
Robust covert channels based on
DRAM power consumption?

Thales Bandiera Paiva1, Javier Navaridas2, and Routo Terada1

1 Institute of Mathematics and Statistics, University of Sao Paulo, Sao Paulo, Brazil
{tpaiva,rt}@ime.usp.br

2 School of Computer Science, University of Manchester, Manchester, U.K.
javier.navaridas@manchester.ac.uk

Abstract. To improve the energy efficiency of computing systems, mod-
ern CPUs provide registers that give estimates on the power consump-
tion. However, the ability to read the power consumption introduces one
class of security concerns called covert channels, which are communica-
tion channels that enable one process to transmit a message to another
one in a system where these processes were meant to be isolated. Our
contribution consists in the first covert channel in which messages are
transmitted by modulating the DRAM power consumption. The channel
implementation outperforms similar proposals, achieving 1800 bps with
10% error, and 2400 bps with 15% error, when running on a notebook
and on a desktop platforms, respectively, To test its robustness against
application interference, we considered the channel’s performance when
running concurrently with different benchmarks: MRBench, Terasort and
LINPACK. When running on the notebook, the channel is fairly robust,
achieving between 300 and 600 bps with around 10% error depending on
the workload considered.
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1 Introduction

Power consumption is a major concern for both small embedded devices and huge
clusters. In the first case, the low battery life is a major hardware constraint,
while in the second, the amount of power needed by HPC environments can make
its use unfeasible, or at least unprofitable. To improve the energy efficiency of
computing systems, it is important to be able to measure and profile the power
consumption. One common solution is to use external power measuring tools,
such as Watt’s Up Pro Power Meter, or PowerMon 2 [2]. Another solution is to
use internal power measurement interfaces such as Running Average Power Limit
(RAPL), introduced by Intel on SandyBridge chips, or the AMD Application
Power Management.
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The RAPL components provide a software interface for the user to obtain
estimates on the processor’s power consumption based on models validated by
Intel. Since its inception, researchers have studied how accurately RAPL mea-
surements correspond to real power consumption and how one can use this in-
terface to efficiently profile an application energy usage [24,5]. Two security
concerns that comes with the ability to measure power consumption in software
are side-channel attacks and covert channels. With respect to RAPL compo-
nents, side-channel attacks were first studied by Mantel et al. [16], while covert
channels were first considered by Miedl and Thiele [20].

A covert channel enables two processes called the Trojan and the spy to
communicate in a system where they are meant to be isolated [13]. As such, this
type of channel is a central tool in data exfiltration, where an attacker wants to
recover some secret information from a target system without leaving any trace.
Figure 1 illustrates the use of a covert channel.
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Fig. 1. In this setup, the Trojan and spy run on different isolated containers of the
target system. The Trojan obtains some secret information, but because of the system’s
security policy, unauthorized applications in the container where the secret key reside
cannot access the Internet. The Trojan then uses a covert channel to transmit the secret
key to the spy process, which has access to the Internet and therefore can transmit the
secret key to the attacker.

To successfully build a covert channel, the spy and the Trojan must have
access to some shared resource, but not the usual ones such as shared mem-
ory, files, or network, because communication over these ones could be detected
by security auditors or explicitly prohibited by isolation mechanisms. There are
numerous examples of covert channels. Some recent constructions are based on
inaudible audio [4], branch predictors [7], core temperature [17], and cache co-
herence protocols [26].

The US Department of Defense standard Trusted Computer System Eval-
uation Criteria (TCSEC) [23] defines a high bandwidth covert channel as one
which can transmit at rates higher than 100 bps. To protect systems against
information leakage, it is important to lower, to 0 if possible, the bandwidths
of known covert channels. This can be done by introducing noise, lowering the
rate in which the channel can be modulated, or preventing the processes from
accessing the resources in which covert channels are based.



In this work, we investigate the possibility of building a covert channel using
the DRAM power consumption estimates given by the Intel RAPL interface. In
Linux, these estimates can be read using the powercap module without any spe-
cial privileges. Our main motivation is that, for devising mechanisms to protect
the systems against these channels without compromises to energy efficiency, it
is necessary to understand the true risk posed by these RAPL covert channels.

Contribution. We present the first covert channel based on the RAPL mea-
surement registers for the DRAM power consumption. This covert channel can
transmit at 2400 bps, with error rates around 15%. We tested the channel per-
formance under two platforms: a notebook and a desktop computer. The channel
robustness against application interference was evaluated under three different
workloads: MRBench, Terasort and LINPACK. The channel appears to be much
more robust against interference than previous work. In particular, under the
notebook setup, the channel achieved high bandwidths between 300 and 600
bps with error rates close to 10%, depending on the workload considered. On
the desktop, the covert channel achieves 400 bps under MRBench or Terasort
workload with 10% error rate, but it is not reliable when LINPACK is running.

This paper is organized as follows. Section 2 reviews relevant side and covert
channels based on power consumption. The threat model and experimental setup
are presented in Section 3. In Section 4, we show how to modulate CPU and
DRAM power usage and discuss how the benchmarks affect the power con-
sumption. The algorithms for Trojan and spy are presented in Section 5. The
performance evaluation of the covert channel is done in Section 6. In Section 7,
we consider two methods to achieve higher transmission rates. Section 8 consists
of a discussion on our results. We finish with the conclusion and discussion of
possible future work in Section 9.

2 Related work

2.1 Side-channel attacks

In a side-channel attack, an attacker obtains secret information by observing or
measuring the system when some critical computation is running. Side-channel
attacks are one of the main problems faced when implementing cryptographic
primitives, since the mathematical security models usually abstract away soft-
ware, hardware, and implementation details.

In 1999, Kocher et al. [12] presented two powerful techniques for side-channel
analysis of cryptographic schemes: SPA (simple power analysis) and DPA (dif-
ferential power analysis). Both of these attacks work by measuring the power
trace of a system when it is performing some cryptographic computation. When
performing an SPA, the attacker tries to recover some secret information by
directly interpreting the power trace. In contrast, in a DPA, the attacker uses
statistical analysis to correlate the power consumption to the data processed.
As such, DPA can better eliminate noise in the measurements. Power analysis



has been used to attack widely used schemes such as AES [15], RSA [18], and
Elliptic Curves [3].

The main limitation of the attacks mentioned above is that direct access to
the hardware is needed to perform the measurements. Therefore, it makes them
less practical than side-channel attacks based on timing [12] or cache [27,8].
There are some examples of power analysis attacks that do not use dedicated
hardware against mobile devices [19,25], where the power information is obtained
by monitoring the device’s battery.

Closely related to our research is the work by Mantel et al. [16] that shows,
to the best of our knowledge, the first energy consumption side-channel attack
using the software-based measurements provided by the RAPL interface. In this
work, the authors mount a key distinguishing attack against a popular imple-
mentation of the RSA cryptosystem. The authors reported that, with only 25
energy consumption observations, an attacker can distinguish between two RSA
keys with 99% of success.

2.2 Covert channels

One of the first covert channels related to power usage was introduced in 2006
by Murdoch [21]. In this work, the Trojan, running on a server, modulates a
message as the usage of a device to heat it up or cool it down. The spy then
recovers the message by observing the clock skew on timestamps of the collected
responses from the server that were caused by differences in temperature. The
capacity of Murdoch’s channel was later estimated as 20.5 bph (bits per hour)
by Zander et al. [28].

In 2015, two covert channels directly based on power consumption and mea-
surement were proposed. Guri et al. [9] showed a covert channel achieving be-
tween 1 and 8 bph between two separated desktop computers, where the Trojan
modulates the heat dissipation, and the spy decodes the message using its hard-
ware’s native heat sensors. In 2015, Masti et al [17] showed how to use the CPU
core temperature measurements to build a covert channel. One very interesting
property of this covert channel is that it can transmit information between ap-
plications running in two different cores because the temperature in one core
(which runs the Trojan), affects the temperature of the cores close to it (which
may be running the spy). Their channel implementation achieves a throughput
of up to 12.5 bps. Their result was improved to 50 bps by Bartolini et al. [1],
and latter by Long et al. [14] to 160 bps with close to 0% error rate, and 600
bps with around 15% error rate.

In 2018, Miedl and Thiele [20] presented the first construction of a covert
channel based on the processor’s power consumption. Their channel implemen-
tation is completely based on the CPU power consumption. They considered two
platforms for their experiments: a Lenovo notebook with an Intel Core i7 quad-
core processor, and server rack based on an Intel Xeon octa-core. Surprisingly,
for their channel implementation, the power covert channel showed a lower error
rate when running in the notebook than in the server. Using the notebook, the
channel achieved 1000 bps with an error rate of a little less than 15%. Miedl



and Thiele [20] did not consider the RAPL registers for the DRAM power when
building the covert channels.

3 Threat model and experimental setup

3.1 Threat model

Our threat model is very similar to the one considered by Miedl and Thiele [20]
when building covert channels based on RAPL CPU power measurements. The
spy process can read the RAPL power consumption estimates on the PP0 and
DRAM domains. In Linux, the spy can use the powercap module to read the
power consumption provided by the RAPL registers. This does not require any
privileged permission.

The spy runs in two phases. First it records the power consumption in a
certain time interval, and then it analyses the data to decode the message. The
Trojan is a simple, possibly multi-thread, C program that uses simple memory
operations, and does not have access to the RAPL measurements. It does not
explicitly communicate with the spy, neither has access to the Internet.

3.2 Experimental setup

In the following sections, we describe experiments and results which are highly
dependent on the architecture of our experimental environments. We tested the
covert channel in two environments, which are described next.

Notebook setup The notebook considered is an HP Pavilion 14-v064br. This
notebook has 8GB of RAM and an Intel Haswell i5-4210U CPU with base
frequency of 1.70GHz. This CPU has two cores and supports 4 threads. The
sizes of the caches L1, L2, and L3, are, respectively, 32K, 256K, and 3MB.

Desktop setup This environment consists of a 16GB of RAM computer pro-
vided with an Intel Coffee Lake i7-8700 CPU with base frequency of 3.20GHz.
This CPU has two 6 and supports 12 threads. The sizes of the caches L1,
L2, and L3, are, respectively, 32K, 256K, and 12MB.

RAPL offers power measurements on four domains: Package, PP0, PP1, and
DRAM. The Package domain corresponds the CPU package, which contains the
cores, cache, memory controller and possibly processor graphics. PP0 (Power
Plane 0) corresponds to the power consumption of the cores, and PP1 (Power
Plane 1) contains the processor graphics component consumption. Not surpris-
ingly, the DRAM domain measures the DRAM power consumption. The RAPL
registers are updated at a frequency of about 1000Hz [10]. Figure 2 illustrates
the RAPL domains for the notebook setup.

4 Power consumption profiles

In this section, we perform some experiments to get a grasp on how different
processes affect power consumption. For now on, we are interested only in PP0
and DRAM domains.
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Fig. 2. The four domains for which one can measure power consumption using the
RAPL interface on an Intel Haswell i5 4210U, which is our notebook’s CPU.

4.1 Modulating CPU and DRAM power

To analyze the power consumption profile of CPU-bound tasks, we ran a simple
loop computing a trigonometric function with different number of threads. The
result can be seen in the upper part of Figure 3. We can see 4 distinguishable
power consumption profiles (excluding the idle power consumption), correspond-
ing to using 1 to 4 threads. The power consumption using 4 and 5 threads are
somewhat indistinguishable, which is no surprise since our machine only supports
4 hardware hyperthreads.
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Fig. 3. Power consumption profiles of CPU-bound tasks with different number of
threads (top) and of the memset operation when setting different sizes of memory
chunks, with respect to L3 cache’s size, considering the notebook setup.



For the power consumption profile of memory-bound tasks, we measured the
DRAM power consumption when running memset to set different sizes of memory
chunks. We chose to use memset in this work because, among other memory
operations like memcpy and memchr, its impact on the DRAM power consumption
was the easiest to control in our tests. The bottom part of Figure 3 shows our
results. We can clearly see that power consumption and time to complete increase
together with the size of the memory chunk used.

4.2 Benchmarks’ profiles

When evaluating the covert channel with respect to the robustness against
application interference, we consider three benchmarks: MRBench [11], Tera-
sort [22], and LINPACK [6]. The parameters used can be found at https:

//www.ime.usp.br/~tpaiva/.

Figure 4 shows the power consumption of the first 30 seconds of each bench-
mark. We can see that MRBench and Terasort affect power consumption in a
similar way, although MRBench appears to stress the DRAM power slightly
more. LINPACK has a very interesting profile. In the first 5 seconds it uses all
hardware threads consistently, affecting the CPU power, but without affecting
much the DRAM power. After this period, it starts stressing the DRAM power,
and the CPU power also increases by a considerable margin.
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It is important to notice that DRAM power usage appears to imply CPU
power usage, but not the opposite. This makes DRAM power, in theory, less
prone to noise, making it useful for building robust covert channels.

5 Building the covert channels

This section describes the algorithms for building the covert channels based
on power consumption. The algorithms do not depend on whether the channel
is based on the power consumption by the CPU or by the DRAM. We begin
by describing the behavior of the Trojan process, that modulates the power
consumption. Then we discuss how a spy process can decode the message using
the power measurement samples. We finish this section with a brief discussion
on strategies to synchronize the two processes.

5.1 Trojan: modulating power consumption

Suppose we want to encode a binary message M = (m1, . . . ,mn). Let A be the
CPU or DRAM intensive task we want to use to encode the message. Suppose
we want to transmit r bits per second. Let ts be the time when the transmission
is initiated. The algorithm for transmitting the message is given next.

1. Set i← 1.
2. If mi = 1, run the intensive task A, keeping control of the current time tc,

while
tc − ts < i× 1/r. (1)

3. If mi = 0, wait until tc − ts < i× 1/r
4. Do i← i+ 1.
5. Go to step 2 if i ≤ n, otherwise finish.

One of the critical steps in the modulating algorithm is given by Equation 1,
which ensures that the transmission is always synchronized with the time when
the transmission was initiated. This makes the decoding step easier.

Figure 5 shows the transmission of the same 20-bit message using CPU and
DRAM-based Trojans, transmitting at 100 bps. One important observation with
respect to the CPU power modulation shown in Figure 5 is that the processor
needs some time to go from high to low power consumption. This behavior
can be seen in the transmission of the 3rd, 8th, and 16th bits. Therefore when
implementing the covert channel, one can consider to make the CPU-intensive
task stop earlier when going from a 1 to a 0 bit to lower the probability of a
decoding error.

5.2 Spy: demodulating power consumption

Let T = (t1, . . . , tN ), be a sequence of time points where a power measurement
occurs, and P = (p1, . . . , pN ) be the sequence of corresponding observed values.
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Fig. 5. Example of two Trojans, one using CPU-based modulation (top) and the other
using memory-based modulation (bottom), transmitting at 100 bps.

That is, the i-th measurement was made at time ti and the observed power
consumption was pi. Suppose that ts, the time when the message starts being
transmitted, and the number of bits to be transmitted n, are known. In Sec-
tion 5.4, we discuss briefly how ts and n can be obtained by the spy process. As
in the previous section, let r be the known transmission rate, that is, the number
of bits per second that the Trojan process is programmed to transmit. Then the
spy process runs the following algorithm.

1. Set i← 1.
2. Let

Si ←
{
j ∈ {1, . . . , N} :

(i− 1)

r
≤ tj − ts <

i

r

}
,

that is, Si contains the indexes of the time measurements when, ideally,
the power measurements samples correspond to the transmission of the i-th
message bit.

3. Let

Pi ←
1

|Si|
∑
j∈Si

pj ,

that is, Pi is the average of the power measurements that correspond to the
i-th message bit.

4. If Pi ≥ P , where P is some precomputed threshold, then set m̂i ← 1.
5. Else, set m̂i ← 0.



6. Do i← i+ 1.
7. If i ≤ n, go to step 2. If not, return the decoded message M̂ = (m̂1, . . . , m̂n).

It is important to note that this algorithm stays valid even if n is not de-
fined. This could be the case when the Trojan never stops streaming the user’s
private data. Figure 5 can help us visualize the decoding process, considering
ts = 0, r = 100, N = 20, and message M = (11001110111111100000). The
thresholds P shown in the figure depend on the type of Trojan used to encode
the message.

5.3 Computing the threshold P

A simple method for computing the threshold P is to run simulations on the tar-
get system to learn the distributions of the mi’s’ when given Pi’s. If the attacker
does not have access to the target system beforehand to run the simulations,
but he knows that each element of the message is independent and equally dis-
tributed over 0 and 1, he can compute the threshold P as the average of a large
number of Pi’s. If the attacker does not have access to the target system, nor
does the message bits are independent and equally distributed, the Trojan and
spy can use a protocol which starts by sending an encoding of a known message
so that the spy can learn the threshold P specific for the target system.

5.4 Synchronizing the Trojan and the spy processes

It is important, for the decoding algorithm to work correctly, that the spy knows
at what time the message starts being transmitted, denoted as ts. If the Trojan
and the spy share a clock, the instant ts can be hardcoded in them. But in a
more interesting setting, where, for example, the Trojan and spy are running in
different Virtual Machines, the assumption of a shared clock is strong.

Let Msync be a binary message of length nsync hardcoded in both Trojan and
spy. The Trojan and the spy can use the following protocol for synchronization.

Trojan:
1. To transmit a message M , the Trojan simply transmits (Msync,M) using

the encoding algorithm from Section 5.1.
Spy:

1. Read the power consumption registers continually at sample rate T .
2. For each time sample t, try to decode the first nsync bits using ts = t,

and compare the result with Msync, which is known a priori.
3. If the number of errors is above some threshold (e.g. 15%), discard t and

try the next time sample.
4. Else, use ts = t to decode (Msync,M) and obtain the message M.

To lower the error rates, when the spy finds a good value in step 4, it can
try time samples close to t to find the one which gives the lower error rate with
respect to Msync. We call this variant the maximum likelihood syncing, and it
is the one used in the experiments in Section 6.



It is also important, for finite n, for the spy to know the message length n.
The simplest solution is to allow only messages of a fixed length, but it may
be too restrictive. One solution is to use the first dlog nmaxe bits to represent
the length of the message that will be transmitted, where nmax is the maximum
message length allowed.

6 Evaluation of the covert channels

We now evaluate the performance of our covert channels with respect to the
transmission rate and robustness against application interference.

6.1 Bit error rate

In Section 4, we show that it is possible to distinguish between power consump-
tion profiles of the memset when the size of the memory chunks use are sufficiently
different. But, to implement a binary channel, we only need to distinguish be-
tween two DRAM power consumption states: doing nothing and memset some
sufficiently large memory chunk. The size of this memory chunk must be small
enough to enable high rate communication, but also large enough to be distin-
guishable from the baseline DRAM power consumption.

To find good sizes for the memory chunk, we ran Trojans simulations using
memory chunks of different sizes considering the notebook and desktop setups.
For the notebook, we considered 2, 5, and 10 times its L3 size. For the desktop,
we considered two sequential memset operations on memory chunks of sizes 0.8,
1, and 1.5 times its L3 cache size.

The simulations consisted in a Trojan process transmitting 10 different 1000
bits random messages at increasing rates. The spy used the first 100 bits for syn-
chronization using the maximum likelihood algorithm discussed in Section 5.4.,
and then decoded the remaining bits. The decoding threshold P is dynamically
computed as the average of the power samples.3 The first column of Figure 6
(Baseline) shows the results of our experiments.

We can see that the larger memory chunks are useful when the transmission
rate is lower, because it makes it easier to distinguish between 0’s and 1’s. How-
ever, for higher transmission rates, larger sizes do not work very well because
operations on them are slow, which cause synchronization problems.

This simple channel implementation is capable of achieving high transmis-
sion rates, without big differences between the two setups. For example, it can
transmit at 400 bps with almost 0% error rate, and at 600 bps with less than
10% error rate.

3 Notice that this works because the binary messages are random, thus we expected
them to have a similar number of 0’s and 1’s.
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Fig. 6. Error rates for DRAM-based Trojans transmitting at increasing rates when the
underlying system is under different workloads. L3D and L3N denote the L3 cache sizes
of the desktop and notebook platforms, respectively.

6.2 Robustness of the channels

To assess the robustness of the covert channels with respect to application inter-
ference, we considered the channels’ performance under 3 different workloads:
MRBench [11], Terasort [22], and LINPACK [6]. For each workload, we tested the
DRAM-based Trojans using the parameters considered in the previous section.



The results are shown in the corresponding columns of Figure 6. Under the
desktop setup, the channel tolerates MRBench and Terasort with around 15%
error rate at 300 bps, but LINPACK makes the channel very unreliable. With
respect to the notebook setup, the DRAM-based Trojan appears to be fairly ro-
bust, achieving 500 bps at error rates close to 10% under MRBench and Terasort,
and 300 bps under the LINPACK workload with less than 15% error.

It is interesting to see that LINPACK is the one to affect the channel the
most, which is not surprising given its power consumption profile presented in
Section 4.2.

7 Achieving higher transmission rates

7.1 Using better decoding algorithms

Since the maximum RAPL sample rate is currently fixed at T = 1000 samples per
second, the number of samples per transmission gets lower as the transmission
rate increases. Therefore, to achieve higher transmission rates, we have to extract
as much information as we can from the samples. Unfortunately, using only the
mean of the samples for each transmitted bit gives us too little information,
which prevented us from reliably achieving transmission rates higher than 600
bits in the previous section.

One alternative to the simple decoder we have been using until now is to
use clustering algorithms such as Support Vector Machines or Random Forests.
We propose to use the whole set of samples corresponding to the transmission
of each bit as features. More formally, let σ be a small integer, T be the RAPL
sample rate, r be the Trojan’s transmission rate, and ci be the center of the time
interval dedicated to the transmission of the i-th message bit. Then to decode the
i-th message bit, the spy uses the σ power samples taken at time points which
are the closest to ci. In our experiments, we observed that σ = max(dT/re, 4) is
a good choice. With this setup, since we always feed at least 4 power samples to
the classifier, it can perform much better at rates such as 1000 bits per second,
where using dT/re would yield only 1 power sample.

The first row of Figure 7 (1 bit per symbol)4 shows the error rates for the
transmission of binary messages using DRAM based Trojans, under different
workloads, when the spy uses the Random Forests classifier. Again, in our ex-
periment, we ran 10 independent transmissions of a message of 1000 bits for each
transmission rate and workload. To train the classifier, we used an initial mes-
sage of 5000 bits with the correct labels. We consider that the synchronization
step is already done, that is, the value of ts is known a priori.

We can see that by using Random Forests we can achieve much higher trans-
mission rates. Under both setups, the Trojan achieved 800 bps with error rates
lower than 10%. When running on the notebook, the Trojan even achieved 1000
bps with around 10% error rate. Again, the channel is more robust when run-
ning in the notebook platform, where it is able to transmit at 600 bps under

4 That is, the binary case.
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Fig. 7. Error rates for different transmission rates and workloads when transmitting 2,
3, and 4 bits at a time using DRAM-based Trojans combined with CPU-based power
consumption states.

MRBench and Terasort with 10% error rate. This makes the Random Forests
decoder a better choice than our previous decoding algorithm, at the expense of
a more complex spy process, and the need of a possibly large initial predefined
message to train the classifier.



7.2 Encoding multiple bits

In this section we investigate the possibility of transmitting non-binary symbols
per power modulation. Our main observation is that, from DRAM power con-
sumption samples, it is possible to distinguish, although with some error, the
size of the memory chunk set by memset.

Figure 8 illustrates four memory power consumption states representing sym-
bols a, b, c, and d. Under the notebook setup, these symbols correspond to the
memset operation on memory chunks of size 0, 1.5, 3, and 6 times the platform’s
L3 size, respectively. Similarly, under the desktop setup, they correspond to two
sequential memset operations using 0, 0.8, 1.2, and 1.4 times the corresponding
L3 size. Notice that, if we want to transmit at high rates, we cannot use memset

over too large chunks of memory because the operation cannot take more time
than the inverse of the transmission rate, otherwise we get synchronization prob-
lems.
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Fig. 8. Power consumption states representing 4 different symbols (2 bits), considering
a random message of 1000 symbols transmitted at 200 symbols per second.

Recall Figure 3, where we can see distinct power consumption profiles cor-
responding to different operations. One straightforward algorithm to encode 4
bits at once, that is, 4 bits per symbol, when modulating one symbol message
is to use 4 threads: 1 thread is responsible for modulating the DRAM power
consumption, and the other 3 modulate only the PP0 power consumption. The
behavior of the encoding algorithm is shown in Table 1. For example, to transmit
the bits 1010, one thread does a memset operation on a memory chunk 3 times



the size of L3 cache, and 2 threads perform a CPU-bound task for a predefined
time interval. Notice that in a system with more cores, we expect the number of
symbols we can distinguish to be larger, since it has more power consumption
states.

Table 1. Encoding 4 bits per transmitted symbol combining CPU and DRAM power
consumption states under the notebook setup. For the desktop, we used 0.8, 1.2, and
1.4 times L3, correspondingly.

DRAM power states

Do nothing
memset

1.5L3

memset

3L3

memset

6L3

CPU

power

states

Do nothing 0000 0001 0010 0011

1 thread 0100 0101 0110 0111

2 threads 1000 1001 1010 1011

3 threads 1100 1101 1110 1111

Figure 7 shows the error rates observed for the DRAM modulation combined
with the CPU modulation for different workloads. Notice that for 2 bits per
symbol, there is no need for a CPU power modulation thread, since there are 4
distinguishable memory power consumption states. We can see that, under the
desktop setup, it was possible to transmit at 2400 bps using 4 bits per symbol
at error rates close to 15%. Furthermore, under both setups, it is possible to
transmit at 1800 bits per second with error rates around 10%.

It is important to note that the robustness of the channel is better when
using 1 and 2 bits per symbol, since there is no need for CPU-power modulation
threads, which are less robust with respect to application interference. For more
than 2 bits per symbol, the robustness of the channel under both setups is very
similar.

8 Discussion

Using the DRAM power modulation alone enables us to build a covert channel
implementation with the following very desirable properties.

1. It can can transmit at high rates with low error rates, as defined by TC-
SEC [23].

2. It uses simple algorithms for encoding and decoding.
3. It is robust against application interference.

One important feature of DRAM power is that, by manipulating memory
chunks of different sizes, we get different power consumption profiles. This can



yield a potentially large number of distinguishable states. Further study using
other classifiers can help us estimate the number of useful states.

Combining the DRAM and CPU power states, we achieved the throughput
of 1800 bps with 10% error, and 2400 with 15% error under the notebook and
desktop setups, respectively. This significantly improves upon Miedl and Thiele’s
results [20], in which only CPU power modulation is considered, as shown in
Table 2.

Table 2. Comparison between our covert channel and the one by Miedl and Thiele [20].

Miedl and Thiele [20] Our work

Processor Transfer rate Error rate Processor Transfer rate Error rate

Intel Xeon

E5-2690

(octa-core)

200 bps ≈15%

Intel Core

i7-8700

(hexa-core)

2400 bps ≈15%

Intel Core

i7-4710MQ

(quad-core)

1000 bps ≈15%

Intel Core

i5-4210U

(dual-core)

1800 bps ≈10%

It is important to emphasize that both our platforms have lower numbers of
cores than the corresponding ones used by Miedl and Thiele’s. It is reasonable
to expect the throughput to be even higher in a machine with more cores, since
it has more power states. However our results suggest that in a system with
more cores, the covert channel robustness against application interference is
significantly compromised, in particular under workloads similar to LINPACK.

Our implementation also improves upon Miedl and Thiele’s work with re-
spect to the robustness against application interference, mainly because the way
memset with large memory chunks affects the DRAM power profile appears to
be very different than other common applications. Furthermore, understanding
which benchmarks affect the quality of this covert channel can shed some light
on countermeasures against side-channel attacks.

The data and source code are publicly available at https://www.ime.usp.

br/~tpaiva/.

9 Conclusion and future work

In this paper, we introduce a new method for building covert channels which uses
the DRAM power consumption estimates given by the processor’s internal power
measuring registers. We evaluate in detail the performance of the covert chan-
nel with respect to throughput, error rate, and robustness against application
interference.

https://www.ime.usp.br/~tpaiva/
https://www.ime.usp.br/~tpaiva/


We show how to combine DRAM and CPU power consumption states to
achieve higher transmission rates. Using this method, our channel implementa-
tion improves upon similar proposals, with respect to bandwidth and robustness
against application interference. Using more complex encoding and decoding
techniques, higher transmission rates with lower error rates may be achieved.

A simple countermeasure to these covert channels is to prohibit applications
from reading the power consumption, but this may be to restrictive. Another
possible solution would be to allow applications to read the consumption only
at low rates. However, further research is needed to find which sampling rates
are secure but also give useful information to applications.

For future work, it is interesting to derive a capacity bound for the DRAM-
based covert channel as Miedl and Thiele [20] consider for the CPU-based one.
It would also be interesting to consider error correction codes to lower the error
rates. Another possible extension of this work would be to compare the band-
width and error rates of the channel when running in different environments.
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