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Abstract. If G and H are graphs, let us write G → (H)2 if G contains a monochro-

matic copy of H in any 2-colouring of the edges of G. The size-Ramsey number re(H)

of a graph H is the smallest possible number of edges a graph G may have if G → (H)2.

Suppose T is a tree of order |T | ≥ 2, and let t0, t1 be the cardinalities of the vertex

classes of T as a bipartite graph, and let ∆(T ) be the maximal degree of T . Moreover,

let ∆0, ∆1 be the maxima of the degrees of the vertices in the respective vertex classes,

and let β(T ) = t0∆0+t1∆1. Beck [7] proved that β(T )/4 ≤ re(T ) = O{β(T )(log |T |)12},
improving on a previous result of his [6] stating that re(T ) ≤ ∆(T )|T |(log |T |)12. In [6],

Beck conjectures that re(T ) = O{∆(T )|T |}, and in [7] he puts forward the stronger

conjecture that re(T ) = O{β(T )}. Here, we prove the first of these conjectures, and

come quite close to proving the second by showing that re(T ) = O{β(T ) log ∆(T )}.
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1. Introduction

In this note we are concerned with a numerical problem in Ramsey theory: we
shall study the size-Ramsey number of trees. Before we proceed, let us introduce
some notation and definitions. For a graph G, we write |G| for the order |V (G)|
of G, and e(G) for its size e(G). Let a real 0 ≤ γ ≤ 1 and an integer r ≥ 2 be
fixed, and suppose G and H are graphs. We write G →γ H if any subgraph J ⊂ G

of G with size e(J) ≥ γe(G) contains an isomorphic copy of H as a subgraph,
and we write G → (H)r if G contains a monochromatic copy of H in any edge-
colouring of G with r colours.

Settling a one-hundred-dollar problem of Erdős, ten years ago Beck [6] proved
the following striking result. Let P t be the path of order t. If 0 < γ ≤ 1 and p =
Cγ/n, where Cγ > 0 is a constant that depends only on γ, then the random
graph Gp = Gn,p ∈ G(n, p) is almost surely such that G →γ P t for t = bC−1

γ nc.
As an immediate corollary, one has that for any fixed r ≥ 2 the r-size-Ramsey

number

re(H, r) = min{e(G): G → (H)r} (1)

of the path H = P t is O(crt) for some constant cr that depends only on r.
Also in [6], Beck shows by non-constructive means that the size-Ramsey num-
ber re(T ) = re(T, 2) of a tree T = T t of order t and maximal degree ∆ = ∆(T ) is
not greater than ∆t(log t)12. (The proof of this result is complex and it is heav-
ily based on the probabilistic method: besides random graphs, the Erdős–Lovász
sieve is used.) Thus, for trees of bounded maximal degree, the size-Ramsey
number is nearly linear in |T |. Indeed, Beck conjectures in [6] that re(T ) =
O{∆(T )|T |}.

More recently, Friedman and Pippenger [11] improved on Beck’s result by
showing that, for trees T of bounded maximal degree, it does indeed hold that
the size-Ramsey number re(T ) is linear in |T |. The proof in [11] is based on
a new, beautiful tree-universality result for expanding graphs. With this result
in hand, basically following Alon and Chung [3] and Beck [6], Friedman and
Pippenger [11] prove the following result. Let 0 < γ ≤ 1, and 1 ≤ ∆ < t be
given. Then, for suitable primes p and q, the Ramanujan graph X = Xp,q con-
structed by Lubotzky, Phillips, and Sarnak [16] is such that (i) e(X) ≤ c∆4γ−3t,
where c is an absolute constant, and (ii) X →γ T for any tree T of order |T | ≤ t

and maximal degree ∆(T ) ≤ ∆. Note that this is a ‘density’ type result rather
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than a Ramsey-theoretical one, by which we mean that it concerns the prop-
erty G →γ T rather than G → (T )r. Clearly, the Friedman–Pippenger result
above implies that re(T ) = O{∆(T )4|T |} for any tree T . This bound has very
recently been improved by Ke [14], who proved a density type result implying
that re(T ) = O{∆(T )2|T |}. Our first main result in this note, Theorem 9 (see
also Corollary 10), improves this to re(T ) = O{∆(T )|T |}, thus verifying the
conjecture of Beck [6].

Now, note that if T is the (t − 1)-star K1,t−1 (t ≥ 2), then clearly re(T ) =
2t − 3, whereas ∆(T )|T | = t(t − 1). Thus the bound re(T ) = O{∆(T )|T |}
may be far from sharp for some trees T . Beck [7] has identified what seems
to be the ‘correct’ parameter of a tree T that determines the order of re(T ).
If T has bipartition V (T ) = V0(T ) ∪ V1(T ) and tσ = |Vσ(T )|, ∆σ = ∆σ(T ) =
max{d(v): v ∈ Vσ(T )} (σ ∈ {0, 1}), let β(T ) = t0∆0 + t1∆1. Note that for
instance β(K1,t−1) = 2(t − 1) and moreover β(T ) ≤ ∆(T )|T | for any tree T .
Improving his previous result, Beck [7] proved that

β(T )/4 ≤ re(T ) ≤ Cβ(T )(log |T |)12 (2)

for any tree T and some absolute constant C, and thus determined re(T ) up to
a (log |T |)12 factor. Beck conjectures in [7] that the lower bound in (2) gives the
correct order of re(T ), i.e. that re(T ) = O{β(T )}. We are unable to prove this
conjecture, but here we considerably improve the upper bound in (2) by showing
that re(T ) ≤ Cβ(T ) log ∆(T ) for some absolute constant C. Furthermore, the re-
sult of Beck that gives the upper bound in (2) is intrinsically Ramsey-theoretical,
whereas ours is a density type result.

Our method is based on the Friedman–Pippenger tree-universality result. We
in fact obtain a variant of that result using the same argument, and then we
show how our bounds follow from this variant and a simple result concerning
random bipartite graphs. Our methods are non-constructive owing to the use
of random graphs, but we remark that, for most trees T , there are explicit con-
structions of graphs G that give re(T ) = O{∆(T )|T |}. These constructions are
based on the Ramanujan graphs Xp,q of Lubotzky, Phillips, and Sarnak [16], and
certain Cayley graphs of Abelian groups due to Alon [2]. For trees T with ∆(T )
about |T |1−1/d for some integer d ≥ 2, we may prove that re(T ) = O{∆(T )|T |}
constructively by considering projective geometries. (See Section 5).

This note is organised as follows. Our variant of Friedman and Pippenger’s
tree-universality result is stated and proved in Section 2, and in the following
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section we give the results concerning random bipartite graphs that we need. For
the inequalities used in Section 3 as well as for definitions not given here in detail,
we refer the reader to [8]. In Section 4 we prove our main results. Comments
concerning explicitly constructed graphs that may replace the random graphs
used in our proofs are given in Section 5.

2. A tree-universality result

We shall assume throughout that all our bipartite graphs have been given a fixed
bipartition. More specifically, if G is a bipartite graph, its associated bipartition
will be V (G) = V0(G) ∪ V1(G). In particular, if T is a tree of order t = |T | ≥ 2,
we assume fixed one of the canonical bipartitions V (T ) = V0(T ) ∪ V1(T ) of T .
Also, if G is a bipartite graph with associated bipartition V (G) = V0(G)∪V1(G),
we let ∆σ(G) = max{dG(v): v ∈ Vσ(G)} and put nσ(G) = |Vσ(G)| (σ ∈ {0, 1}).
We sometimes write G = Gn0,n1 if nσ(G) = nσ (σ ∈ {0, 1}). If T is a tree,
and ∆σ(T ) ≤ ∆σ, nσ(T ) ≤ tσ (σ ∈ {0, 1}), we say that T is a (t0,∆0; t1,∆1)-
tree.

Now let J be a bipartite graph with associated bipartition V (J) = V0(J) ∪
V1(J). If for every X ⊂ Vσ(J) with |X| ≤ bσ (σ ∈ {0, 1}) we have |ΓJ(X)| ≥
fσ|X|, we say that J is a (b0, f0; b1, f1)-expanding bipartite graph. The main
result in this section is the following.

Theorem 1. Suppose 1 ≤ ∆0 ≤ t1 and 1 ≤ ∆1 ≤ t0 are fixed integers. Then

every non-empty (2t1/∆0, 2∆0; 2t0/∆1, 2∆1)-expanding bipartite graph contains

as a subgraph every (t0,∆0; t1,∆1)-tree.

The rest of this section is devoted to the proof of the above result. Thus,
suppose tσ, ∆σ (σ ∈ {0, 1}) are as in Theorem 1, let T be a fixed (t0,∆0; t1,∆1)-
tree, and let J be a (2t1/∆0, 2∆0; 2t0/∆1, 2∆1)-expanding bipartite graph. We
shall show that J contains a copy of T as a subgraph.

Let S ⊂ T be a subtree of T . A function f : V (S) → V (J) is an embedding

of S in J if f is injective, it preserves the adjacency relation, and moreover it
preserves the vertex classes, i.e. f(Vσ(T ) ∩ V (S)) ⊂ Vσ(J) for σ ∈ {0, 1}. In
what follows the indices will be reduced modulo 2, so that, for instance, V0(J) =
V2(J) = · · · . Let us now suppose that an embedding f : S → J is given, and
suppose X ⊂ Vσ(J) (σ ∈ {0, 1}). Then we let Af (X) = |ΓJ(X)\f(V (S))|. Also,
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for x ∈ J we let Df (x) = dS(f−1(x)) if x ∈ f(V (S)) and Df (x) = 0 otherwise,
and put Bf (X) =

∑
x∈X(∆σ−Df (x)). Finally, we set Cf (X) = Af (X)−Bf (X).

Let us say that X is f-solvent if Cf (X) ≥ 0, and f-bankrupt otherwise.
If Cf (X) = 0, we shall say that X is f-critical. A central definition is the
following. We shall say that f is good if every X ⊂ V (J) with X ⊂ Vσ(J)
(σ ∈ {0, 1}) is f -solvent whenever |X| ≤ 2tσ+1/∆σ. We have now arrived at the
main claim in the proof of Theorem 1.

Claim. (i) If S ⊂ T is a subtree of T with |S| = 1, then there is a good embed-

ding f : S → J of S in J . (ii) Let S ⊂ T be a subtree of T , and suppose f : S → J

is a good embedding of S in J . If S ⊂ S′ ⊂ T , where S′ is a tree with |S′| = |S|+1,

then there is a good embedding g: S′ → J of S′ in J that extends f .

As Theorem 1 immediately follows from (i) and (ii) above, we proceed to prove
this claim. Let us first consider (i). Suppose V (S) = {x} ⊂ Vσ(T ) (σ ∈ {0, 1}).
Then let f : V (S) → V (J) be any function such that f(x) ∈ Vσ(J). We claim
that f is a good embedding. To check this, let X ⊂ Vρ(J) (ρ ∈ {0, 1}) be
such that |X| ≤ 2tρ+1/∆ρ. Let us check that Cf (X) ≥ 0. If X = ∅, then
clearly Cf (X) = Af (X) = Bf (X) = 0, and so we assume that X 6= ∅. Note that
then Af (X) = |ΓJ(X)\{f(x)}| ≥ 2∆ρ|X|−1 ≥ ∆ρ|X| ≥ Bf (X). Thus Cf (X) ≥
0, and f is indeed good. We now turn to (ii).

Suppose f : S → J and S ⊂ S′ ⊂ T are as in the statement of (ii). Then
clearly there is a leaf v of S′ such that V (S′) \ V (S) = {v}. Let w ∈ S be
the unique neighbour of v in S′. Suppose v ∈ Vσ′(T ) (σ′ ∈ {0, 1}). Now let us
consider all embeddings g: S′ → J of S′ in J that extend f , and let G be the
set of such extensions. Our claim is that G contains a good extension. Although
strictly speaking this is not necessary, let us first check that G 6= ∅ as a warm-up.
Since {f(w)} is f -solvent, we have that |ΓJ(f(w)) \ f(V (S))| = Af ({f(w)}) ≥
Bf ({f(w)}) = ∆σ′+1 − dS(w) ≥ 1, which implies that indeed f has at least one
extension g ∈ G. We now check that G contains a good extension.

Suppose for a contradiction that every g ∈ G admits a g-bankrupt set Xg ⊂
V (J) such that Xg ⊂ Vρ(J), where ρ = ρ(g) ∈ {0, 1} and |Xg| ≤ 2tρ+1/∆ρ.
Since f is good, the sets Xg (g ∈ G) are all f -solvent.

We now do a little simple calculation. For brevity, if P is a statement we
set [P ] = 0 if P is false and [P ] = 1 if P is true. Fix X ⊂ Vρ(J) (ρ ∈ {0, 1}) and
let g ∈ G. Note that then Ag(X) = |ΓJ(X) \ g(V (S′))| = |ΓJ(X) \ f(V (S))| −
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[g(v) ∈ ΓJ(X)]. Moreover Bg(X) =
∑

x∈X(∆ρ − Dg(x)) = Bf (X) − [f(w) ∈
X]− [g(v) ∈ X]. Thus we have that

Cg(X) = Cf (X)− [g(v) ∈ ΓJ(X)] + [f(w) ∈ X] + [g(v) ∈ X].

From this, and the fact that Xg is g-bankrupt but f -solvent, we conclude that

Xg is f -critical, g(v) ∈ ΓJ(Xg) \Xg, and f(w) /∈ Xg (3)

for every g ∈ G. Note in particular that ρ(g) = σ′ + 1 for all g ∈ G; that is, we
have Xg ⊂ Vσ′+1(J) for all g ∈ G.

Lemma 2. Suppose X ⊂ Vρ(J), where ρ ∈ {0, 1}, is f -critical and satisfies |X| ≤
2tρ+1/∆ρ. Then |X| ≤ tρ+1/∆ρ.

Proof. We have Af (X) = |ΓJ(X) \ f(V (S))| ≥ 2∆ρ|X| − tρ+1, and Bf (X) =∑
x∈X(∆ρ −Df (x)) ≤ ∆ρ|X|. Since Af (X) − Bf (X) = Cf (X) = 0, the lemma

follows.

We now check that Cf is a submodular function when restricted to each of the
power sets P(Vρ(J)) of Vρ(J) (ρ ∈ {0, 1}).

Lemma 3. Suppose X, Y ⊂ Vρ(J), where ρ ∈ {0, 1}. Then

Cf (X ∩ Y ) + Cf (X ∪ Y ) ≤ Cf (X) + Cf (Y ). (4)

Proof. Note first that Bf is a modular function on P(Vρ(J)) (ρ ∈ {0, 1}). Now (4)
follows from the observation that ΓJ(X ∩Y ) ⊂ ΓJ(X)∩ΓJ(Y ) and ΓJ(X ∪Y ) =
ΓJ(X) ∪ ΓJ(Y ).

An easy consequence of the above two lemmas is the following.

Corollary 4. Suppose X, Y ⊂ Vρ(J), where ρ ∈ {0, 1}, are f -critical and

moreover |X|, |Y | ≤ tρ+1/∆ρ. Then X ∪ Y is f -critical and |X ∪ Y | ≤ tρ+1/∆ρ.

Proof. Since |X ∪ Y | ≤ 2tρ+1/∆ρ and f is good, the set X ∪ Y is f -solvent.
Similarly X ∩ Y is f -solvent. Now (4) and the fact that X and Y are f -critical
imply that X ∩Y and X ∪Y are f -critical as well. Lemma 2 now gives that |X ∪
Y | ≤ tρ+1/∆ρ, as required.
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We are now ready to finish the proof of (ii) of our claim. Let X∗ =
⋃

g∈G Xg ⊂
Vσ′+1(J). By Corollary 4, we have that X∗ is f -critical and |X∗| ≤ tσ′/∆σ′+1.
Recall that f(w) /∈ Xg for any g ∈ G (cf. (3)), and so f(w) /∈ X∗. Let X ′ =
X∗ ∪ {f(w)} ⊂ Vσ′+1(J). We now claim that

ΓJ(X ′) \ f(V (S)) = ΓJ(X∗) \ f(V (S)). (5)

It suffices to check that if y ∈ ΓJ(f(w)) \ f(V (S)), then y ∈ ΓJ(X∗). So sup-
pose y ∈ ΓJ(f(w))\f(V (S)) is fixed. Then note that there is an extension g ∈ G
of f for which g(v) = y. But then by (3) we conclude that y = g(v) ∈ ΓJ(Xg) ⊂
ΓJ(X∗). Thus (5) does indeed hold, and we have Af (X ′) = Af (X∗). Now note
that Bf (X ′) = Bf (X∗)+(∆σ′+1−dS(w)) > Bf (X∗). Thus Cf (X ′) < Cf (X∗) =
0. However, |X ′| = |X∗| + 1 ≤ tσ′/∆σ′+1 + 1 ≤ 2tσ′/∆σ′+1, and hence, as f

is good, we have that Cf (X ′) ≥ 0. This contradiction completes the proof of
Theorem 1.

3. Bipartite graphs with uniformly distributed edges

Let integers n0, n1 ≥ 1 and r0, r1 ≥ 1 be such that n0r0 = n1r1. Set r =
max{r0, r1}, and let p = (r0/n1) log r = (r1/n0) log r. We shall assume through-
out that r ≥ 3 and p ≤ 1. Consider the space G(n0, n1; p) of random bipartite
graphs G = Gn0,n1,p with vertex classes V0(G) and V1(G) satisfying |Vσ(G)| = nσ

(σ ∈ {0, 1}), and where each edge is independently present with probability p.
Our aim in this section is to show the following technical lemma, which we shall
do with the aid of the random graphs Gn0,n1,p. If G is a graph and U , W ⊂ V (G),
we let eG(U,W ) denote the number of edges that have one endvertex in U and
the other in W .

Lemma 5. There is an absolute constant r∗ ≥ 1 for which the following holds.

Let n0, n1, r0, r1 ≥ 1 be integers with n0r0 = n1r1, and set p = (r0/n1) log r =
(r1/n0) log r where r = max{r0, r1}. Suppose 0 < α ≤ 1 satisfies αr0, αr1 ≥ 1.

Then if r ≥ r∗ there is a bipartite graph G = Gn0,n1 such that (i) 1/2 ≤
e(G)/n0r0 log r ≤ 2, and (ii) if σ ∈ {0, 1}, for any U ⊂ Vσ(G), W ⊂ Vσ+1(G)
with 1 ≤ u = |U | ≤ uσ = bnσ+1/erσc = bnσ/erσ+1c and w = |W | = bαrσuc, we

have

e(U,W ) = eG(U,W ) < puw + 12e(rσuw)1/2 log r. (6)
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Proof. Note that if p ≥ 1, we may take for G a complete bipartite graph with
vertex classes of order n0 and n1. Thus we assume that p < 1. We shall show
that then, provided r is large enough, the probability that G = Gp = Gn0,n1,p ∈
G(n0, n1; p) satisfies (i) and (ii) is positive. For σ ∈ {0, 1}, let Qσ be the prop-
erty given in assertion (ii). We shall in fact show that, as r → ∞, we have
(iii) P(Qσ) = 1 − o(1) (σ ∈ {0, 1}) and (iv) P(1/2 ≤ e(G)/r0n0 log r ≤ 2) =
1− o(1).

Let us check (iii) first, and notice that by symmetry we may assume σ = 0.
Let 1 ≤ u ≤ u0 and w = w(u) = bαr0uc. Set A = 12e, µ = puw, and b =
A(r0uw)1/2 log r. Let U ⊂ V0(G) and W ⊂ V1(G) be such that |U | = u and |W | =
w. Let Pu = P(e(U,W ) ≥ µ + b), and set E0 =

∑
1≤u≤u0

(
n0
u

)(
n1
w

)
Pu. Our aim is

to show that E0 = o(1) as r →∞. Let

η =
b

µ
=

A(r0uw)1/2 log r

(r0/n1)uw log r
= An1(r0uw)−1/2. (7)

We estimate E0 =
∑

u

(
n0
u

)(
n1
w

)
Pu by breaking the sum into two parts. Let E

(1)
0 =∑∗ (n0

u

)(
n1
w

)
Pu, where

∑∗ denotes sum over all 1 ≤ u ≤ u0 with η ≤ e2, and
let E

(2)
0 = E0 −E

(1)
0 . Note that below we may assume that r is large enough for

our inequalities to hold.

(1) We have E
(1)
0 = o(1) as r →∞.

Here we assume throughout that η ≤ e2. We start by claiming that Pu =
P(e(U,W ) ≥ µ + b) ≤ exp

{
−
(
A2/3e4

)
n1 log r

}
. To check this claim, let us

first consider the case in which η ≤ 1. Note that from (7) we have that η2µ =
A2n1 log r. Then Hoeffding’s inequality [13] (see also [17]) gives that Pu ≤ exp

{
−(

A2/3
)
n1 log r

}
, and the claim follows in this case. Now consider the case 1 ≤ η ≤

e2. Here Pu ≤ P(e(U,W ) ≥ 2µ) ≤ exp{−µ/3}, again by Hoeffding’s inequality.
Note that b/µ = η ≤ e2 gives that µ ≥ b/e2 = (A/e2)(r0uw)1/2 log r. Also, we
have An1(r0uw)−1/2 = η ≤ e2, and therefore µ ≥ (A2/e4)n1 log r. Thus our
claimed upper bound for Pu follows.

We now estimate E
(1)
0 . If n0 ≤ n1 this is very quick: note that

E
(1)
0 =

∑∗
(

n0

u

)(
n1

w

)
Pu ≤ 2n0+n1 exp

{
−A2

3e4
n1 log r

}
≤
(
4r−6

)n1 = o(1)

as r →∞. Thus let us assume that n0 > n1. Then

E
(1)
0 ≤ 2n1

∑∗
(

n0

u

)
Pu ≤ 3× 2n1 exp

{
−A2

3e4
n1 log r

}(
en0

u0

)u0
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≤ 3× 2n1
(
e2r1

)n1/er0 exp
{
−A2

3e4
n1 log r

}
≤ 3× 2n1 exp

{
2n1

er0
+

n1

er0
log r − A2

3e4
n1 log r

}
,

which tends to 0 as r →∞.

(2) We have E
(2)
0 = o(1) as r →∞.

We now assume that η ≥ e2. Let v be such that b = evµ/ log v. Then ev/ log v =
b/µ = η ≥ e2, and hence we may suppose v ≥ e. Also, we have evµ/ log v =
b ≥ 1 ≥ e/v, and so v2µ ≥ log v. Thus Pu ≤ P(e(U,W ) ≥ b) ≤ exp{−vµ}
(see Theorem 7(ii) in Chapter I of [8]). Now, we have vµ = (b/e) log v ≥
12(r0uw)1/2(log r)(log v) ≥ 12(r0uw)1/2(log r). Thus v ≥ 12(r0uw)−1/2n1, and
hence

Pu ≤ exp{−vµ} ≤
(

(r0uw)1/2

12n1

)12(r0uw)1/2 log r

. (8)

Note that if w ≤ 1 then u ≤ 1, and hence (6) holds trivially; that is, we have Pu =
0 in this case. Thus we assume αr0u ≥ bαr0uc = w ≥ 2. Hence w ≥ αr0u/2,
and we have from (8) that

Pu ≤
(

α1/2r0u

12n1

)6αr0u log r

.

Thus E
(2)
0 =

∑† (n0
u

)(
n1
w

)
Pu, where

∑† indicates sum over all 2 ≤ u ≤ u0

with η ≥ e2, is at most

∑† (en0

u

)u
(

en1

αr0u

)αr0u

Pu ≤
u0∑

u=2

(en0

u

)u
{

en1

αr0u

(
ur0

n1

)6 log r
}αr0u

≤
u0∑

u=2

(en0

u

)u
(

1
α

)αr0u(
ur0

n1

)4αr0u log r

≤
u0∑

u=2

(
er1

(
1
α

)αr0
(

ur0

n1

)3αr0 log r
)u

,

which is at most
∑

2≤u≤u0
eu{αr2}−αr0u ≤

∑
u≥2(e/r)u = o(1) as r →∞.

Thus we have shown that E0 = E
(1)
0 + E

(2)
0 = o(1) as r → ∞, and hence

that (iii) above does indeed hold. To see (iv), it suffices to note that e(G) has
binomial distribution Bi(n0n1, p) with parameters n0n1 and p and that E(e(G)) =
pn0n1 = n0r0 log r →∞ as r →∞.
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When n0 = n1 in Lemma 5, we may require a more restrictive condition
on G = Gn,n, as shows Lemma 6 below. One may prove this lemma by suitably
altering the proof of Lemma 5 and hence we omit its proof.

Lemma 6. There is an absolute constant r∗ ≥ 1 for which the following holds.

Let r∗ ≤ r ≤ n, set p = r/n, and suppose 0 < α ≤ 1 satisfies αr ≥ 1. Then

there is a bipartite graph G = Gn,n such that (i) 1/2 ≤ e(G)/nr ≤ 2, and

(ii) if σ ∈ {0, 1}, for any U ⊂ Vσ(G), W ⊂ Vσ+1(G) with 1 ≤ u = |U | ≤ n/2r

and w = |W | = bαruc, we have eG(U,W ) < puw + 12e(ruw)1/2.

4. The main results

Let H be a bipartite graph with bipartition V (H) = V0(H) ∪ V1(H), and sup-
pose V0(H), V1(H) 6= ∅. Let d̄σ(H) = |Vσ(H)|−1

∑
{dH(v): v ∈ Vσ(H)} be the

average degree of the vertices in Vσ(H) (σ ∈ {0, 1}). The following simple but
useful lemma was observed by Beck [7]. We include Beck’s proof of this lemma
for completeness.

Lemma 7. Let H be as above. Then there is a non-empty induced subgraph J ⊂
H of H such that (*) for any U ⊂ Vσ(J) = Vσ(H) ∩ V (J) (σ ∈ {0, 1}), we

have eJ(U, V (J)) ≥ (1/2)d̄σ(H)|U |.

Proof. We define a sequence H = H0 ⊃ H1 ⊃ · · · of induced subgraphs of H

as follows. Let H0 = H, and suppose H0 ⊃ · · · ⊃ Hi−1 (i ≥ 1) have been
defined. If |Hi−1| = 0, or else |Hi−1| > 0 and condition (*) in our lemma
holds, we terminate the sequence. Suppose |Hi−1| > 0 but (*) fails. Then
let U ⊂ V (Hi−1) be such that U ⊂ Vσ(Hi−1) for some σ ∈ {0, 1}, and more-
over eHi−1(U, V (Hi−1)) < (1/2)d̄σ(H)|U |. We now let Hi = Hi−1 − U . This
defines a sequence H = H0 ⊃ · · · ⊃ Ht of induced subgraphs of H. If J = Ht is
as required, we are done. Thus suppose |Ht| = 0. But then

e(H) =
∑

1≤i≤t

(
e(Hi−1)− e(Hi)

)
<

1
2
d̄0(H)|Vσ(H)|+ 1

2
d̄1(H)|Vσ(H)| = e(H),

which is a contradiction, and hence we necessarily have |Ht| > 0.

We may now prove our first main result.
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Theorem 8. Let 0 < γ ≤ 1 be given. Then there is a constant cγ > 0 depending

only on γ for which the following holds. For all integers 1 ≤ ∆0 ≤ t1 and 1 ≤
∆1 ≤ t0, there is a bipartite graph G such that (i) e(G) ≤ cγ(∆0t0 +∆1t1) log ∆,

where ∆ = max{∆0,∆1}, and (ii) G →γ T for any (t0,∆0, t1,∆1)-tree T .

Proof. Let γ, tσ, ∆σ (σ ∈ {0, 1}) be as above. In proving our result, we may
assume that ∆ ≥ e2r∗, where r∗ is as given in Lemma 5. Moreover, we may
further assume that ∆0t0 ≥ ∆1t1. We now start the proof proper.

Let 0 < α = α(γ) ≤ min{eγ/4, 4/e2} be the largest real number such that
(1/12e)2(γ/4 − α/e)2 ≥ α. For σ ∈ {0, 1}, let rσ be the smallest integer power
of 2 such that αrσ ≥ 2∆σ. Clearly rσ ≤ (4/α)∆σ (σ ∈ {0, 1}). Now let n0 be the
smallest power of 2 such that n0 ≥ 2et0r1/∆1. Then we have n0 ≤ (16e/α)t0.
Finally, let n1 = r0n0/r1. Then note that n1/er0 ≥ n0/er1 ≥ 2t0/∆1 ≥ 2t1/∆0.
Now let G = Gn0,n1 be the bipartite graph whose existence is guaranteed in
Lemma 5. Then

e(G) ≤ 2n0r0 log r ≤ 2
(

16et0
α

)(
4∆0

α

)
log
(

4∆
α

)
≤ c′γ(t0∆0 + t1∆1) log ∆,

where c′γ = 128eα−2 log(4/α), since log(4∆/α) ≤ (log(4/α)) log ∆ as α ≤ 4e−2

and ∆ ≥ e2. Thus (i) in our result holds for G if cγ ≥ c′γ . We now check (ii).
Thus let H ⊂ G be a fixed subgraph of G with e(H) ≥ γe(G). Let J ⊂ H

be the subgraph of H given by Lemma 7. We claim that then the graph J is
(2t1/∆0, 2∆0; 2t0/∆1, 2∆1)-expanding.

Suppose for a contradiction that U ⊂ Vσ(J) is such that u = |U | ≤ 2tσ+1/∆σ

and |ΓJ(U)| < 2∆σ|U |, where σ ∈ {0, 1}. Then, let W ⊂ Vσ+1(J) be such
that w = |W | = bαrσuc and ΓJ(U) ⊂ W . Now observe that

γ

4
rσ(log r)u ≤ γ

2
d̄σ(G)u ≤ 1

2
d̄σ(H)u ≤ eJ(U, V (J)) ≤ eG(U,W )

< puw + 12e(rσuw)1/2 log r ≤ α

e
rσ(log r)u + 12e(rσuw)1/2 log r.

Thus (γ/4 − α/e)rσ(log r)u < 12e(rσuw)1/2 log r, and hence we have αrσu ≤
(1/12e)2(γ/4− α/e)2rσu < w = bαrσuc, which is a contradiction. Therefore we
conclude that indeed J is (2t1/∆0, 2∆0; 2t0/∆1, 2∆1)-expanding. Now (ii) above
follows from Theorem 1.

Our second main result is as follows.
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Theorem 9. Let 0 < γ ≤ 1 be given. Then there is a constant cγ > 0 depending

only on γ for which the following holds. For any 1 ≤ ∆ < t, there is a bipartite

graph G such that (i) e(G) ≤ cγ∆t, and (ii) G →γ T for any tree T of order |T | ≤
t and maximal degree ∆(T ) ≤ ∆.

Proof. Let γ, ∆, t be as in the statement of our result. We may assume that ∆ ≥
r∗, where r∗ is as in Lemma 6. Let 0 < α = α(γ) ≤ γ/2 be the largest real
such that (1/12e)2(γ/4 − α/2)2 ≥ α. Now let r = d2∆/αe ≤ 4∆/α, and n =
d4tr/∆e ≤ 32t/α. Note that then r∗ ≤ r ≤ n, 0 < α ≤ 1, and let G = Gn,n

be the corresponding bipartite graph given by Lemma 6. Then e(G) ≤ 2rn ≤
2(4∆/α)(32t/α) ≤ 256α−2∆t. We now check that G →γ T for any tree T

with |T | ≤ t and ∆(T ) ≤ ∆. Let H ⊂ G be a subgraph of G with e(H) ≥ γe(G).
Let J ⊂ H be the subgraph of H given by Lemma 7. It now suffices to check
that J is a (2t/∆, 2∆; 2t/∆, 2∆)-expanding bipartite graph.

Suppose for a contradiction that U ⊂ Vσ(J) is such that |ΓJ(U)| < 2∆|U |
although u = |U | ≤ 2t/∆, where σ ∈ {0, 1}. Then, let W ⊂ Vσ+1(J) be such
that w = |W | = bαruc and ΓJ(U) ⊂ W . Now observe that

γ

4
ru ≤ γ

2
d̄σ(G)u ≤ 1

2
d̄σ(H)u ≤ eJ(U, V (J)) ≤ eG(U,W )

< puw + 12e(ruw)1/2 ≤ α

2
ru + 12e(ruw)1/2.

Thus αru ≤ (1/12e)2(γ/4− α/2)2ru < w = bαruc, which is a contradiction.

An immediate corollary to Theorems 8 and 9 is the upper bound for the size-
Ramsey number of trees given in Corollary 10 below. The lower bound in this
corollary is due to Beck [7], and its very short proof is included for convenience.

Corollary 10. For any r ≥ 2, there is a constant cr depending only on r such

that

β(T )/4 ≤ re(T, r) ≤ cr min{β(T ) log ∆(T ), |T |∆(T )}

for all trees T .

Proof. Let an integer r ≥ 2 and a tree T be fixed. Let T have bipartition V (T ) =
V0(T ) ∪ V1(T ), and let tσ = |Vσ(T )|, ∆σ = ∆σ(T ) (σ ∈ {0, 1}). We may assume
that t0∆0 ≥ t1∆1. Let us prove that re(T, 2) ≥ β(T )/4. Suppose G → (T )2.
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Let U = {v ∈ G: dG(v) ≥ ∆0} and set W = V (G) \ U . Colour the edges of G

between U and W red, and the rest of the edges of G blue. Suppose T ′ ⊂ G

is a monochromatic copy of T in G, and let ϕ: T → T ′ be an isomorphism.
Let v0 ∈ V0(T ) have degree dT (v) = ∆0. Clearly ϕ(v0) ∈ U , and hence re-
gardless of the colour of T ′, we have ϕ(V0(T )) ⊂ U . Thus e(G) ≥ |U |∆0/2 ≥
|V0(T )|∆0/2 = t0∆0/2 ≥ β(T )/4. The upper bound for re(T, r) follows immedi-
ately from Theorems 8 and 9.

5. Concluding remarks

The existence of the graph G in Theorem 9 is proved by non-constructive means.
For some values of γ, ∆, and t we may however take for G a suitable Ramanujan
graph X = Xp,q. More precisely, there is an absolute constant ε > 0 with the
following property. For any given 0 < γ ≤ 1, there exist constants cγ > 0, ∆γ ,
tγ ≥ 1 depending only on γ such that, for any integers 1 ≤ ∆ < t with ∆ ≥ ∆γ ,
t ≥ tγ , and ∆ ≤ tε, there are primes p and q such that a bipartite Ramanujan
graph X = Xp,q constructed by Lubotzky, Phillips, and Sarnak [16] is such that
(i) e(X) ≤ cγ∆t, and (ii) X →γ T for any tree T of order |T | ≤ t and maximal
degree ∆(T ) ≤ ∆. The only extra work involved in proving the statement above
has to do with the existence of the primes p and q. We refer the reader to
Section 4 of [12], where a similar number-theoretic problem is treated. The key
result there is a beautiful theorem of Bombieri [9] (see also Davenport [10], §28)
on the distribution of primes in arithmetic progressions. With this result in hand,
our task there is quite straightforward, and in fact the same method applies here,
proving the above assertion. Let us also remark that the techniques presented
in this note also show that the incidence graphs of certain projective geometries
are explicit examples that prove Theorem 9 for ∆ and t with ∆ about t1−1/d for
some integer d ≥ 2. (See Theorem 2.3 in Alon [1].)

Finally, we should like to mention that Professor Noga Alon [2] has kindly
pointed out to us that one may improve the observations above as follows. One
of the methods that is given for the construction of almost k-wise independent
random variables in Alon, Goldreich, H̊astad, and Peralta [4], namely, Construc-
tion 3, can be suitably modified to give an elementary construction of an r-
regular n-vertex graph whose second largest eigenvalue in absolute value µ1 is
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such that |µ1| ≤ ur1/2, where n = 2uk and r = 22k, and u and k are any fixed
integers with u ≥ 3 and k ≥ 1. Here one considers a suitable Cayley graph of a
certain Abelian group, and uses the result given in Problem 11.8 of Lovász [15]
(see Section 3.2 of Alon and Roichman [5]). These graphs, the Ramanujan graphs
of Lubotzky, Phillips, and Sarnak and, as pointed out by Professor Alon, their
powers may be used to prove appropriate variants of Lemma 6 constructively,
thus allowing one to give a constructive proof of Theorem 9 for a wide range of
values of γ, ∆, and t.
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