n (H, k − 2) ⊆ C(r)

n which is not (ε, T )-bounded. Then by
Theorem 8 there exist an integer `0 ∈ [r], a non-degenerate `0-type τ = (τ1, . . . , τ`0),
a set ∅ 6= J1 ⊆ [τ1], and a family W = {W1, . . . ,W`0} of mutually disjoint sets of
cardinality q such that for all edges e, e′ ∈ (W1, . . . ,W`0)〈τ〉

γ(e) = γ(e′) ⇒ (e ∩W1)[J1] = (e′ ∩W1)[J1] . (5.24)

Consequently, for j1 = minJ1 we have

max
H0⊆K

(r)
n

∣∣γ(H0)
∣∣ ≥ max

{∣∣γ(H0)
∣∣ : H0 induced on

⋃
i∈[`0]

Wi

}
(5.24)

≥ −1 + max
H0⊆K

(r)
`0·q

∣∣χ(r)
τ,j1,`0·q(H0)

∣∣ .

(5.25)

Note that the “−1” is needed, because H0 may contain edges of a non-degenerate
`0-type τ ′ 6= τ . Theorem 8 gives us no control over the colour of those edges, but
χ

(r)
τ,j1,`0·q(H0) insists on a colour different from those used for the edges of type τ .

However, if r = 2, then there exist only one non-degenerate 1-type (τ = (2)) and
only one non-degenerate 2-type (τ = (1, 1)). Hence, for r = 2 we infer

max
H0⊆K

(2)
n

∣∣γ(H0)
∣∣ ≥ max

H0⊆K
(2)
`0·q

∣∣χ(2)
τ,j1,`0·q(H0)

∣∣ . (5.26)

Moreover, since τ ∈ T (r) and q ≥ vH , we infer from (5.25) that

max
H0⊆K

(r)
n

∣∣γ(H0)
∣∣ ≥ −1 + min

τ∈T (r)

j1∈[τ1]

max
H0⊆K

(r)
r·vH

∣∣χ(r)
τ,j1,r·vH

(H0)
∣∣ .

But by definition of k in (5.22) this contradicts γ ∈ L(r)
n (H, k−2). Hence EssFin(H) ≥

k − 2 and (2.7) follows from (5.23) and (5.22).
The moreover-part of Theorem 5 for r = 2 follows in the same way. Colourings

χ
(2)
(2),1,n and χ

(2)
(2),2,n are equivalent in the sense that

max
H0⊆K

(2)
n

∣∣χ(2)
(2),1,n(H0)

∣∣ = max
H0⊆K

(2)
n

∣∣χ(2)
(2),2,n(H0)

∣∣
for every integer n. Recalling, that γmin,n = χ

(2)
(2),1,n and γbip,n = χ

(2)
(1,1),1,n we infer

from (5.23) and (5.22) that

EssFin(H) ≤ −1 + min
{

max
H0

|γmin,2vH
(H0)| , max

H0
|γbip,2vH

(H0)|
}

= k − 1 ,
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where the H0 range over all copies of H in K
(2)
n . Similarly, repeating the analysis

as in the proof of EssFin(H) ≥ k − 2 for general r above, but using (5.26) instead
of (5.25), we infer EssFin(H) ≥ k − 1 for r = 2. �
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14. M. Truszczyński, Generalized local colorings of graphs, J. Combin. Theory Ser. B 54 (1992),
no. 2, 178–188. 1

15. B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15 (1927),

212–216, German. 2.4
16. P. Varnavides, On certain sets of positive density, J. London Math. Soc. 34 (1959), 358–360.

3
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