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Abstract

Let (1 denote the cylinder R X B, where B is a compact Riemannian manifold,
Ag its Laplacian and H the Hilbert space L2(2). We define Cp as the C*-subalgebra of
L(H) generated by: (¢) multiplications by the smooth functions on B, by the 27-periodic
continuous functions on R and by the continuous functions on [—oo, +o0]; (i2) A := (1 -
Nq)~V2; (ddi) %A, t € R; and (iv) DA, where D is any first order differential operator with
smooth coefficients on B.

The commutator ideal £p of Cp is proven here to be *-isomorphic to SLYK; ®Kp,
where SL denotes the algebra of singular integral operators on the circle and Kz and Kg
denote the setsof compact operators on L%(Z) and L?(B), respectively. This allows us to
define on Cp an operator-valued symbol, the y-symbol, such that kery N kero = K(H).
Here o denotes the complex-valued symbol on Cp that arises from the Gelfand map of the
commutative C*-algebra Cp/Ep. We prove that A € Cp is Fredholm if and only if v, and
o 4 are invertible.

We first consider the simpler case 8 = R. A unitary map W from L%(R) onto
L%(S1)®L?(Z) is defined such that the conjugate WEW =1 of the commutator ideal equals
SL®Kz. In the case of @ = R X B, we conjugate the commutator ideal with W ® Iy, where
Iy denotes the identity operator on L?(B), and obtain SCRKzQKp.

These results can be applied to differential operators on the line and on the cylin-
der. We then prove that an operator with coefficients in the algebra generated by the
functions of type () above is Fredholm if and only if it is uniformly elliptic and a certain
family of differential operators on $! X B is invertible. For the case of first order systems on

the line, an index formula is given, involving the eigenvalues of two operators on the circle.
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Introduction

Let © denote a Riemannian manifold and Ag its Laplacian. C*-algebras of
bounded operators on L?() generated by multiplication-operators and operators of the
type D(1— AQ)_l/ 2, where D denotes a first order differential expression, are called “Com-
parison Algebras”[2]. In this dissertation we are mainly concerned in finding necessary and
sufficient conditions for operators in certain Comparison Algebras to be Fredholm.

The multiplication-generators of the Comparison Algebra on R studied in Chap-
ter 1 are the semi-periodic functions, i. e. , functions in the algebra generated by the 27-
periodic continuous functions and the continuous functions on [—00,+00]. Any Mth-order
linear ordinary differential operator L with semi-periodic coefficients is within reach of this
algebra,i.e., L(1— A“)‘M/2 belongs to it. It is a simple matter to consider systems instead

of equations and, thus, we find that
L: AM(R,cN) — L2(R,cM)

is Fredholm if and only if L is uniformly elliptic and a certain family of differential operators
on 8! are invertible (Theorem 1.16). By HM above, we denote the Mth Sobolev space. For
the case of first-order systems, an explicit index-formula is given (Theorem 1.18). The first
three sections of the Chapter 1 are essentially the content of [9] .

Cordes [3] studied a Comparison Algebra on a “polycylinder” Q = R™ x B, where
B is compact. In the case n = 1, the multiplication-generators are continuous on the
compactification [-o00,+00] x B of . In Chapter 2 , we add the 27-periodic functions to
this algebra and, using results of Chapter 1, extend his result for n = 1.

For the well-known example of Gohberg [14], the Fredholm property and the Fred-
holm index of an operator A are governed by its symbol o, a complex-valued function

over a compact space. The operator A is Fredholm if and only if its “o-symbol” never

vanishes. In Gohberg’s case, as well for a variety of other examples (c. f. [5] [16] [24] [7]),




the commutators of the algebra under consideration are compact. By the Gelfand-Naimark
Theorem, one needs only to find a good description of the maximal ideal space of the quo-
tient of the algebra by the compact ideal. The o-symbol is then defined as the composition
of the Gelfand map with the canonical projection, and a Fredholm criterion follows from
Atkinson’s Theorem. (See [11], for example.)

Cases of non-compact commutators have been studied by Cordes [4] [3] [8], Erkip
[13] , Duducava [12] and Power [20] . In our case, as in [4] , [3] and [8], the algebra A has
a two-link ideal chain

ADEDK.

Here £ denotes the commutator ideal (the smallest closed ideal of A containing all its
commutators), and K denotes the ideal of compact operators on the Hilbert space H under
consideration. The quotient A/€ is a commutative C*-algebra and a o-symbol can again
be defined as the composition of the Gelfand map with the canonical projection A — A/E.
Invertibility of o 4, A € A, is then a necessary condition for A to be Fredholm. The second
quotient £/K, even though non-commutative, is isomorphic to an algebra of continuous
functions on a compact space E taking values in the compact operators of another Hilbert
space h. In [3], [8] and in our examples here, this isomorphism can be extended to a
homomorphism of the whole algebra into the continuous functions on E, taking values in a
Comparison Algebra of h. This homomorphism is called the “y-symbol”. The two symbols

are not independent. In fact, we have
kere Nkery = K .

An operator A € A is Fredholm if and only if 0 4, and v, are invertible.

The results of Chapter 2 can be extended in a standard way to non-compact
manifolds with cylindrical ends (c. f. 2], VIII-3,4). Fredholm properties of elliptic operators
on such manifolds have been studied, for example, by Lockhart-McOwen [17] and Melrose-
Mendoza [19] . Differential operators on a cylinder with periodic coefficients have been
considered by Taubes [26] .

Our Fredholm result for operators in the algebra considered in Chapter 1 (The-
orem 1.14) could also be obtained as a consequence of a result previously announced by

Rabinovi¢ ([21] , Theorem 4). There he also gives a formula that makes it possible to

calculate the index of those operators.




ﬁ——————-—-——j:

Let H denote the Hilbert transform on L?(R). The results presented in [15] give,

in particular, a criterion for operators of the type
A=a—1iH

to be Fredholm, where a and b are continuous and periodic. (See also [23] for a generaliza-
tion.) This criterion says that A is Fredholm if and only if a + b and a — b never vanish and
the winding number with respect to the origin of Z—f_ﬂg- equals zero. There is some similarity

, between this result and what we get for the operator

| B=a+bS, S= _ii(l - ﬁ)—m

’ dt dt? ’
with a and b 27-periodic and continuous. Theorem 1.14 and Remark 1.15 imply that a 4 bS5
i is Fredholm if and only if @ + b and a — b never vanish and I'4 is invertible. Here I'4 is

a function taking values in the singular integral operators on §!. The requirement that

T4 be Fredholm and of index zero at every point is equivalent to (a + b)(a — b) # 0 and

winding #(Z—f—g) = 0, what gives a necessary condition for B to be Fredholm.




Notation

The inner-products of our Hilbert spaces are linear in the second argument and
denoted by (-, -).

Some of the symbols in the following list are not defined in the main text. Others
are, and have been inserted here for the reader’s convenience. All “functions” below are

complex-valued functions.
o 5(t) = t(1+ 12)"1/2
o S! := the unit circle in C
e C(X):= {continuous functions on X}
e C®(X):= {smooth functions on X}
¢ C(X):= {smooth functions on X with compact support}
e CB(X) := {continuous bounded complex-valued functions on X'}
e CO(X):= {functions in CB(X) vanishing at infinity}
e CS(R) := {continuous complex functions on R with limits at + oo and — oo}
o CS(Z) := {sequences indexed by Z with limits at + oo and — oo}
o Py, = {Zw-perioaic continuous functions on R}
o A! denotes the algebra generated by CS(R) and Py,.
e @, for a € Al : See equation 1.25 on page 16.

F denotes the Fourier transform on R: Fu(t) = (27)~1/2 [ e~imtu(t) dt.




b(D): See page 6.

T}, for j € Z: See page 6

F4 denotes the discrete Fourier transform. (See equation 1.5 on page 8.)
b(Dg), for b € CS(Z) : See page 8.

Y,, for ¢ € R : See equation 1.6 on page 8.

W : See equation 1.7 on page 8.

SL: See page 8

Mgy: See page 17

M 4: See page 16

W 4: See page 20

Mp: See page 42

Wp: See page 44

® ,&®: See Appendix.

L(E) := {bounded operators on the Banach space E}
K(E) := {compact operators on E}

Lx :=L(L*(X))

Kx := K(L?*( X))

Ix denotes the identity operator on L?(X).
CB(X,Ly), CB(X,Ky), CO(X,Ly), CO(X,Ky) : See Appendix.
A, B, for k =1,...,6: See page 36.

A: See page 35, A: See page 36 .

Ag: See page 25, Agi: See page 28, A, : See page 54 .




Chapter 1

A Comparison Algebra on the line

with semi-periodic multiplications

1.1 Definition of the algebra .4 and a description of its com-

mutator ideal

Let A denote the subalgebra of Lg := L£(L?(R)) obtained as the closure of the
algebra generated by:

(¢) multiplications by functions in CS(R),

(i4) multiplications by e*/t, j € Z, and

(#ii) operators of the form b(D) := F~1b(r)F, b € CS(R).

In order to give a description of € 4, the commutator ideal of A, we consider the
conjugate algebra A := F~1AF. The generators of A that correspond to (), (i) and (%)
are respectively given by:

(1) operators of the form a(D), a € CS(R),

(%) translation operators T, (T;u)(T) := u(r + j), and

(%) multiplications by functions in CS(R).

It is obvious that the commutator [b(D),T;] equals zero and it is well known that
[a(D),b(r)] € Kg , for a, b€ CS(R) (1.1)

(c. f.[4] , Chapter III, for example). It is also clear that

[Tj,a(r)] = (a(t+ j) — a(7))Tj, for a € CS(R) and j€Z. (1.2)




Note that this last commutator is not compact for j # 0 and nonconstant a.

Denoting by £ 4 the commutator ideal of A, it is obvious that Eq= F-1E4F.

Proposition 1.1 The commutator ideal € 4 of the conjugate algebra A coincides with the
closure of
) N
a0 =1 z bj(D)a;(t)T;+ K; N €N, bj € CS(R), a; € CO(R), K € Kg} . (1.3)
j=—N

Proof: The algebra A is a “comparison algebra”, as defined in [2] . Indeed, A is generated

by
s(D) = ;5(1 - 75)

and by operators of type (7) and (4i). By Lemma V.1.1 of [2] , we conclude that the compact

ideal Kg is contained in the commutator ideal of A, hence:
K C €4 . (1.4)

Because of (1.2), it is clear that all operators of the form b(D)V ja(7)T; are in £y4, for
b€ CS(R), j € Z and Vja(r) := a(7 + j) — a(r), a € CO(R). By the Stone-Weierstrass
Theorem, the algebra generated by all such Va is dense in CO(R), hence f:‘A,o C Eq

On the other hand, using (1.1), (1.2) and (1.4), we see that £, ¢ is a subalgebra
of A that contains the commutators of all operators of types (1), (%) and (#1) and that,
furthermore, & 4,0 1s invariant under left or right multiplication by those operators. Taking
limits, it follows that the closure of & 4,0 is a two-sided ideal of A containing all its commu-

tators. Hence, £4 is contained in the closure of f:'A,o. g.e.d.

In the rest of this section, we define a unitary map
W : L*(R) — L%(s!; LY(2))

and find a useful description for WE W —1.
Given u € L%(R), denote:

u®(p) = (ulp — 5))jez

for each ¢ € R. The sequence u®(¢) belongs to L?(Z) for almost every ¢, by Fubini’s
Theorem, since L2(R) can be identified with L2([0,1) x Z). Let

Fq:L*(S',df) - L%(Z), §'={e"’0€R},
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denote the discrete Fourier transform:
1 2r —iio .
(Fau); = E/O u(f)e™™%dl , jeZ. (1.5)
For each ¢ € R, define
Y, := Fge "OF;1 . (1.6)

The operators Y, define a smooth function on R, taking values in the unitary operators
on L*(Z) and satisfying (Yiu); = ujtx, for k € Z and u € L*(Z), and Y,Y, = ¥,,,, for
p,w € R.

We now define the unitary map (w1th Sl {62""P pE R})

W L*R) — L2(S!,dy; L%(2)) (1.7)
{?‘ u  — (Wu)(p) = Y,u(e) .
-
wl ) = Let CS(Z) denote the set of sequences b(j), j € Z, with limits as j — +o0o and
5 \ J — —oo and let b(Dg) denote Fy 1b(M )Fd, where b(JM ) denotes the operator multiplication
f by b on L%(Z). We then denote by SL the C*-subalgebra of L¢ generated by b(Dg),
S b € CS(Z), and by the multiplications by smooth functions on $!. It is easy to check that,
b with Agq := (1 - Ag )72 (Ag = d?/d6? is essentially self-adjoint on C*($1)),

¥ s 1d : 9y~
B d0A51 s(Ds) , s(4) -“}ﬁ+ JEE .

Since the polynomials in s are dense in CS(Z), S£ coincides with the C*-subalgebra of £
generated by —ia%Asl and C°°(8?). In other words, SC is the unique comparison algebra
over 8! . It therefore contains K and all its commutators are compact. (c. f. [2], Chapters

V and VI)
Theorem 1.2 With the above notation, we have:
WEAW ™! = SLBK, . (1.8)
Furthermore, for b € CS(R), a € CO(R) and j € Z, we have :
A%(e2™¥) 1= Y a(p — M)Y_, € C(S',Kz)

and

W (b(D)aT;)W ™ = b(Dg)Y,a(w — M)Y—p_; + K, K € Kgixz - (1.9)
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Proof Let us first consider the subalgebra F C €4 defined as the closure of
N
Fo:={> a;Tj+K; Ne€N, K € Ka, a; € CO(R)} .
j=—N
Noting that, for j € Z and ¢ € R,
(Yoa(e — M)Y_;Y_,)(You(9)) =Y, (alp — k) u(p — k + 5))kez »

we conclude that

WaT,W™! = Yya(p— M)Y_,_;, (1.10)

for j € Z and a € CO(R). Using that
lim a(p—k)=0, forall p€eR,
k—zoo
and that
Yiernalp+1 - M)Y_(p41)-j = YoYia(p+ 1 - MY Y o j = Yoa(e — M)Y_p; ,

it follows that the right-hand side of (1.10) is a continuous compact-operator-valued function
on §! = {e?™¥; o € R} :

Yea(p — M)Y_,_; € C(S',Kz) .

Since the imbedding
C(8',K2) C Leixz

is an isometry (by Proposition A.3) and
C(s',Kz) = C(sH)®Kz (1.11)
(by Proposition A.4) , we get :
: WFW=1 C C(sH)®Kz . (1.12)
We postpone the proof of the following lemma.

Lemma 1.3 Inclusion (1.12) is in fact an equality.
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We now need to describe what Wb(D)GW ~! is, for b € CS(R) and G € F. Let
us consider the special case b = s, s(t) = #(1 + 2)71/2. It is well-known that the inverse

Fourier transform of s is given by

(F5)(r) = iy 2x(r) pv. 2 + (),

where 1 is continuous and integrable, x € CZ(R) is even , equals 1 in a neighborhood of
7 = 0 and has support contained in [—%, %], and p.v. denotes principal value. (See, for

example, [18], [6], or apply [4], Theorem IL5.2.) Thus, we get, with w = F1),

(s(D)u)(t) = :r;lime\o /;<|t—ZI<L -%%u(f) dt + (w(D)u)(t), (1.13)

where w € CO(R) and the limit in the right-hand side exists for every ¢t € R and u € CP(R).
Let us denote by S the bounded operator on L?(R) given by

(Su)(t) = limeo /e<|t—2|<1- X(tt__;t)“({) df, ue CP(R) . (1.14)

We will see next that, up to some integral operator with a smooth kernel, the conjugate of

S with respect to W is the Hilbert transform on the circle.

Lemma 1.4 Given u € CP(R) and defining v := Wu, we have, for every ¢ € R,

(W Su)(e*™¥) = ]_imc\o/ meot (o — @) v(e?™?) d@
e<le-pI<k

+ /';’_élsé_A(go— @) v(e2™?)dp . (1.15)

Here, A(-) is a 1-periodic function in C®(R,Lyz), the integrals are to be understood as

Riemann integrals in L*(Z), and the limit ezists in L2(Z)-norm for every ¢ € R.

Proof: It is obvious that v € C°(S!; L%(Z)). In order to simplify notation, let us write
w(p) when we mean w(e?™¢), w € C*(S'; L?(Z)). The function defined by

wo() = A=A pa

and w,(¢) = —v'(p) is continuous. Since

/ ) Xe=¢) v(p)dg =10,
e<le—o|<
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for all € > 0, we then have

- x(y = @) i o
lim, / —= (@) dp = / x(p — @) w (@) dp . 1.16
e e<le-¢l<y P— @ 2 lo-ol< % ( ) we($) (1.16)

It follows from the definition of Y, in (1.6) that the derivative of Y, at ¢ = 0 is
the identity operator of L%(Z) and , hence,

x(o) 11
DY, = @)=+ 40N, oel-23,
where A; is a smooth L?(Z)-valued function. Since
11
a(o) := X( o) _ TcotTo € C"°([—2 2])
is 1-periodic and the limit in (1.16) exists, we obtain :
: x(p = @) —n
lim, / ——Y,_sv(p)dp = 1.17
N Jeslo-gicy @ @ () (1.17)
. ® ~ - N
hmt\o] i X((P )v( p)dp + / x(p — @) Ai(p — @) v(P) dp
e<lo-gl<k FI<}
lim{\g-/ T cot 7r(cp —@)v(p)dp — / Al —@)v(p)de ,
e<le-@l<s le-@I< %

where
A() = —x() A1(1) = a() .

We have obtained, in particular, the existence of the limit on the last line of (1.17).

It is only left to be shown that the equality in (1.15) holds. Let us recall that, for
u € L*(Z) and ¢ € R, u*(¢p) denotes the vector (u(p—j))jez € L*(Z) and Wu(p) = Y, u’(p).
We then have, after a simple change of integration variable,

(Su)°(p) = (lime\.o / ) )] u(@ - J) d@)
<le-¢l<t P— @ jez

Since, for a fixed p and | p— @ |< L, u(@ — j) # 0 only for j in a finite set, this limit exists
also in L%(Z),1i. e. ,

: XP—=@) oan o
Su)® = lim, / (@) d
(5u)*(w) N sl Ep_w_) (@) do
. x(p—@ o
= lim, / ———=Y_;v(p)dp .
N\O <lo-dl<k P— @ ¢ v( )

This finally implies that

(WSu)()

: x(p — @) e
Y, lim, / LY sv(@)dp
R I R A (@)

. x(p — P) o\ gn
= lim, / =¥, s 0(p)dp,
Mclo-oisy w-@ ° @
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what proves the lemma. q.e.d.

At this point, we are able to calculate Wb(D)aT ;W1 for b € CS(R), a € CO(R)
and j € Z. We can write :

b= b(4+00) — b(—00) = b(4+00) + b(—o0)

b , i
> > + (1.18)
with b, € CO(R). Defining
b, = b(+00) — b(—00) and by = b(+00) 4 b(—00) ,
2 2
we then have :
Wb(D)aT,W™! = b,Ws(D)aT; W= + byWaT;W=1 + Who(D)aT;W 1 (1.19)

= (%b,WSW‘l + b)) WaT;W~! + Wbo(D) +\GED)]GTJ'W"1
= (ZbH® + by) (Yya(o = M)Yopoj) + K .

with K € L1 45. Here, H° denotes the bounded operator on L%(S!; L2(Z)) given by

(Bou)() = lmevo [ weotn(p=§)o(@)dp, ve Cx(SLy).
eLle-p|<E

For the second equality in (1.19) we needed (1.13) and (1.14), and for the last equality
we used (1.10), (1.15) and two facts: the operator a(D)b is compact for a € CO(R) and
b € CO(R), and the mapping

u € C(8%; IX(Z)) — /w—¢l<1— B - ) u(¢) d

defines a compact operator on L2(S!; L%(Z)) if B is a smooth 1-periodic Xz-valued function.

Taking limits in (1.19), we get, for every G € F,
W(BD)GW! = (%baH°+ B)WEGW '+ K, K€ Kgyg . (1.20)
It is straightforward to verify that

lime\o/ __ meotm(p— @)v(@)dp = [—isgn(Dg)v](go)‘,nr
e<lp-¢I<3

for v € C°(8t), with sgn(j) = rgT for j # 0 and sgn(0) = 0. That means that we have

H® = z—,sgn(Dg)@)Iz ,
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where I; denotes the identity operator on L?(Z). Ommiting “®I;” from our notation, we
get .
%baHO +by ="b,5gn(Dg) + by = b(Dg) + b°(Ds) ,
with b°(7) := bssgn(j) + b1 — b(j), :nd b(Dg) meaning b|z(Ds).
Since b°(Dg) € Kg1, WGW ! € C(8!)®Kz and K147 = K ®Kz, we obtain from
equation (1.20):

WH(D)GW™1 = b(Dg) WGW ™) + K, K € Kgixz - (1.21)

This proves (1.9) and the inclusion “C” in (1.8), by (1.10). Given any G° €
C($') ® Kz, we can find, by Lemma 1.3 , some G € F such that WGW ! = G° and, by
(1.21) then:

b(Dg)G® € WELW™! forall be CS(R) and G°e C(SH®Kz .

Since all commutators of S£ are compact and Kg,z C SL, this proves the equality in
(1.8). q.e.d.

Proof of Lemma 1.3 : The C*-algebra C($!)®Kz is postliminal (c. f. [10] ,
11.1.8.) and we can then apply the Stone-Weierstrass Theorem for such algebras (c. f.
[10] , 10.4.5.). It says that a C*-subalgebra B of a postliminal C*-algebra Cequals the
whole algebra if the “pure states” of C are separated by B. The pure states of C(S!,Kz) =
C(S')®Kz are the linear functionals of the form

fen(A%) = (v,4%(2)v), A° € C(s},Kz), (1.22)

for fixed z € §' and unit-norm v € L%(Z) (c. . [10], 2.5.2 and 4.1.4, and [25] , Theorem
IV.4.14 ). Accordingly, it is enough to show that, given two functionals of the form (1.22),
fo o0 # fezve, We can find A° € WFW ™1 such that f, o, (4°) # fzy,0,(4°).

We need the two following properties of WFW ~1:

(i) For each fixed e2™% € 8!, {WGW1(¢); G € F} = Kz. Indeed, it is easy to
find @ € CO(R) and j € Z such that Y_, [WaT;W~1](¢) Y, equals the operator (ey,-)ei,
given a pair of indices k,l € Z and {ex; k € Z} denoting the canonical basis of L%(Z). The

algebra generated by all operators (e, -)e; is dense in Kz, what means that the map

F — Kz
A — Y_ WAW-1(p)Y,
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has dense image and, hence, is onto. (Here we used that a *-homomorphism between
C*-algebras has closed image.) Since Y,, is unitary, our claim (1) follows.

() If be C(S') and 4 € WFW !, we have bA € WFW 1, Indeed, it is easy to
verify that, for A of the form A = aT;, j € Z, we have:

Wb(e*™Na( )T W™ = bWAW ™!,

By definition of F, our claim is true for all A € F.

In order to prove the separation property, suppose first that z; # 2z for given
fa,m # fry0o- By (3) we can find A° € WFW 1 such that (v1, A%(21)v1) # 0. Let b denote
a continuous function on §! such that b(z1) = 1 and b(z3) = 0. We then have, by (4), that
bA° € WFW—! and

far 0 (bA®) = (v1,b(21)A%(z1)v1) # 0,

while
fzz.vz(bAo) = (”2: b(22)A°(22)02) =0.

Next suppose that f,, o, # fz,v, . Since vy and v, both have unit norm, it must

then be true that | (v1,v;) | # 1. We therefore must have, for 4° € WFW-1 such that
AO(ZO) = (vla ')’01 )

Fro, (A%) = (01, A%(20)v1) = 1 #| (01, v2) |= (2, A%(20)02) = f2,0,(4°)
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1.2 Definition of two symbols on A

Let us first find the maximal ideal space My of the commutative C*-algebra .A!
generated by operators of types (1) and (#) on page 6 . As for all C*-subalgebras of CB(R),
one gets R C My, with ¢ € R being identified with the multiplicative linear functional
wi(f) = f(t), f € Al It is easy to see that, for 8 € R, the limits

Jim f(0+2rk) = fF

exist for every f € Al and that f;“”j = f;, for j € Z. To each point ¥ € §!, we can
therefore associate the multiplicative linear functionals w, (f) = f; , so that we get two

disjoint copies of §', that are denoted by $ and S, contained in Mj,.

Proposition 1.5 The functionals w; and W, 4, 1,0 € R, defined above are all the multi-

plicative linear functionals on At i. e. ,

My;=RUSL US, . (1.23)
Moreover, R is dense in M endowed with its weak*-topology.

Proof: Suppose that w is a multiplicative linear functional on A" and let s € CS(R) denote
the function s(t) = ¢(1 4 #2)71/2, As —1 < s < 1, it follows that —1 < w(s) < 1. We will
prove that, if |w(s)|< 1,w = w,, where a € R solves s(a) = w(s). Indeed, as the polynomials
in s are dense in CS(R), w and w, coincide on CS(R). Furthermore, if x € CO(R) satisfies
x(a) = 1, we get xe'() € CS(R) and then

e = w(xe') = w(x)w(eV)) = w(e®)

which proves that w and w, coincide on a set of generators of A!. For the case w(s) = £1,
let 6 solve w(ei()) = 9. We can easily see that w(s) = w, 4 (5) and w(eil)) = w, , (e0)).

Hence: w = w, ,, what proves (1.23).

0,+°?
We may obtain a neighborhood basis at each point of $1 and verify that R is dense
in M. q.e.d.
Let A% denote the algebra (finitely) generated by CS(R), and let P,, denote
the 27-periodic continuous functions. Let us fix x+ € CS(R) such that x+(+oo) = 1,

X+ +x-=1 and‘xi(t) = 0if F¢ > 1. It is easy to see that every a € Al is of the form

a4 = ayXx++a-x-+a, ar € Py, a, € CO(R), (1.24)




a (2 \ (1/\

o e\ |
\ = A X zd/—J
\ O Wc* >\ (b '
% 2 € o L L A
o .o Y A |
a (2'7 \ )\\/
Q\ o 16 d
< 7
where the choice of a;, a_ and @, is unique. It follows then that A% is closed and, hence,
At = AL, We have proven: \ Une ] &[l < Mk', h] (x ) + Q@)\
Proposition 1.6 Given a € .Ah and fired x4 and x-~ as above, there are uniquely deter- /\
mined a, € CO(R) and a4 € Par such that (1.24) holds. o H a {l
. (LLLC,&
The Gelfand map gives us a unique extensmn i of a € A to C(My) by the + La

assignment G(w) := w(a), w € My. Using the descriptions of A% and M, given in (1.24) and " f AR

(1.23), we obtain:

a(t) =a(t), t€R and a(e) =ar(6), e €5} . (1.25)
Theorem 1.7 The symbol space M 4 of the algebra A can be given as

My = My x {-00,+00},
with My as in (1.23). The o-symbol is given by:
o,(m,to0)=d(m), meMy, a€ Al

with @ as in (1.25), and

oypy(m, £00) = b(Lo0) , m.e M,, be CS(R).

Proof: We are going to use an argument known as Herman’s Lemma (c. f. [4]). Let us

consider the two following canonically defined inclusions:

and

iy : CS(R) —» %

Let . denote the product of the dual-maps of 4; and % :

t: My — My x [-00,+00],

with a multiplicative linear functional w on A4/€ 4 being taken to

Hw) = (woi,woiy).
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It is easy to see that ¢ is an injective map (the images of ¢y and i, generate A/€4) and,
hence, a homeomorphism onto its image (M 4 is compact). Using this homeomorphism as

an identification, it is clear that

o,(m,€)=a(m) and ab(D)(m,§) =b(¢),

for a € Al, b € CS(R) and (m, &) € M4 C My X [-00,+00]. The “cosphere-bundle” of
a manifold is always contained in the symbol-spaces of its comparison algebras (c. f. [2],
Theorems VII-1-5 and VI-2-2). In particular, we have R X {—00,+00} contained in My
and, thus,

M; x {—o0, 400} C My,

since R is dense in My, (Proposition 1.5).

Now we need only to prove that, if | £ |# oo, (m,€) & image: = M 4. Given
€, € R, we can choose a € CO(R) such that a(&) # 0. It follows from Proposition 1.1 that
a(D) € £4. We therefore must have

aa(D)(m,f) =a(f)=0 forall (m,{)e My
and, hence, (m, &) M4, m € M. g.e.d.

Next we define an operator-valued symbol A, the “y-symbol”, which arises from
the description of the quotient £ 4/Kg as an operator-valued function algebra.

We have proven in Theorem 1.2 that €4 is *-isomorphic to SLRKz. It is well
known and it follows, for example, from [2], Theorem VI-2-2, that SL/K & is *-isomorphic
to the complex-valued continuous functions on Mgy, = §! X {—1,+1}. The isomorphism is

given by A — ajL, where :

SL

a (ez”i‘P,:tl) = a(ez"i“’) , a€ C>®(s") and
ot (2™, £1) = b(+o0), be CS(Z).

b(Dyg)
It follows now from [1] that
AQK v o, K (1.26)

extends to a *-isomorphism

SLRK:

’Csl X2

— C(MSL, Kz) .
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Proposition 1.8 There is a *-isomorphism

v -“:—'A; — C(MSL,ICI)
Kr

such that; if ¥ denotes the composition of ¥ with the canonical projection E4 — E4/Kg,
and E € €4 satisfies F"1EF = b(D)aT;, b € CS(R), a € CO(R), j € Z; we have :
Fp(p, 1) = b(xoo)Y,a(p— M)Y_,_;, (e2™°,+1)e Mgy, .
Proof: Let us define ¥ by :
A Eq SLR®Kz
—_ e — C(Mgy, K
)Cn — K:n — }Cs1x1 — ( SL» l)’

where, in the first step, we take A + Kg to F71AF + Kg, next to WF-1AFW1 4 Kg .3

and, last, we use the isomorphism in (1.26). By Theorem 1.2, equation (1.11) and the

observations before the statement of this proposition, ¥ has the desired properties. g.e.d.

We will now extend %, defined on £ 4, to the whole algebra A. Since £ 4/Kg is an
ideal of A/Kg, every A € A defines an operator in £L(€4/Kg) by the assignment

E+K:|g — AE"I—’CR',
thus defining :
T:A — L(Ea/Kg) .
It is clear that || T4 ||<|| A ||. Let us define
vy A — E(C(MSL, ’Cz)) (1.27)
A — vT, 91
For E € €4, 75 is the multiplication by 75 € C(Mgr,Kz) of Proposition 1.8.

Identifying functions of C(Mgg,Kz) with the corresponding multiplication operator in
L(C(MsrL, K 1)), we can then say that v extends 7.

Proposition 1.9 There is a *-homomorphism

y:A— C(Mgr,Kz)

extending y of Proposition 1.8 . On the generators of A, v is given by (with Mgr =
{e2™;p € R} x {+1,-1} ):
Ya(p,£1) = a(£), a€ CS(R),
Vo) (P> £1) = Yo b(M —@)Y_,, b€ CS(R), and (1.28)
Vjiy (o, x1) = Y_;, JELZ.
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Proof: It is enough to prove (1.28) for the map + defined in (1.27). By continuity,
the image of v will then be contained in C(Mgyr,£z) regarded as a closed subalgebra
of L(C(Mgr,Kz)).

Given a € CS(R), we need to calculate 4, in terms of ¥, for E € £4. By

Proposition 1.1, it is enough to consider E such that
F'EF =d(D)cTx, de CS(R), ce€ CO(R), and keZ.

We get
F1(aE)F = (ad)(D)cT;

and therefore, by Proposition 1.8 ,
Yup(py£1) = a(Fo0)d(200) Yoc(p — M)Y__j = a(£o00) Y, £1) .
For E as above and b € CS(R),
F Y (b(D)E)F = b(—(-))d(D)cT; = d(D)b(~(-))cTj+ K, K€ Kg,
and, hence,
S0y 1) = d(E00) Yy b(—p+ M) (o= M) Yoy j = Yo b(M — 9) Yoy (0, £1)

what proves the second equation in (1.28).

For that same F we have
F1e9OEF = T;d(D)cTy = d(D)e(- + j)Tjvx

and, then, using that Y_jc(p — M) =c(po— M + j)Y_;,

d(xoo)Y,e(p— M+ )Y ik
= Y_j d(:too) Yv C((p et M) Y_w_k
Y_;95(p— M) .

This finishes the proof. g.e.d.

Proposition 1.10 The map v of Proposition 1.9 restricted to the closed sub-algebra A° C

A generated by the operators of type (4i) and (4ii) on page 6 is an isometry.
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Proof: Analogously to (1.10), it is easy to show that
W, W™ = Y b(p— M)Y_,_;,
for b € CS(R) and j € Z. It follows by (1.28) that
Yo(yeis: = Yo O(M = @) Y_yj = WH(=(-))T;W™! = WF'b(D)e" FW!
what proves that
Ya = (WFHAWF )™,
for all 4 € A°. q.e.d.

To end this section, we describe how the kernels of the two symbols we have
defined relate. Let us denote by W, the set R x {—00,+00}, which is dense in M4, by

Proposition 1.5 .

Proposition 1.11 For every A€ A, || o4 IlM  \W, IS 74 |l, 4 e,

sup{ |o4(m,€)]; m € SLUSY , £ € {~oc0,+00} } < sup{ || 7a(e) |lcas € € Msz } (1.29)

Proof: The set of all operators of the form

N
> a;bi(D)e + K, NEN, aj € CS(R), b; € CS(R), K €Kg, (1.30)
i=—N |
is dense in A. Indeed, by (1.1) and by the Fourier-transform conjugate of (1.2), the com-
mutator of operators of type (1.30) is still of type (1.30). Since Kg C £4 = kero and also,
by definition of v, Kg C ker, it is enough to prove (1.29) for A of type (1.30) with K = 0.

For such an A, we define

N
AT = 3 aj(+o0)bi(D) eV
j=-N
We then have:

oa(m,£00) = 044 (m,+00), meSL

and

o4(m,x00) = 0,4 (m,+00), mes.
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Here we are using Theorem 1.7 and a;(m) = aj(oo) for m € $} USL. Again by Theo-
rem 1.7 and using that the extension to §1 USL C M of e¥() is obtained by assigning to

both §1 and §! the function €'%, we get :

N
044 (m,£00) = E aj(400) bj(£oo) e ? (1.31)
j=—N
and
N .
' g4-(m,xto0) = Z aj(—00) b;(£oo) el . (1.32)
j=—N

(Formulas (1.31) and (1.32) hold for m = efa € S} and for m = el e sl )
We then have

lolmaw,ll = max sup{ [o4(m,+o0)|, m e SLUS. }

= max{|| o 44 (-, +00) |, || & 4+ (-, —00) [l [| & 4= (-, +00) ||, || 7 4= (-, —00) ||}
= max{ || o4+ IM WLl 5 I 04— IM W, }

max{ || 04+ ||L°°(MA) s |l oa- ”Loo(M,,) e

(1.33)

The norms on the second line of (1.33) are L*(S!)-norms and in the last equality we use

that o 4, (t,200) = 0 ,_(m,%o0) for t € R and m = €' € §} USL and the analogous fact
for o 4-.

Since o is defined as the composition of the Gelfand map A/£4 — C(My) with

the canonical projection A — A/€ 4, we have

loas oy < IAF | (1.34)

By Proposition 1.10 ,
AT = vas - (1.35)

From Proposition 1.9 , it follows that

7.4(90, +1) = YA+ (()0, +1) = YA+ ((Pa _1)

and
Ya(o, —1) = y4- (0, +1) = 74-(, 1) ,

for (e?m¥, +1) € M. Hence:

74 ll= max{}| vas I, } va- II}- (1.36)
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Inequality (1.29) follows from (1.33), (1.34), (1.35) and (1.36). q.e.d.

Proposition 1.12 An operator A € A is in the kernel of v if and only if o 4 vanishes on

M 4\W 4. Furthermore, we have :
kero N ker vy = Kr . (1.37)

Proof: Let J, denote the C*-algebra generated by a € CO(R) and by a.b(D), a € CO(R)
and b € CS(R). It is clear from Proposition 1.9 that J, C kery. Using the nomenclature
of [2] , J, is the minimal comparison algebra associated with the triple {R, dt, —A + 1}.
It can be easily conclude from [2] , Lemma VII-1-2, that A € Cp belongs to J, if and only
if 0 4 vanishes on M 4\ W 4. This shows, by Proposition 1.11 , that J, 2 ker.

Since kero = £4 and kery = 7, (1.37) follows from [2], TheoremVII-1-3. q.e.d.
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1.3 A Fredholm criterion and an improved vy-symbol

Let us denote by L2(R)N, N > 1, the Hilbert space L?(R;CV) and AV the C*-
subalgebra of £L(L?(R)"V) consisting of the N X N-matrices whose entries are operators in
A. In this section we give a necessary and sufficient condition for operators in A" to be

Fredholm. There are natural extensions of the two symbols defined for the case N =1 :

N N
o, = ((oa)h<ipsn and v, = ((Ya;))1<5k<h 5

where A = ((4k))1<jk<n € AV,
The following proposition follows immediately from Proposition 1.12 and the fact
that the compact ideal of £(L2(R)N) coincides with the set of the N x N-matrices whose

entries are in Kg.

Proposition 1.18 The kernel of vV consists precisely of those A € A such that Uiv vanish

on M 4\'W 4. Furthermore, we have :

kero™ N kery" = IC(L2(R)N) (1.38)

Theorem 1.14 An operator A = ((Ajx))1<jk<N € A is Fredholm if and only if:

(i) Uiv is invertible, i. e. , for all m € My, the N x N-matriz ((04;,(m))) is
tnvertible; and

(4t) 7iv is invertible, i. e., for allm € M 4, the N X N-matriz ((y4,,(m))) with

entries in C(Mgr, Lz) 15 invertible.

Proof: Suppose that A is Fredholm and let B be such that 1— AB and 1— BA are compact.
We have B € AV, since AN /K(L*R)") is a C*-subalgebra of c(L2R)™M)/K(LAR)Y). We
then get

N N N N

Ul—AB = UI—BA =0 and 71—AB = 71—BA

=0

and, hence,

N N N N N N
l=0,0, =0,0, and 1l=9,7, =7,7, -
Conversely, suppose that (¢) and (47) above are satisfied. Since

NZAN

— C(Mgr, N X N-matrices with entriesin £z)

v
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is a *-homomorphism (by Proposition 1.9), its range is a C*-algebra. There must be then a
B € AV such that 7]; S (7‘1:)"1. Since 1—AB € kervyV, 1—01‘\]0: vanishes on M 4\ Wy, by
Proposition 1.13. As the map o is surjective, so is V. An operator Q@ € AN can therefore

be found such that its symbol O'g equals the continuous function vanishing on M 4\Wy
N, _ N
(c,) 1. o, -

By Proposition 1.13 again, Q € kery®" and, then,

N

71—A(B+Q) = 71—(B+Q)A =0.

Since we also have

N

1 N N N N O N
O as@) — + T %49 79,9, =Y=

Q 91— (B+@)a
the operator B + @ is an inverse for 4, modulo a compact operator, by (1.38). q.e.d.

It will prove useful for applications to differential operators to redefine the v-

symbol by conjugating it with the discrete Fourier transform Fy. Accordingly, let
' 4A— C(Mgr,Lg)
be defined by
Ta(m) := Fyly,(m)Fs, me€ Mgy . (1.39)
It follows from (1.28) and (1.6) that the symbols of the generators of A are given by (with
Msy = {290 € R} x {-1,+1} ):

Tu(p,£1) = a(xo0), a€ CS(R) (1.40)
Typy(p, £1) = e~¥9b(Dg— p)e*? | be CS(R)
Tioy(p, 1) =€, jel.
(See page 8 for the definition of b(Dy).)
By continuity of ', we get, for a € A! of the form
a=a4X+ ta_x- + ae

(with the notation of Proposition 1.6),

Toa(p,£1) = ax(9) . (1.41)

Here we regard ay and a_ as defined on §! = {¢'%; 6 € R}.
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Remark 1.15 Because of (1.39), it is obvious that condition (i) of Theorem 1.14 can be
replaced by :

(#%) T (m) := ((Ta;(m)))i<sken is invertible for all m € Mgy.
Now we consider the differential operator
L: AMR,cY) — L%R,cV), (1.42)
M 1d .,
L = () (=)
=0
where 4;, 7=0,...,M, are N X N-matrices with entries in A" and HM denotes the M-th

Sobolev space. We denote by Ag the operator (1 + D?)~1/2 ¢ L and also the matrix in

L(L*(R,CN)) consisting of Ag on the diagonal and zero elsewhere. It is clear that
M T
LAY =Y A;(t)s(D) Ay ~ € AN .
J=0

Since Ay is an isomorphism from L2(R,CV) onto HM(R,CV), the operator L in (1.42)is a
Fredholm operator if and only if LA:I is Fredholm as a bounded operator on L2(R,CN).

Since the entries of A; are in A", we have :
A; = x+ AT + x-AT + A3

Here, x4+ and x_ are as in (1.24), Af are 2m-periodic and A%(£o00) = 0. Regarding A;-k as
defined on §! = {e*; 6 € R} , we get :

Theorem 1.16 The operator L in (1.42) is Fredholm if and only if:
(i) L is uniformly elliptic, 1. e. , Ap(t) is invertible for allt € R and || Ap(2) || 7!
18 bounded, and

(#) the differential operators

L*(p): BM(8',€N) — L*(s',c),
= 1d :
L*p) = 2 A5(0) (35— )
5=0 ¢
are invertible for every ¢ € [0,1].

Proof: We apply Theorem 1.14 with Remark 1.15 for the operator A := LAM. For

condition (%) of Theorem 1.14 to hold, it is necessary and sufficient that o 4 havea bounded
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inverse on R X {—o00,+00}, which is a dense subset of M4 (see Proposition 1.5). By
Theorem 1.23, we have 0 4(¢,+00) = +Am(t) and we have therefore obtained equivalence
of condition (%) of this theorem and condition (7) of Theorem 1.14 .

By (1.40) and (1.41), we get:

M
e’ TN (o, £1) ™% = Y~ AF(0) (Do — )’ M(Dg - o) , (1.43)

7=0
where A(s) = (1+2)71/2, As, for each ¢ € R, \(Dg— ) is an isomorphism from L2(S!, CV)
onto HM(S!,CN), the equivalence of conditions (41 ) of this theorem and (47’) of Remark 1.15

has been established. q.e.d.
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1.4 An index formula for first-order systems

For the case of first-order operators of the type (1.42), we can give a more explicit

Fredholm criterion and even find a formula for the index of L, defined as
index L = dimension kernel L — co-dimension range L .

Without loss of generality, we can assume that L is of the form

1d
L=<+ A@): HYR,cN) — L*(R,cM), (1.44)
where A is an N X N-matrix with entries in A!. Indeed, condition (i) of Theorem 1.16
implies that, if L is Fredholm, multiplication by the inverse of the coefficient of its first-order
term is a bounded operator. Multiplying LAg by an invertible operator does not change

its being or not Fredholm, or its index. Theorem 1.16 applied to L as in (1.44) has the

following consequence.

Proposition 1.17 Let ®*(6) denote the N x N-matriz-valued functions that solve the
Cauchy-problems:

+
%ddie(o) + AX(9)2%(8) = 0 , (1.45)
®*(0) = I

where A% are the 2rw-periodic N x N-matriz-valued functions such that

A(t) = x+ () A* (1) — x-()A™(2)

vanishes at £oo. (See Proposition 1.6 for the definition of x4+ and x—)
Then L in (1.44) is Fredholm if and only if @ *(27) and ®~(27) have no eigenvalue

of absoluted value one.

Proof: We know, by Theorem 1.16 that L is Fredholm if and only if L¥(p) and L~(¢),
defined by

I¥(p) = T4 4 4%50) 4o H'(S,CY) — IX(s',CY)
are invertible, for all ¢ € [0, 1]. It can be easily verified that the problem

7@4‘1‘1 (B)u+pu=0
u(0) = wu(27)
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is solved by
u(8) = e " 3%(9) w(0) , (1.46)

with u(0) satisfying .
$*(21) u(0) = 2™ u(0) .

This shows that L () and L~ () are injectivefor all ¢ € [0, 1] if and only if ® *(27) and
®~(27) have no eigenvalues of absolute value one.

The differential operators L*(¢) are invertible if and only if L¥(p)Ag are invert-
ible, where Ag := (1— Ag)~1/2, We know that all operators L¥() Ag have closed image,
since they are in fact Fredholm (c. f. , for example, Theorem VI-2-2 of [2] ). It remains to
be decided if and when their adjoints are injective. It is easy to see that this will happen if

and only if the differential operators

1d .
L¥(p)" = 2o+ AX(0) + + HI(S,CY) - I3(s',CP)

are injective, where A(6)* denotes the transposed complex conjugate of A(6). Since the
matrices ($*(8)~1)* solve (1.45) with A*(6) replaced by A*(#)*, we conclude that L*(¢)*
are injective for all ¢ € [0,1] if and only if ®*(27) and ®~(27) have no eigenvalue of

absolute value one. q.ed.

Theorem 1.18 Let Lt and L~ denote the differential operators on S' = {e¥; 8 € R}

1d
Li=?@+AH®.

The eigenvalues of LE are then of the form:
{¢&f+k+inf; kel,j=1,....R}, R<N,

for some fized real numbers ﬁt, . .,fj%, nf:, - .,nj%. The dimensions of the eigenspaces as-
sociated with fj: +k +.i77;-h , J fized, are finite and independent of k.
The operator L in (1.44) is Fredholm if and only if n;-t #0 forall j€{1,...,R}.

Moreover we have:

index L = #{n}; n} <0} — #{n;; nj <0}, (1.47)

counting the multiplicity of the eigenvalues E;t + in;-t.
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Proof: The properties of the eigenvalues of L* and the Fredholm criterion follow from
Proposition 1.17 and its proof. Indeed, allowing ¢ assume non-real values, there we showed
that the eigenvalues of % (27) are e2™¢, where ( is an eigenvalue of L*. Furthermore,
(1.46) defines an isomorphism between the corresponding eigenspaces. It suffices therefore
to prove the index-formula (1.47), assuming that L is Fredholm.

Proof of the indez formula for N = 1 : Let us assume that L is of the form

1d
L= ;a-*— a(t) : HI(R) — LZ(R) )

with a(t) = ay(t)x+(t) + a—(t)x-(t), ax 27-periodic. Note that adding a, € CO(R)
corresponds to compactly perturbing LAg, since a,A € Kg.

Let us define
b 1 t+2n7 d
® =5 [ aw)dy
and

ot) = a(t)— b(t) , d(t) := /0 “ely)dy . (1.48)

Notice that we have

1 27
b(t) = g/o at(y)dy, for xt>2r+1

and

1 27
c(t) = ax(t) - 5/0 ar(y)dy, for +t>2r+1. (1.49)

From (1.48) and (1.49), it follows that d is periodic for large | ¢ | and , thus, d and its
derivative ¢ are bounded continuous functions on R. Multiplication by e*d() defines therefore

an isomorphism of H(R) onto itself. Now defining

. . 1d
v ptd(t) g o—id(t) — = 2
M = 40 Le =+ b(1),

it is clear that M : H1(R) — L2(R) is Fredholm if and only if so is L, and, moreover,
index I = index M . (1.50)

Since the function b is in CS(R), it follows from Theorem 36 of [7] (see also [20] )
that the index of M can be found by the following procedure. The symbol

T+ b(t)
Taa(t,7) = Otz
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can be continuously extended to R := [—o00,+00] X [—00,+00]. The boundary of R,
OR = {(t,7) € R; |t| +|r| = o0} ,

is homeomorphic to the circle and is given here the positive orientation. The result cited
above states that M is Fredholm if and only if 0,,, |sr never vanishes. If that is the case,
we get

index M = winding number of 0,,,|sr Wwith respect to the origin.
It is easy to see then that
+1 if Imb(+o00) < 0 < Imb(—o00)

index M =¢ —1 if Imb(—o00) < 0 < Imb(+00) (1.51)
0 if Imb(400).Imb(-00) >0

The eigenvalues of L* = —id/df + ay(f) on §' are
4 1 2w
AT = —/ dy — k, kel.
27|_ 0 ai(y) y b E

Since b(+o00) = (27)~! 02" at , formula (1.47) has been proven for N = 1, because of (1.50)
and (1.51).

Let us postpone the proof of the two following lemmas and first conclude the proof

of Theorem 1.18 .

Lemma 1.19 Assume that L in (1.44) is Fredholm and that A is of the form
A(t) = x+ (AT (1) + x-(DA™(1) , (1.52)
with x+ as in Proposition 1.6 , and A% 2w-periodic. We can then find a continuous curve

A, of N x N-matrices of the form (1.52) such that: Ag = A, the operators

L, = 1—.%+A,(t): HY(R,cV) - L*R,cN)

are Fredholm for all s € [0,1], and

Ai(t)y =0, for te |J[2nk—6,2rk+ 6], (1.53)
kez

for some § > 0.
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Lemma 1.20 Let GI(N) denote the set of all invertible complezx N x N-matrices and let
® € CI([0,27],GI(N)) be given . Assume that #(0) equals the identity I and that ® is

constant on [0,€]U 21 — €,2r]. There ezists then a one-parameter family of curves
®, € C'([0,2r], GUN)) , s€0,1],

with ® = & and ®,(0) diagonal for all § € [0,27], such that :
(1) s = @, and s — @/ are continuous with respect to the supremum-norm ,
(it) ®,(0) = I, for all s € [0, 1],
(#i) ®, is constant on [0, §]U [27 — £,27], for all s € [0,1], and

(iv) the absolute value of the eigenvalues of ®(27) do not change with s.

Proof of the index formula for the general case: It is no loss of generality to assume
that A of (1.44) has the form (1.52), since adding A A to LA, with A,(+o0) = 0, corresponds
to a compact perturbation. By Lemma 1.19 , we can assume that A also satisfies (1.53),
since ;A and LA can be connected by a continuous curve of Fredholm operators. The
periodic matrix-valued A% also satisfy (1.53) and, consequently, the corresponding $* of
(1.45) are constant on [0,€] U [21 — €,27). Solutions of (1.45) are necessarily invertible for
all @ and satisfy #+(0) = I. We can therefore apply Lemma 1.20 to &+ and &-.

Let % denote the deformations thus obtained and define:

AT = —id'(9) 2E(6)?

8

All A¥ vanish on [0, §]U[27 — &, 27], since ®F are constant there. We can then periodically

extend A% to R and define 4, of the form (1.52) by

Al(t) = A7 (Dx+(1) + A7 (1)x-(2)

From (%) of Lemma 1.20 we get the continuity of s — A,. Since the solutions of (1.45) for
A, are &%, we conclude that the operators

1d
L, = ?E"‘As(t)

are Fredholm for all s € [0,1]. Here we have used Proposition 1.17, (4v) of Lemma 1.20 and
that L = Lg is Fredholm. We have therefore obtained a curve L,A of Fredholm operators
in £(L?*(R,CN)) with Lo = L. Hence:

index L = index L; . (1.54)
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Having proven the index formula (1.47) for N = 1, it is clear that it also holds
for the case when A(?) is diagonal for every t € R. The index of L, is therefore given by
(1.47). It follows from Lemma 1.20 that the eigenvalues of ® £(2r) do not cross the unit
circle, what means that the imaginary parts of the eigenvalues of L* never change sign as s
varies, by our observation at the begining of the proof of the theorem. This, together with

(1.54), shows that the formula (1.47) also holds for L. g.e.d.

Proof of Lemma 1.19 : Let x5 denote a 27-periodic function such that xs(t) = 1
for [t] < § and xs(t) = 0 for 26 < |t| < 2w — 26, where § is positive. We claim that

Ay = (1-sxs(t) A(t), s€[0,1],

has the desired properties if § is chosen sufficiently small. By Theorem 1.14, Remark 1.15
and (1.43), it is enough to show that

; ; . d .d
T (g, 1) e = (mime 4 ABE(0) — 9) (14 (mis — )2 (1.55)

is invertible for all ¢ € [0,1]. Because of our assumption that L ¢ is Fredholm, we know that
the right-hand side of (1.55) is invertible for s = 0 and all ¢ € [0,1].

Now we use that the invertible operators are an open set of £(L?(S!,CV)) and
that the curve obtained by varying ¢ € [0,1], with s = 0 in (1.55), has compact image.

Because of these facts, it is enough to show that
%% || €°(Troa(p, £1) — I‘Lf,\((p,:i:l))e"""‘9 |=0, uniformlyin¢ands. (1.56)
The left-hand side of (1.56) equals
Lim || s xs(6) A*(0)A, ||, where A,:=(1+ (—ig‘% — )12,
Since || A*(8) || is bounded on [0,27], and 0 < s < 1, all we have to show then is that
| x6(0) Ay llgg, — O as 6— 0, uniformlyin € [0,1]. (1.57)

Using that the discrete Fourier transform diagonalizes the self-adjoint operator

—1d/df, we get :

- 1 iR 2 -
X6(8) (Apu)(0) = 5—xs(6) D (14 (j - )" /0 e=i10u(5) dd .

j=—o00




Using that the support of xs is contained in an interval of length 46, we obtain:

=1 i5(6 é). 2\-1/2 |2 26 IR 1
E = (6 i — = < = 2: —— =
jooo 47 Pxs(@)e”™ 5 4 = ) ”‘Lz(slm)‘ T TGRS 0

where C' < oo is independent of ¢ € [0,1]. Defining then Ks,, € L?(S! x §!) by

L1 e . : _
Ks4(0,8) = 5= 30 xs(0)e 701+ (G- 9))7/2,

j=—c0
we get
Xs(8) (40)0) = [ K(6,0)u(d) d
and, hence,
I Xs(0)Ae Il £y < Il Koo |l 2(s1 xs1) < VTS |
This proves (1.57). g.e.d.

Proof of Lemma 1.20 : Let U € GI(N) be such that U~1&(27r)U is Jordan and
let U(s), s € [0,1], be a smooth path connecting U to I. Define

3,(0) := U 1(s)B(O)U(s) .

It is evident that ®, is constant on [0, €] U [27 — ¢, 27] for every s and that &, has all the
desired properties except ®1(6) being diagonal. This shows that, without loss of generality,
we can assume that ®(27) is Jordan. We can go further and assume that ®(2r) is diagonal,

after the following deformation. We define J

®,(0) :=®(0), for €[0,2r—¢ and s€][0,1],

and, for § € [2m —¢, 2], we substitute the 1’s outside the diagonal by w,(8), where w,(6) = 1
for 6 € [2r — ¢,27 — 3], w,(f) = 1 — s for 6 € [27 — 5,27], and (s,8) — w,(f) is smooth.

We can therefore assume that

A1 0 ... 0

Az ... O
®(2r) = : :




Let us define ¥ : [0,27] —» GI(N) by

1+w(O)(E-1) ... 0
T(0) = &(2r) : : (1.58)
0 e 14 w(0) (2= -1)

where w is smooth, 0 < w < 1, w(f) = 0 for 6 € [0,¢] and w(f) = 1 for 6 € [21 — ¢,27]. Let

m € Z be the winding number with respect to the origin of the closed curvec: [0,4r] = C,

«(6) = det &(8) if 6¢elo0,2r]
T det V(0 —-2r) if 6€[2r,4n] .

Let = : [0,27] = GI(N) be defined by

e—21n'mw(0)A1 0
~ 0 X2
2(8) = :

0 0 ... An

with w as in (1.58). Let T be the smooth closed path in GI(N) obtained by going through
¢, followed by = and, then, ¥. It is obvious that the winding number with respect to the
origin of det Y is zero and, hence, T is homotopically equivalent to the curve & obtained by
going backwards through ¥ and Z. This homotopy ®, can be chosen differentiable, having
both ends fixed and satisfying (#27). By construction, &y = &, ®, is diagonal at every point

and &, satisfies (¢), (i), (¢7) and (iv). q.e.d.
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Chapter 2

A Comparison Algebra on a
cylinder with semi-periodic

multiplications

2.1 Definition of the algebra Cp and a description of its
commutator ideal
Throughout this chapter 2 denotes the Riemannian manifold R X B, where B

denotes an n-dimensional compact manifold with metric tensor locally given by A jz, and H

denotes the Hilbert space L2(2), with Q being given the surface measure
ds =Vhdtdz'... dz",

where h is the determinant of the n X n-matrix ((hjx))1<jk<n. The metric on Q is given by

ds? = dt? 4+ hj;,dz? dz*, and the Laplace operator is locally given by
J g

@ 10 ik d

Ba=let b =gt ZasVEh o

where ((h7%)) = ((h;x))~1, and the summation convention from 1 to n is being used.

The symmetric operator Ag with domain C(2) is essentially self-adjoint, since
Q is complete (c.f.[2],IV). We denote by H the closure of 1 — Ag and by A its inverse
square root, A = H~1/2. Since H > 1, we have A € L(H). The algebra Cp is defined as the
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smallest C*-subalgebra of £L(H) containing the following operators (or classes of operators):

g 10
a € C®(B); be CS(R); et j € Z; A ;§A and D A, (2.1)

D, being a first order differential operator on B, locally given by —ib/(z)0/8z7, where bi(z),
j =1,...,n, are the components of a smooth vector field on B. The operators %A and
D.A, defined on the dense subspace A=1(C(£)), can be extended to bounded operators
of L(H) (c.f. [2], for example). Bounded functions on  have been identified with the
corresponding multiplication operators in L(H).

Our first objective in this chapter is to obtain a necessary and sufficient criterion
for an operator in Cp to be Fredholm. Such a criterion has been found by Cordes [3] for
the algebra generated by the operators in (2.1) except €'/, j € Z.

Taking advantage of the tensor product structure of H,
H = L}(R)®L?(B)

(see A.1.), we consider the conjugate of Cp with respect to the unitary operator F @ Ig,
where Iy denotes the identity operator on L?(B) and F' the Fourier transform on L?(R). In
order to simplify notation, A® Ig is denoted by A and I ® B by B, whenever 4 € L(L%(R))
or B € L(L*(B)).

We seek to describe what are By := F~14;F , where Ay, k = 1,...,6, denote
the operators listed in (2.1), in that order. The operator-valued functions A(r) := (1 +
72 — Ag)~1/2, rA(1) and D A(T), T € R, are all in CB(R, £p), as proven in [3], page 220,
and thus determine operators in £(H), as defined in Proposition A.3. Here Lp denotes the
algebra of bounded operators on L?(B) and CB(R, Lp) the bounded continuous Lg-valued
functions on R. With this interpretation, we get By, k = 1,...,6, respectively given by

a € C*(B); b(D), b€ CS(R); T;,j € Z; A(r);—tA(r) and D A(7), (2.2)

where (D) := F~1bF and T; denotes the translation (Tju)(t) = u(r + 7).
Let Kp denote the ideal of compact operators on L?(B) and CO(R,Kg) denote
the Kg-valued continuous functions on R that vanish at infinity. All commutators [By, Bj],

k,l # 3, are contained in the algebra

CK := CO(R,Kg) + K(H),
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where KX(H) denotes the ideal of compact operators of £(H), as proven in [3], Proposition
1.2. Next we investigate what are the commutators [Bs, Bi], k = 1,...,6. We easily get
[Bs, B1] =[B3, B2] = 0. It is also clear that, for any K(7) € CB(R, L), we have

[Tk, K(7)] = (K(r+ k) — K(7))Tk, k € Z. (2.3)

Proposition 2.1 The commutators of the generators in (2.2) — and of their adjoints —

of the algebra Cp := F~1CpF are contained in

N
CKT ={ Y. K;j(r)T;+ K; N € N, K; € CO(R,Ks), K € K(H)}.
j=—N

Proof: Let us first prove that K(7 + j) — K(r) € CO(R,Kg), for K(7) = A(r), TA(7)
or D A(r). It follows from the fact that —Ap on L?(B) has an orthonormal basis of
eigenfunctions, with eigenvalues 0 < Ay < A2 £ ..., Ay = o0 as n — o0, that, for each
7 € R, A(7) is unitarily equivalent to the multiplication operator (1 + 72 + A,,)"1/2 on
L2(N). Hence: A(T) € CO(R,Kp),

| T{A(T + 5) — A(T)] ”L2(B)S ,,én[ﬁo’f,) | 7l(s + (7 + §)2)~Y2 = (s + 72)71/7] |
and
|| ]\(T)_IJ\(T +_7) - l ”L2(R)S sgl[ﬁi) | (.,.2 + 5)1/2((,’. + ])2 + 3)—1/2 -1 | )

Note that the right-hand sides of the two previous inequalities go to zero as 7 — 0.

Furthermore, as
lim (1+ 72+ )21+ (T 4+ )2+ A0V -1 =0,
we have that A(7) "A(r + j) — 1 € Kg, for each 7 € R. We then get:
(14 HAT +7) = 7A(T) = 7(A(T + j) — A(7)) + jA(T + j) € CO(R, Kg)

and

D A(r + §) = DA(T) = DLA(T)[A(r) " A(r + §) — 1] € CO(R, Kp).

By the remarks preceding the statement of the proposition, this proves that the

commutators of the generators (2.2) are indeed contained in CK7. Concerning the adjoints,
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let us note that the classes of By’s, k = 1,...,5, are self-adjoint and that, as proven in [3],
D;A — AD, € CO(R,Kp), hence:

(DzA)* — D:A = AD%: — D:A € CO(R,Kp). (2.4)

Here, D% denotes the formal adjoint of D,. The commutators of any K(7) € CO(R,Kpg)
with the generators B, k = 1,3,4,5,6, are clearly contained in CX7. For K(7) of the
special form K(r) = a(r)K, a € CO(R) and K € Kg, the commutator [b(D), K(7)] =
[b(D), a(1)]® K is compact, since [b(D), a(t)] is compact (c.f. [4], Chapter ITI, for example),
for b € CS(R). The vector space generated by all (1) = a(r)K as above is dense in
CO(R, Kg) (see Proposition A.4) and thus we have

[b(D), K(7)] € K(H), for b € CS(R), K(7) € CO(R,Kp). (2.5)
This concludes the proof. q.e.d.

Denoting by £p the commutator ideal of Cp and by £p the commutator ideal of
Cp, it is obvious that £p = F-1&pF.

Proposition 2.2 The commutator ideal Ep of the algebra Cp is obtained by closing the set

of operators: * /ﬁ/f {}} -
' N .'a{/ "

bpo={ = Y. 'Kjr)T;+K; be CS(R), NeN, K; € CO(R,Kp), K € K(H)}.
=N &

Proof: The algebra Cp is a “Comparison Algebra”, in the sense of [2] , Chapter V, with

“generating classes”:
A= C2(Q) U C=(B) U {e5 €7} U {s()) =11+ £/ (2.6

and D! equal to the vector space generated by the first order linear partial differential
expressions on B with smooth coefficients and by the expression §/8t. Indeed, Cp can
alternatively be defined as the C*algebra generated by all multiplications by functions in
A and by all DA, D € D!. It follows then from Lemma V-1-1 of [2] that KX(H) C £p and
therefore: K(H) C £p. Moreover, it was proven in [3] , Proposition 1.5, that CO(R, K p) is
contained in the commutator ideal of the C*-algebra generated by B4, Bs and Bg. Thus we

get c‘:'p,o C 5:;7.
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All commutators of the generators (2.2) and their adjoints are contained in £ P,0, by
Proposition 2.1. Again using (2.3), (2.4) and (2.5), it is easy to verify that £p is invariant
under right or left multiplication by the operators in (2.2) and their adjoints. Two facts then
follow: () all commutators of the algebra (ﬁnitely) generated by the operators in (2.2) and
their adjoints are contained in & P,0 and therefore all commutators of Cp are contained in the
closure of € P,0, and (i) the closure of € p,0 is an idgal of Cp. By definition of commutator

ideal, £p is contained in the closure of tfp_o. g.ed.

Corollary 2.3 With £4 denoting the closure of € 4,0, defined in (1.3), we have:

Ep = E40Kn

Proof: The vector-space generated by
{(®(D)a(T)T;+ K)® K; b€ CS(R), a € CO(R), €2, K € Ka, K € Kg}
is dense in ép’o and in £€4®Kag, by Proposition A.4 . q.e.d.

In order to give a better description of £p, we consider the conjugate of £p with
respect to W, where W : L2(R) — L?(S!; L%(Z)) was defined in (1.7). Here we allow a slight

abuse of notation, since by W we mean

W @ Ip : LAR)®L(B) — L*(S")®L2(Z)®L%(B)

AL
@ (seeM).

Proposition 2.4 The map

Ep — SLRKzRKp

A — WAW-?
is an onto *-isomorphism, where SL denotes the algebra of bounded operators on L?(S!)
defined in Section 1.1 . For A € £p of the form A = b(D)K(7)T;, with b € CS(R),
K(r) € CO(R,Kg) and j € Z, we have:

WAW™ = b(Do)Y, K (o — M)Y_y_; + K, with K € Kgixzxs - (2.7)
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For each ¢ € R here, K(p — M) denotes the compact operator on L?(2)QL?(B) defined
by the sequence K(p — j) € Kp, j € 2. The first term of the right-hand side of (2.7)
defines therefore a Kzxm-valued continuous function on 8! = {€?™%; ¢ € R}.(See Appendiz

for details.) The operators Y, have been defined on page 8.
Proof: By Corollary 2.3 and (1.8),
WEPW ™ = SLRIK;RKg

and, by (1.9), formula 2.7 holds for K(r) of the form a(r) ® K, a € CO(R) and K € Kp.
By Proposition A.4, we can then find a sequence K,(7) € CO(R, Kg) such that I,,(7) —
K (1), uniformly in 7 € R, and (2.7) is valid for each K (7). Then

YoKm(e— M)Y_oj - Yo K(p— M)Y_,_;

in Kzyxe, uniformly in e27% ¢ §!. By Proposition A.3, the convergence also holds in

le XIXB - q.e.d.
We recall that Mgz, = S! x {—1, +1} denotes the symbol-space of SL (see page 17).

Theorem 2.5 There exists an onto *-isomorphism

Ep

5 E(F) —_ C(MSIAICIXB)

such that; if 4 denotes the composition of ¥ with the canonical projection Ep — Ep /K(H)
and A € Ep is such that B = F~YAF is of the form B = b(D)K (7)T;, where b € CS(R),
K(r) € CO(R,Kp) and j € Z, we then have :

F4(e2™%, 1) = b(£00)Y, K (p— M)Y_,_; .

Proof: Let ¥ be given by

Ep Ep SLRKz®Kg
- —
K(H) ~ K(H) Keixzxs

— C(Msi, Kzxs) »

where in the first step we take A + K(H) € £p/K(H) to F~1AF + K(H), next to

WFTAFW-1 + Kq vzxs »




41

and in the last step we use the onto *-isomorphism(by page 17 and-[1)):

‘ _ SLROK®Kn

K — C(MSLa ’Clxn)
SIxXIxB

AR K1 ® Ky + Keixaxe — 0., (9, £1)K1® K> .

Defined this way, ¥ has the desired properties, by Proposition 2.4 and its proof. q.ed.
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2.2 Definition of two symbols on Cp

Our first task in this section is to give a precise description of the symbol space
of Cp, i. e. , the maximal-ideal space of the commutative C*-algebra Cp/Ep. The symbol
space of C, the C*-algebra generated by the operators listed in (2.1) except the periodic

functions e'*, was described in [3] :

Theorem 2.6 (Theorem 2.8 of [3]) The symbol space M of C can be identified with the
bundle of unit spheres of the cotangent bundle of the compact manifold with boundary
[—00, +00] X B, where [—00,+00] denotes the compactification of R obtained by adding the
points —oo and +o0o. The o-symbols of the generators Ay, Ay, A4, As and Ag are given below
as functions of the local coordinates (t,z;7,£), where (t,7) € [—00,+00] X R*, (z,£) € T*B
and 7% + hIkE;6 = 1:

o4, =a(z) 04, =b(t) 04, =0 04, =7 04, = bj(:c)gj .

When periodic functions are adjoined to the algebra, the points over |t| = oo

become circles. More precisely, we have:

Theorem 2.7 The symbol space M p of Cp is homeomorphic to the closed subset of M x §!

described in local coordinates by
{((t,z;7,6),e%); (t,z;7,6)eM, 0 cRand 0 =t if |t |< oo} .

Using this description of M p, the o-symbols of the generators in (2.1) are respectively given
by
a(z) b(t) €7 0 1 and b(z)E;.

Proof: Let Py, denote the closed algebra generated by {e'/t; j € Z}, i. e. , the 27-periodic
continuous functions on R. Its maximal-ideal space is §!, with €'’ € §! defining the multi-
plicative linear functional f — f(8).

With £ denoting the commutator ideal of C, the maximal-ideal space of C/€ is M,
as described in Theorem 2.6 . By definition of the Gelfand map, a point (t,z;7,£) defines

the multiplicative linear functional

A+ E— ot zi7,8)
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The following maps are canonically defined:
. C Cp
iy Z (2.8)
and
C
iy : Poy — EE . (2.9)
(It is obvious that £ C £p )
Let us denote by ¢ the product of the dual maps of 7; and i, i. e. ,
t: Mp— Mx 8! (2.10)

wr— (woi,woisg),

where w denotes a multiplicative linear functional on Cp/Ep.

As the images of ¢ and i; generate Cp/Ep, ¢ is an injective map, clearly continous,
what proves that Mp is homeomorphic to a compact subset of M x §!. Now we proceed
to investigate which points of M x §! belong to the image of ¢. This dual-map argument is
essentially “Herman’s Lemma”(c. {. [4] ).

As in the proof of Proposition 2.2, here again we use general results on comparison
algebras. It follows from Theorem VII-1-5 of [2] that for every point of the cosphere-bundle
of Q, (t,z;7,£) € S*Q , there is a multiplicative linear functional on Cp/Ep that takes any
function a, belonging to the closed algebra generated by A* in (2.6), to a(z,t) and DA,

C i@ o e
D iat+ib(m)axj+q(z)e1),

to 7 + b7(z)&;. This multiplicative linear functional must correspond to the point

with | t |< oo.

Suppose now that ((t,z;7,£),e*) is in the image of ¢ and that | t |< co. Let w
denote the corresponding multiplicative linear functional on Cp/Ep and x denote a funtion
in C*(Q) with x(t) = 1. It is clear that x(-)e*() + £p belongs to the image of ¢; and thus,
by (2.10),

w(x()e') + £p) = €'t .

On the other hand, since ‘(") 4 £p belongs to the image of i, , we get:

w(x(Ve' + £p) = w(X(") + Ep)w(e') + £p) = € .
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We then obtain e*¢ = et.
For t = +0c and any e € §1, let us consider the sequence t,, = 6 £ 2rm. Since

Mp is closed and
((tm» 237, 8),€'m) = ((t,2;7,6),€%) as m — o,
we conclude that ((t,z;1,£),e*) € Mp ' q.ed.
Remark 2.8 We have just proven above that
Wp = {((t,2;7,€),e¥) € Mp; |t |< 00}

is dense in M p.

Next we define the y-symbol.

The C*-algebra Cp/K(H) has the closed two-sided ideal £p/K(H), which was
proven to be *-isomorphic to C(Mgy,Kzxp) in Theorem 2.5. Every A € Cp determines a
bounded operator of £L(£p/K(H)) by E + K(H) — AE + K(H), thus defining

T :Cp — L(Ep/K(H)) .

Let us define
v: Cp — L(C(Msr,Kzxn)) (2.11)
A —  y4=9T,9°1
for ¥ defined in Theorem 2.5.
For E € £p, vE is the operator multiplication by ¥ € C(Mgr, Kzxn) (see The-
orem 2.5). Identifying functions in C(Mgr, Laxp) With the corresponding multiplication

operator of L(C(Mgsr,Kzxs)), we can say then that v is an extension of 7.

Proposition 2.9 There ezists a *-homomorphism
Y :C'P — C(MSL,‘CIXB) »

where

Mst = {¥™; p e R} x {+1,-1},
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given on the generators (2.1), according to notation established in Sections 1.1 and 2.1 and

in Theorem 2.5 , by :

Yay = a(2); Y4y = b(E0); Y4y = Yoj; 4, = Yo A(p— M)Y.,;
Yas = Yo K(p— M)Y_,, where K(1) = —TA(7), T €R and (2.12)
Yas = Yo L(¢— M)Y_,, where L(r) = D,A(r), T €R.

Furthermore, v restricted to the C*-algebra Cp®, generated by the operators in (2.1) except
b € CS(R), is an isometry.

Proof: Let us calculate v, defined in (2.11), for the generators Ag,..., Ag of (2.1). By
Proposition 2.2 , it is enough to calculate the result of a left multiplication by A ,, p =
1,...,6, on operators E € £p such that F~1EF are of the form e(D)K ()T, c € CS(R),
K € CO(R,Kg) and I € Z. For such an E, we get F-1(A,E)F, p = 1,...,6, equal to,

modulo compact operators,

c(D)a(z)K(r)T;, (cb)(D)K(T)Ty, e(D)K(T+ j)Tiyu1,
¢(D)A(T)K (7T}, —¢(D)rA(T)K(r)T; and ¢(D)D A(T)K(T)T; ,

respectively. Here we have used (2.3) and
[¢(D),Brl€e K(H), k=4,5,6
(c. £. [3], Proposition 1.2). By Theorem 2.5, we get :

Tayp(Ps £1) = e(£00)Y, K (@ — M)Y_ i = a(2)7,(ip, £1) (K(7) = a(x)K(r)),
Yapu(# £1) = (eb)(£00) Y, K (¢ — M)Y_ i = b(00)v,(p, £00) ,

Tasu (P £1) = c(£0)Y, K (o4 j — M)Y_y_ iy = Yivg (e, £1),

Vauu(P £1) = e(200)Yo(AK )¢ = M)Y_ gt = Y, A(p — M)Y_y7,(p, £1)

and analagously for p = 5 and 6. This proves formulas (2.12).
For any A € Cp such that F~1AF = J(r) € CO(R,Ka), it is also clear, using
(2.5), that
ra(p, £1) = Yo J (o ~ M)Y_,, .

Hence, by (2.4), 74z also belongs to C(Mgr, Lzxs)-

The norm of the operator of £L(C(Msr, Kzxs)) given by multiplication by a func-
tion in C(Mgyr,Lzxe) is equal to the sup-norm of this function. In other words, the
C*-algebra C(Mgr, Lzxn) is isometrically imbedded in L(C(MSL>’ClxII))- As the image
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of a dense subalgebra of Cp is contained in C(Mgr,Lzxp), We conclude that v maps Cp
into C(MSL, £1xn).
Using the identifcation

LY (SVY)®L*(2)QL*(B) = L%*(S', L*(Z x B))

(see Proposition A.1l), it can be straightforwardly verified that, for A(T) € CB(R,Lp),
WA(r)W-! € C(S!,Lzxp) and it is given by Y,A4(¢ — M)Y_,. This means that for
k=1,4,5,6, we have

Y4, = WFPLA.FW™1  and YAy = WF AL FW-1 |
It is also clear that WT;W~! = Y_; and, hence,
Y4 = WEFTIAWF 1)1 | for A€Cp®,
proving that
| 74 lcMsz.caxe) =14 llc(ry and yar = (74)* for A€Cp°.
This finishes the proof, since it is obvious that ya3 = (74,)*. q.e.d.

The o-symbol and the v-symbol, defined in Theorem 2.7 and Proposition 2.9

respectively, are related by:
Proposition 2.10 For every A € Cp, || o4 IMp\W,lI<|[ 74, 4 €.,

sup{ | oa((t,2;7,€),e¥) | [t]= 00 } < sup{ || 74(m) |lcaxa s m € Mz } .
Proof: Since the commutators of A; with the other generators in (2.1) and their adjoints
are compact (c. f. [3], Proposition 1.2 ), the set of operators of the form

N
A=) bit)A; + K, bje CS(R), 4,;€Cp°, K€ K(H), NeN, (2.13)
=1

is dense in Cp. As ox = 0 and vx = 0 for K € K(H), it suffices to assume A of the form
(2.13) with K = 0.

For such an A, Theorem 2.7 implies:

N
oa((t,z;7,6),e%) = D bi(t)oa;((t2:7,6),%) .

=1
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Letting A* denote the operators Eﬁl bj(£oo)Aj, it is clear then that
aa((+00,2;7,€),€%) = 044 ((£00,2;7,8),¢*) and
oa((=00,2;7,€),6%) = 04 ((£o0,2;7,8),¢%) ,

‘hence:

| o4 IMp\WlI< max{ || o4+ || 5 | oa- |l }- (2.14)

The map o : Cp — C(Mp) was defined as the composition of the Gelfand map
(an isometry) with the canonical projection Cp — Cp/K(H). It then follows that

| oas [I<I| A ]
As A* € Cp° , where 7 is an isometry,
” Yt ”C(Mp) S || YA ”C(Ms[,,ﬁzx.) : (215)
By Proposition 2.9 ,
N -
va(p,+1) = D bi(+00)14;(p, +1) = a4 (¢, +1) and  ya(p,—1) = 74-(o,~1) .
J=1

Furthermore, for any A € Cp°, it is clear from (2.12) that y4(p,+1) = va(p,—1) and,

therefore,

| 74 ll= max { | va+ I, | va- |l } (2.16)

We are finished by (2.14), (2.15) and (2.16). q.ed.

If y4 = 0, then, 04 |[M\W,= 0. The converse is also true:

Proposition 2.11 An operator A € Cp belongs to the kernel of v if and only if 0 4 vanishes

on Mp\Wp. Furthermore, we have:

kery N kero = K(H) . (2.17)

Proof: Let J, denote the C*-algebra generated by multiplications by functions in C$()
and by the operators of the form DA, where D is a first order linear differential operator

on ! with smooth coefficients of compact support. Given A,, one of these generators just
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described, we can find x € CP(R) such that xA, = A, and then 4, = 7,74, = 0, by
Proposition 2.9 . So, we have J, C ker~.

Using the nomenclature of [2], J, is the minimal comparison algebra associated
with the triple {Q, dS, H}. It can be easily concluded from [2] , Lemma VII-1-2, that
A € Cp belongs to J, if and only if 04 vanishes on M p\Wp, proving that J, D kervy, by
Proposition 2.10 .

Since kero = £p and kery = J,, the equality in (2.17) follows from [2], Theo-
rem VII-1-3. q.e.d.
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2.3 A Fredholm criterion and an application to differential

operators

As we did for the algebra .A in Chapter 1, we will now give a necessary and sufficient
criterion for an N x N-matrix whose entries are operators in Cp, regarded as a bounded
operator on L?(Q,CVN), N > 1, to be Fredholm. Let us denote L2(Q,C") by HV and by
CpN the C*-subalgebra of L(HN)

CpN == { ((Ajx)); Ajx€Cp, 1< j,k< N }.

It is easy to see that the compact ideal of £L(H") coincides with the matrices with entries

in K(H), 1. e.,
KHN) = KV = { (Kjx); Kx € K(H), 1< j,k< N}
Let us define two symbols on Cp™¥ :

N N
o4 = ((Gap)h<iksn and  v4 = ((74,,))1<5k<N

where A = ((4x)h<jk<N € CpN. The following propoition follows immediately from the

definitions above and Proposition 2.11.

Proposition 2.12 The 7" -symbol of an operator A € Cp™N is identically zero if and only

if its crN-symbol vanishes on M p\Wp. Furthermore, we have:

kera" N ker'yN = KN

Theorem 2.13 For an operator A = ((A4;x))1<jk<N € Cp™N to be Fredholm, it is necessary
and sufficient that :

(i) o’y be invertible, i. e. , the N x N-matriz (( o4;,(m))) be invertible for all
m € Mp, and

(i) 'yﬁ’ be invertible, i. e. , the N x N-matriz, with entries in C(Mgsr, Lzxs),
((74,,(m))) be invertible for all m € M.

Proof: The proof of Theorem 1.14 applies here, substituting Proposition 1.9 by Proposi-
tion 2.9 and Proposition 1.13 by Proposition 2.12 . The other small chahges required are

obvious. q.e.d.

L—J
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In order to apply this result to differential operators, it is convenient to conjugate

the 4-symbol with the discrete Fourier transform. We define:

T: Cp — C(MSL, ESIXB) (218)
A+ Ty(m)= Fily,(m)Fa, meMsg,

where Fg : L2(S') — L?%(Z), $! = {e*; 0 € R}, was defined in (1.5), and, as usual, Fy also
denotes Fy ® Ig (see Appendix).
Next we calculate I' 4 for the generators of Cp. It is obvious that, for a € C*(B),

Ta(p, ) =a, (e¥™,4+1)€ Mgy, (2.19)

and, for b € CS(R),
Tp(p, £1) = b(£o0) , independent of ¢ . (2.20)

For j € Z, F;'Y_;F; equals the operator multiplication by e/ on §! = {¢¥, 6 € R}, and
then, by (2.18) and (2.12),

Tai(p,£1) = €9? | forall (e2™%,+1)e Mgy . (2.21)
Let a € C(Q2) be of the form

at,®) = a1(t, 2)x+(4, ) + a-(t, 2)x- (1, 2) + ao(t,2) , (2.22)

where ay are continuous and 27-periodic in ¢, ac € CO(Q) and x+ € CS(R) satisfy
x+(£o0) = 1, x4 + x- = 1. By the continuity of T, (2.19), (2.20) and (2.21), it fol-
lows that

To(p, £1) = ax(6,z), for (e¥™%,+1)e Mgy . (2.23)

Note that (2.22) gives ' 4,, I'4, and T'4, , for A, as defined on page 36 .

Now we calculate FJ'K(p — M)Fy, for ¢ € R and K(7) = A(r), —7A(7) or
Dx]\(r), which is needed for obtaining I'4,, p = 4,5,6. Let us use again that —Agy has
an orthonormal basis of eigenfunctions w,,, m € N, with eigenvalues 0 < A\; < X3 < ...,

Am — 00 as m — oo, and define the unitary map

U: I¥B) — L*N)

u — (W %) meN -

e
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By the spectral theorem, the conjugate U (14 (¢ — j)2 — Ag)~/2 U1 equals the operator
multiplication by (1 + (¢ = 5)2 + Am)~1/2 on L%(N), for each j € Z, ¢ € R. The operator
]\(tp— M) € Laxp acts on
u = (uj)jez € L*(Z; L*(B))

by '. :
Alp— M)u=((1+ (v - 1)+ Do) ?)uy)jex
and, thus,

(@ U)A(p - M) (L ®U)™ = (14 (¢ - 5)*+2Am)" /2, (2.24)

where, by (1 + (¢ — )% + An)~1/2, we now mean the corresponding multiplication operator
on L?(Z)QL?(N).

Let us adopt the notation:
14 (o= D)? ~ Dg i= (Fa®U)' 1+ (0= 5)* + An)(Fa® U) . (2.25)

It is easy to see that 1+ (¢p—Dg)? — Ap is the unique self-adjoint realization of the differential
expression 1+ (¢ + i ;)% — Ay on §! x B (see Lemma 2.14). By (2.24) and (2.25) then, we
obtain:

(Fa® In) " Al — M)(Fa® In) = (14 (¢ = Do)’ ~ Dg)™/%, (2.26)

for every ¢ € R. Using that Y, = Fle~*9Fy, ¢ € R and (2.12), it follows that:
Ta(p,£1) = e"%(1 4+ (Dg — )2 — Ag) 260 | (e*™% +1) € Mgy, . (2.27)

Since, for each j € Z and each ¢ € R, U (¢ — j)(1+ (¢ — 5)2 — Ag)~ /2 U-! equals
the operator multiplication by (¢ — §)(14 (¢ — §)2 + Am)~1/2 on L3(N), we obtain, in a way

analogous to how (2.27) was obtained:

Ta, (0, £1) = e %% Dy — )1+ (Dg — )2 — Ng)~ 20 | (e27i%, +1) € Mg, . (2.28)
Here we have assumed the notation:
(¢= Do)(1+ (9= Do)? — Dg)™ 2 1= (F4 @ U (9 - )1+ (0 = )2 + Am) VAF1® U) .

For the last type of generator, we need the following lemma.




| '\

Lemma 2.14 The subspace
{u e L*(S' xB); (1+(p— Dg)® — Ag)~H2u € Cx(s! x B)}
is dense in L2(S! x B), for every ¢ € R.

Proof: The statement is true for ¢ = 0, since it

1+D02_An =1+4§1xn
is essentially self-adjoint on C*°(S! x B), by [2], Theorem IV-1-8, for example. For v €ER,
(14 (¢ = Do)* = Ag)™/*(1+ Dg® — Ay )V/?

is a Banach-space isomorphism, since it is unitarily equivalent to the multiplication by the
function on Z X N
(L4 (= )%+ Am) 2L+ 52+ Am) ™2, “

which is bounded and bounded away from zero. g.ed.
For every v € C°(S! x B), it is clear that
D Fqv = F4D,v ,

where, on the right-hand side, D is regarded as a differential expression on §! x B and, on
the left-hand side, D acts, as a differential operator on B, on each component w j € C*®(B)
of

w = (wy) ez = Faqv € L*(Z; L¥(B)) .

By Lemma 2.14, it therefore follows that

FaDa(1+ (¢ = Do) — Dg) )F;" = DL[Fu1 + (¢ — D) — Ag)/2Ff1] . (2.29)

The right-hand side of (2.29) equals D A(¢ — M), by (2.26) . We have, hence:
T ae(0,£1) = e™P[D,(1 4 (¢ — Dg)? — Ag)~/?]ei? | (2.30)

Equations (2.23), (2.25), (2.26), (2.27), (2.28) and (2.30) prove:
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Proposition 2.15 The map T’ defined in (2.18) is given on the generators of Cp (with
m = (e?™%, +1) € Mg, and T 4(p, 1) € L1y, S! = {e'; 6 € R}) by:

Ta(p,£1) = ax(6,2z), fora asin (2.22)

LA(p, £1) = €791 4 (Dg — p)? — Dg) 71/ 26

T_;o(e, 1) = 79Dy — ¢)(1 4+ (Do — ¢)? — Dg)~1/2ei¥0
Tp.a(p,£1) = e 9D (1 4+ (Dg — ¢)? — Ng)~ 20

Remark 2.16 Because of the way I' was defined, it is obvious that condition (72) of Theo-
rem 2.18 can be replaced by

(#4”) The matriz T (m) := (( T4, (m)))i<jk<n is invertible for allm € Mgy,

Our next and final objective is to find necessary and sufficient conditions for a
differential operator with semi-periodic coefficients on € to be Fredholm. Most of the ideas
and proofs in what follows are borrowed from [2], Sections VIL.3 and IX.3, where the more
general problem of finding differential expressions within reach of a Comparison Algebra is

addressed.

Proposition 2.17 Let L be an M-th order differential expression on B, with smooth coef-
ficients. The operator LAM | defined initially on the dense subspace A~M(C(Q)), can be
extended to a bounded operator A in L(H). Moreover, we have that A € Cp, 0 4 coincides

with the principal symbol of L on Wp (points of Mp over [t| < c0) and
: Moo .
La(p,+1) = e P L(1+ (Dg — 9)? — Ng) V2 e%? | (2% +1) € Mgy, .

Proof: It is easy to see that any M-th order differential expression on a compact manifold
equals a sum of products of at most M first-order differential expressions. (See, for example,

the proof of Proposition VI-3-1 of [2].) It is therefore enough to consider L of the form
L = DyD;...Dyy

where Dy, j = 1,..., M, are first order expressions. For M = 1, the proposition is true by
Theorem 2.7 and Proposition 2.15.
Using that A? = H~1, H = 1-Ag—A,, it is easy to see that, for u € A~2(C2(02)),

and D; and D, first order expressions, we have:

D1D2A2U = D1A2D2u + .D1A2[H, D2]A2’u : (231)

S 0u
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The commutator [H, D,] is a second order expression on B and can therefore be expressed

as a sum of products of at most two first order differential expressions:
P
[H,D,] =) F;G; .

J=1
This shows that, on the dense subspace A~2(C(Q)), D1 D,A? equals the operator

P

(D1A)(D3A)* + (D1A) Y (FFA)* (G;A)A € Cp
=1

where D* denotes the formal adjoint of a differential expression D.

Since 0, = 0, we get:

9D,D,A2 = 9DAODIA >

which, restricted to W p, coincides with the principal symbol of D, D,, by Theorem 2.7. It
also follows that:

P
Ippaaz = TpaThsa +Tp,a Y TrsaTaala -
Jj=1
By Proposition 2.15, we get:

P
eon‘D1D2A2(‘P’ +1)e™0 = (D1A,)(D3A,)" + DiA, Z(F;Atp)*(GjAv)Atp
Jj=1

P
= D1ALD; + D1AL)  F;G,; A2,
i=1

where A, = H;l/z, H, =1+ (Dg — ¢)? — Ag. Since [H,D,] and [H,, D] are equal (as

expressions on B), we get :
e“’T'p, p,a2(p, £1)e™° = D1A2D, + D, A2[H,, D2)AY = D1 DyA?

proving the proposition for L = D D,.

Suppose now that the proposition is true for sums of products of at most M
first order differential expressions and let L = DD, ...D M+1 be a product of first order
expressions. Define: F = D1 D; and G = D3...Dpsy;. Using the formula

LAM+L, — FAzGAM‘lu-f- FAZ[H, G]AM"'lu , uwE A—M—I(Cgo(ﬂ)) ,

the proposition follows for this L, by the same argument as above. , g.e.d.

N
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Let {Ug} be a finite atlas on B and {¢g} a subordinate partition of unity, i. e.
support ¢ C Up. Let L be a differential operator on €, acting on CV-valued functions,
locally given on Ug by

E > Apjalte )’ (2.32)
=0 |al<M; z 8:1: ) <9t
where (1 £)o = (—zm)o‘l . (—i%)a", fora € N" and |a] = a1 + ...+ a,. We will say
that L has semi-periodic coefficients if the matrices

Agjal(t,z) i= ¢p(2)Agj0(t )

regarded as functions on 2, have as entries functions of the type (2.22). It is easy to see

that this definition is independent of the choice of atlas on B. We want to decide when
L: HM(Q,cN) — L[*a,cV)

is a Fredholm operator, assuming that I has semi-periodic coefficients. Here M denotes

the order of L, M = max{M;+ j, j=1,..., M}.

We also denote by A the operator A ® Iy on £(L3(Q, C")), where Iy denotes the
N X N identity matrix. Since A commutes with 3 and L =37 Lg, for Lg := ¢gL, we get:

= “iﬂ,j,a(t»‘”)(—_)a o

ﬂ?j’a

10
(= ¥ —)IAI AMlel=5
After multiplying (+ ) above by x4, € CX(Up), Xg,52(%) = 1 for z in the support of
Ag o, we still get the same operator and x4 ; ,(z )(3Z)e is now a differential expression
defined on B. We can therefore apply Proposition 2.17 and conclude that LAM ¢ cpN
Using, moreover, that o, ,,_,,_; = 0 for |a| + j < M, we get:
opam(t,z;7,€) = Z Z fiﬂ,j,a(t,x) £%rd | [t| < oo .
B lal+j=M
The right-hand side of the previous equation coincides with the principal symbol of L
restricted to the co-sphere bundle of . Invertibility of the o-symbol is therefore equivalent
to uniform ellipticity of L, by Remark 2.8.
The operator-valued symbol I'y s is also given by Proposition 2.17 (and Propo-
sition 2.15):

—ipf 0 _ T4+ M
T Tinlip ) = 3 4000 ) (5" (g = A

-
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where we have used that A, and 3% commute. We have denoted by .Aif;' ;.o the 2m-periodic

continuous functions such that

fiﬂ’j,a(t,m) - x.,.(t).ti"!"j’a(t,w) - x_(t)fig'j,a(t,:c) € CO(Q).

(See (2.22).)
Let Lf;((,o) denote the differential expressions on §! x B

iy . it (9.0 (L19 a0 i
L3 () = 2 Z AZ ol "")(75 f%"‘P) )
3=0lai<M;
and define the operator
L*(p) := Y LE(p) : HM(S' xB,cN) — L*(s! x B,CV). (2.33)

8

Since A, is an isomorphism from L2($! x B,CN) onto HM(S! x B,CN), the above consid-

erations, together with Theorem 2.13 and Remark 2.16 prove the following theorem.

Theorem 2.18 Let L denote an M-th order differential operator on Q of the form (2.32),

with continuous semi-periodic coefficients, and let L*(yp) denote the differential operators
on S! x B defined in (2.88). Then

L: HM(Q,cV) — 1%q,cM)

is Fredholm if and only if L is uniformly elliptic and L*(¢) are invertible for all p € [0,1].

TS
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Appendix A

Review of basic facts

Here we establish notation and state without proofs basic facts that are used
throughout this dissertation. (See also a list of symbols before Chapter 1.)

Our Hilbert spaces are always separable. Indeed, they are all L2-spaces on a
measure space X, where X is either a Riemmanian manifold with a finite atlas considered
with its surface measure, or X is a countable set with the counting measure. By X or Y in
this Appendix, we mean one of these spaces.

By V ® W, we denote the tensor product of two vector spaces V and W. By
H1®H,, we denote the Hilbert-space tensor product of the Hilbert spaces H; and Hs, i. e. ,
the completion of H; ® Hy with respect to its natural inner product. We also use the symbol

® to denote the product v@ we VW ofv eV and we W.

Proposition A.1 (c. f. [22], for ezample) For X and Y measure spaces as above,
LA(X)QLAY) = L} (X x ¥) = L}(X; L¥(Y)) , (A.1)

where the natural identification (u ® v)(z,y) = u(z)v(y) is assumed and v € L2 (X X Y) is

regarded as the L*(Y)-valued function z — u(z,).

We denote by Lx or L(L?(X)) the algebra of bounded operators on L2(X), and
by Kx or X(L?(X)) its ideal of compact operators. Given A € Lx and B € Ly, AQ B
denotes the bounded operator of £ xxy defined by

(A® B)(u®v) = Au® Bv .

s ]
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Given two subalgebras A C Lx and B C Ly, A® B denotes the algebra generated by all
A ® B such that A € A and B € B, and AXB denotes the closure of AQ B.

Proposition A.2 (c. f. [1], for exzample) We have:
Kxxy = Kx®Ky (A.2)

We denote by CB(X,.A) the C*-algebra of bounded continuous functions on X
taking values on a C*-subalgebra A C Ly. By CO(X, A), we denote the C*-subalgebra of
CB(X, A) consisting of the functions that vanish at infinity. For compact X, we simply
write C(X, A).

Proposition A.8 (See [3], for ezample) A function A € CB(X, A) defines an operator in

Lxxy by mapping v € L2(X; L¥Y)) into A(z)u(z). The norm of this operator equals the
norm of A in CB(X, A).

Proposition A.4 The vector space generated by
{a(r)K; a€ CO(X) and K € Ky}
is dense in CO(X,Ky). Using Proposition A.3, this means that
CO(X)®Ky = CO(X,Ky) ,
where CO(X) is naturally interpreted as a subalgebra of Lx.
Sketch of a Proof: Let {¢;, #2,...} be an orthonormal basis of L2(Y') and let Py denote the
projection onto the subspace generated by {¢1,...,¢n}. Then An(z) := PnvA(z)PN is in

CO(X)® Ky for A € CO(X,Ky), and An(z) — A(z) in Ky, as N — oo, uniformly in
z€eX. q.e.d.

Example: Suppose that K;(¢) € Kg, for every ¢ € R and j € Z, where B is
the compact manifold of Chapter 2. Furthermore, assume that, for each ¢, the sequence
K°(p) := (K j(¢))jez is bounded. By Proposition A.3, K °(p) € Lzxa, for each ¢. Suppose
in addition that K ® defines an Lzxg-valued continuous function on §! = {e?™¥; ¢ € R}.

We then get K° € Lgiyzxg and

K [le = sup{|| K;(#) llcgs 7€Z, pE€R}.

sl xZx®

It is easy to check, moreover, that, if & ;(¢) — 0 as j — oo for each ¢ € R, we get

K° € C(s" )®Kzxm -
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