
Join Point Selectors

Cristiano Breuel Francisco Reverbel
Department of Computer Science

University of São Paulo
{cmbreuel,reverbel}@ime.usp.br

Abstract
One of the main issues in modern aspect-oriented programming
languages and frameworks is the expressiveness of the pointcut
language or mechanism. The expressiveness of pointcut languages
directly impacts pointcut quality, a property that can be decisive
for the effectiveness of aspect implementations. In this paper we
propose join point selectors as a simple extension mechanism for
enriching current pointcut languages with constructs that play the
role of “new primitive pointcuts”. Join point selectors allow the
creation of pointcuts with greater semantic value. Although similar
mechanisms can be found in some existing approaches, the under-
lying concept has not yet been clearly defined nor fully explored.
We present a simple architecture for adding join point selectors to
an existing aspect-oriented framework. We show examples of usage
of join point selectors to enhance the quality of pointcuts and make
aspect development easier. We also show how join point selectors
can be used as framework-specific selectors, which allow aspects
to cross the boundary of a given framework while still respecting
the modularity of that framework.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Aspect-Oriented Programming, Pointcut Lan-
guages

Keywords AOP, Semantic Pointcuts, Extensibility, Join Point Se-
lectors

1. Introduction
We can think of aspect-oriented programming (AOP) as a way
of optimizing the creation of computer programs. The constraints
to this optimization are the abilities of humans and computers.
Fortunately, these two sets of abilities are complementary. Humans
excel at pattern recognition and abstraction, but are very inefficient
and prone to error in repetitive tasks. Computers, on the other hand,
are extremely efficient and immune to errors in repetitive tasks,
but do not have the human capabilities in abstraction and pattern
recognition. Thus, the way AOP achieves the optimization is by
improving the distribution of tasks: it allows humans to express
crosscutting concerns in the form of patterns, and lets the computer
apply these patterns in all necessary points.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop SPLAT ’07 March 12-13, 2007 Vancouver, British Columbia, Canada.
Copyright c© 2007 ACM 1-59593-656-1/07/03. . . $5.00.

The objective of our work is to further improve such task distri-
bution, by raising the level of abstraction in the creation of point-
cuts. The concept we propose, join point selectors, is a mechanism
for creating pointcuts with greater semantic value. We believe that
dealing with higher levels of abstraction enables developers to be
more efficient and to reduce errors in pointcut programming. In ad-
dition, the open nature of our mechanism makes it possible to use
heterogeneous artifacts as input for pointcut expressions.

This paper is organized as follows: Section 2 discusses the prob-
lem we want to solve and introduces the notion of pointcut quality;
section 3 presents the concept of join point selector; section 4 de-
scribes our prototype implementation; section 5 contains examples
of join point selector usage; section 6 discusses related work; and
section 7 presents our concluding remarks and future work ideas.

2. Motivation
The AspectJ language [11] introduced a model for AOP that has
been widely accepted and adopted as a reference for many other
aspect-oriented languages and frameworks. These include indus-
try projects such as JBoss AOP [9], Spring AOP [10], and As-
pectWerkz [21]. As pointed out in [13], they all share similar ca-
pabilities and semantics, despite the different syntaxes and imple-
mentation approaches.

Although the pointcut languages in these tools are sufficiently
capable for current practical use, there has been some criticism
about their limitations. The most frequent concern is that a pointcut
may be “broken” by changes to the base program (e.g. [4, 7, 15,
19]). Another issue is the difficulty or impossibility of expressing
some pointcuts clearly and accurately [12].

We have also identified a reason, which in our view has not
been extensively discussed before, for making pointcut languages
more flexible: the use of meta information about the code as se-
lection criteria for pointcuts. This kind of meta information is very
common in modern frameworks (e.g. Hibernate [1], Spring [10],
Struts [20]). The only particular case that has been adequately cov-
ered and supported by existing aspect-oriented languages is when
this meta information is encoded as Java 5 annotations. However,
in the most general case when the meta information can be stored
in other ways (e.g. comment tags, XML files, proprietary configu-
ration files), conventional aspect-oriented languages are not well-
suited. This topic is explored in section 5.5.

2.1 Pointcut Quality
To better discuss the issues that arise in comparing pointcut lan-
guages, it is useful to define some criteria for comparing point-
cut definitions. We define pointcut quality as the extent to which a
given pointcut meets the following requirements:

• Resilience: changes in the base program should not affect the
pointcut negatively. More specifically, when a new join point is
added to the program or an existing one is modified, the join

Figure 1. The Figure Editor class and aspect structure

point should be included in the set selected by the pointcut if
and only if it matches the conditions intended by the pointcut
author. This property influences the pointcut’s evolvability and
the modularity of the aspect implementation. A good method-
ology for analyzing this characteristic is found in [19].

• Clarity of purpose: a pointcut definition should make its intent
clear to whoever reads it, and should be expressed in terms that
are as close as possible to the problem at hand, to achieve good
comprehensibility. That makes changes to it easier, because the
changer knows what the pointcut should do.

The ability that a programmer has of creating high quality
pointcuts is limited by the expressiveness of the pointcut language.
Thus, our objective is to provide tools that allow programmers to
create pointcuts of better quality, according to this definition. In
the following section, we present an example that illustrates this
concept.

2.2 Example
One of the most frequent examples regarding AspectJ usage, the
figure editor [11], is also the most commonly used to expose its
shortcomings (e.g. [4, 5, 14]). It consists of a graphical editor with
several types of elements (squares, circles etc.) whose display must
be updated every time that the state of the elements changes. The
program manages elements in the display as instances of class
FigureElement and its subclasses (figure 1). We want to cre-
ate a “display updating” aspect that calls the Display.redraw()
method when the state of the elements is altered.

The classic solution is an aspect that selects methods based
on a naming convention, such as picking all methods in class
FigureElement and its subclasses whose names start with “set”.
This is a low quality pointcut, because it is not very resistant to
change (for instance, if a method that changes the state and does not
start with “set” is implemented, it will not be selected) and does not
clearly express its intent (the reader must guess it from the method
prefix).

Another solution is to create an annotation that must be associ-
ated with updater methods, for example, @FigureUpdater. This is
an improvement on the clarity of the pointcut, but it is still not very
resistant to change, because one can forget to use the annotation.
Therefore, the quality of this pointcut is intermediary.

If we could specify a pointcut that explicitly selected all meth-
ods that alter fields read by the Display.redraw() method, then
such pointcut would be of high quality. First, because it states ex-
actly what we intend to capture, and second, because it is resistant
to change.

This last type of pointcut is the one that we wish to allow
programmers to create.

3. Concept
In order to allow programmers to create pointcut definitions with
higher semantic value, and therefore enhance pointcut quality, we
propose a new construct in aspect-oriented languages – the join
point selector1.

A join point selector is a function that, for a given set of argu-
ments and a joint point, determines whether the join point fulfills a
certain condition. When used to compose a pointcut expression, the
selector indicates the fitness of the join point as part of the pointcut.

Selectors can operate either at weave time or at run time. A
weave time selector may have an associated run-time version, such
that the latter will be called if there is not enough information to
decide the selection at weave time.

In current aspect-oriented languages and frameworks, the con-
cept of selectors is represented by what is sometimes called “prim-
itive pointcuts” or “primitive pointcut designators”, such as “call”,
“execution” etc. However, the programmer cannot define new se-
lectors, because join point selection algorithms are hard coded into
the weaver. In some research papers, similar mechanisms have been
proposed with different names, like “pointcut designator” or sim-
ply “pointcut”. We consider that our proposed naming is important
because it distinguishes the algorithm (the selector) from its use in
specific instances (the pointcut expressions). The examples below
illustrate this distinction:

call is a selector.

call(void *->setSize(..)) is a pointcut expression.

The core characteristics that define join point selectors, and
distinguish them from similar mechanisms, are the following:

1. They can receive arguments. When used in pointcut expres-
sions, a selector can receive arguments that are taken into ac-
count by its algorithm to make a decision.

2. They can be combined by simple expressions. Selectors can
be combined by simple boolean expressions to create a pointcut
definition.

3. They operate both at weave time and at run time. A simple
and uniform mechanism is used to allow selectors to use weave-
time information, run-time information, or both.

These characteristics make selectors a basic unit of functional-
ity. In pointcut expressions, they perform the same role that meth-
ods perform in object-oriented languages and advice perform in as-
pects. Some of these characteristics are found in previously avail-
able mechanisms, but the combination of all of them makes join
point selectors more expressive and easy to use.

4. Implementation
As a proof of concept, we implemented the selector functionality as
an extension to the JBoss AOP [9] framework. The choice of JBoss
AOP as a basis for the implementation was not made for conceptual
reasons, but due to practical factors. Our approach is not limited to
this specific framework, and could be implemented in other aspect-
oriented languages or frameworks that have similar concepts.

The implemented extension consists of:

• A modification to the pointcut grammar to recognize selectors
in pointcut expressions;

1 In [18], the term “selector language” is used as a general denomination for
pointcut languages and other mechanisms for join point selection. We think
that the risk of confusion between these terms is low, because they are used
in different contexts.

• The addition of new elements to the XML and annotation bind-
ings to allow for the declaration of selectors;

• Changes in the weaver to add calls to run-time selectors where
necessary.

4.1 Basic Architecture
A selector is an ordinary Java class that implements the interface
org.jboss.aop.selector.Selector. Listing 1 shows this in-
terface’s declaration.

Although we defined the concept of a selector as a function, we
decided to implement it as an interface with several methods, one
for each type of join point. That was done for practical reasons,
since JBoss AOP already had a Pointcut interface with similar
methods, making it convenient to use a similar approach. We can
think of a Selector object as a way of grouping related selector
functions.

The interface has two groups of methods, one for weave-time
selectors and the other for their run-time versions. In each group,
there is one method to treat each type of primitive pointcut (method
calls, attribute get and set, etc.). Thus, each method has a counter-
part in the other group. All methods receive a set of parameters that
represent the join point to be evaluated. They also receive a refer-
ence to an Advisor object, which gives access to some JBoss AOP
facilities. Finally, they receive a list of SelectorParam objects that
encapsulate the arguments given in the pointcut expression where
the selector is being used.

In the weave-time selector methods, the types of the parameters
that reify join point shadows [8] (e.g. CtMethod m, CtField f)
are part of the Javassist [3] API. Javassist is a framework for struc-
tural reflection that reads and manipulates Java bytecode, but pro-
vides a high-level API that allows the programmers to deal with
elements of the Java language, instead of bytecode details. This
framework is used as a basis for all weave-time manipulation in the
JBoss AOP framework. Through this API, selector developers have
access to the program structure in a more powerful way than the
standard Java reflection API would allow. This makes it possible
to create selectors that examine the internal structure of constructs
such as classes or methods in order to select join points. An exam-
ple of such a selector will be presented in section 5.2. It would also
be possible for the selector programmer to manipulate the bytecode
through the Javassist API. In most situations, however, there will
be no need for explicit bytecode manipulation by programmer, as
the weaver automatically inserts calls to run-time selector methods
wherever such calls are necessary.

In our current prototype, selectors do not yet have all the expres-
siveness that they might have, because the only type of argument
that a selector can receive is a String. In future versions, we intend
to remove this constraint.

Every weave-time selector returns a value of the enumeration
type SelectionValue, whose definition is given in listing 2. This
type can have one of three values: TRUE (the join point matches
the condition), FALSE (the join point does not match the condition)
and CHECK_AT_RUNTIME (it is not possible to decide without run-
time information). If a weave-time selector returns this last value,
the weaver is required to insert a call to the respective run-time
selector into the join point shadow in the base code. Figure 2 shows
this sequence of events.

This architecture is designed to allow selectors to use both
weave and run-time information, without complicating the pointcut
language. It also relieves the selector programmer from having to
use explicit code generation and bytecode manipulation techniques,
which can be hard to understand and apply.

public enum SelectionValue {
TRUE, // Matches
FALSE, // Does not match
CHECK_AT_RUNTIME // Needs run-time information to decide

}

Listing 2. The SelectionValue enumeration type

Figure 2. The operation of a selector

4.2 Declaring a Selector
For the weaver to recognize a new selector, this selector must be
declared in one of two ways: in an XML descriptor or through
an annotation in the class itself. JBoss AOP support both of these
methods for its current features, so we followed the same style. In
listings 3 and 4 we see examples of the Java 5 annotation and XML
declaration styles, respectively.

The annotation can take only one optional parameter, the selec-
tor name to be used in pointcut expressions. If omitted, the selector
name will be the class name (without package specification). The
XML version needs another parameter, the fully qualified name of
the class that implements the selector.

@SelectorDef(name="parameterTypeIs")
public class ParameterTypeSelector implements Selector {
...

Listing 3. A Java 5 annotation selector declaration

<selector name="parameterTypeIs"
class="org.jboss.test.aop.ParameterTypeSelector"/>

Listing 4. An XML selector declaration

To avoid the need to implement all methods in the Selector in-
terface when only some of them are necessary, we created the class
SelectorHelper. This class implements all selector methods by
returning either SelectionValue.FALSE or false, depending on
the method type. To use these default implementations, the pro-
grammer can inherit from this class instead of directly implement-
ing the interface.

4.3 Usage
A selector is used as a clause in a pointcut expression, combined
with other selectors by boolean operators. It has the same syntax as
a method call: the selector name, followed by a comma-separated
list of arguments, which is enclosed by parentheses. In our cur-
rent prototype, the only type of argument supported is String, so
the arguments must be in quotes. Because pointcut expressions in
JBoss AOP are specified either as Java annotation arguments or
XML tag properties, both of which are already in quotes, the in-
ner quotes must be escaped following each representation’s con-
ventions.

public interface Selector {

/* Weave-time selector methods */
SelectionValue matchesExecution(Advisor adv, CtMethod m, List<SelectorParam> selectorParams);
SelectionValue matchesExecution(Advisor adv, CtConstructor c, List<SelectorParam> selectorParams);
SelectionValue matchesConstruction(Advisor adv,CtConstructor c, List<SelectorParam> selectorParams);
SelectionValue matchesGet(Advisor adv, CtField f, List<SelectorParam> selectorParams);
SelectionValue matchesSet(Advisor adv, CtField f, List<SelectorParam> selectorParams);
SelectionValue matchesCall(Advisor callingAdv, MethodCall mc, List<SelectorParam> selectorParams);
SelectionValue matchesCall(Advisor callingAdv, NewExpr mc, List<SelectorParam> selectorParams);

/* Run-time selector methods */
boolean matchesExecution(Advisor adv, Method m, List<SelectorParam> selectorParams);
boolean matchesExecution(Advisor adv, Constructor c, List<SelectorParam> selectorParams);
boolean matchesConstruction(Advisor adv, Constructor c, List<SelectorParam> selectorParams);
boolean matchesGet(Advisor adv, Field f, List<SelectorParam> selectorParams);
boolean matchesSet(Advisor adv, Field f, List<SelectorParam> selectorParams);
boolean matchesCall(Advisor adv, AccessibleObject within, Class calledClass, Method calledMethod, Object target,

Object[] args, List<SelectorParam> selectorParams);
boolean matchesCall(Advisor adv, AccessibleObject within, Class calledClass, Constructor calledCon,

Object[] args, List<SelectorParam> selectorParams);

}

Listing 1. The Selector Interface

Listings 5 and 6 show how to use selectors in pointcut expres-
sions defined through Java 5 annotation and XML bindings, respec-
tively.

@Bind(pointcut = "parameterTypeIs(\"0\",\"java.lang.Integer\")")
public Object advice(Invocation invocation) throws Throwable {

...

Listing 5. A Java 5 annotation pointcut definition using a selector

<bind pointcut=
"parameterTypeIs("0","java.lang.Integer")"
>

<interceptor class="com.acme.SomeAspect"/>
</bind>

Listing 6. An XML pointcut definition using a selector

5. Examples
In the following sections, we give examples of how selectors can
be used to improve pointcut quality. These examples are meant as
a sample of the anticipated uses of join point selectors. Due to the
open nature of such constructs, it is not possible to anticipate all of
their practical applications.

Most of the listings in the examples are simplified for clarity.
We omitted code sections that perform tasks that are not central to
this discussion, such as error handling.

5.1 Parameter Type
Our first example is borrowed from [4] (with a slight generaliza-
tion), and consists of a selector that picks methods with a parame-
ter of a specified type in the specified position. For example, it can
select all methods whose first parameter is a String. The sole pur-
pose of this example is to show how selectors could be employed
to solve a problem that does not have a simple solution in conven-
tional aspect-oriented languages, even though it does not seem to
have much practical use. Listing 7 shows this selector’s implemen-
tation.

The first method is the weave-time selector. If the type of the
parameter at the specified position is the same or a subtype of

@SelectorDef
public class ParameterTypeIs extends SelectorHelper {

/** Weave-time method execution selector */
public SelectionValue matchesExecution(Advisor advisor,

CtMethod m, List<SelectorParam> params) {
// Gets selector parameters
int paramIndex = Integer.parseInt(params.get(0).getValue());
String paramTypeName = params.get(1).getValue();
// Obtains type of the method parameter
CtClass parType = m.getParameterTypes()[paramIndex];
// Obtains CtClass whose name is given by the first selector
// parameter, which is the desired type
CtClass argType = ClassPool.getDefault().get(paramTypeName);
// Tests for compatibility between types. The rule is the
// same as for Java type casts.
if (parType.subtypeOf(argType)) {
return TRUE;

} else if (argType.subtypeOf(parType)) {
return CHECK_AT_RUNTIME;

} else {
return FALSE;

}
}

/** Run-time method execution selector */
public boolean matchesExecution(Advisor advisor, Method m,

List<SelectorParam> params) {
// Gets selector parameters
int paramIndex = Integer.parseInt(params.get(0).getValue());
String paramTypeName = params.get(1).getValue();
// Obtains type of the method parameter
Class parType = m.getParameterTypes()[paramIndex];
// Obtains Class object for the wanted type
Class argType = null;
try {
argType = Class.forName(paramTypeName);

} catch (ClassNotFoundException e) {
}
// Tests for run-time compatibility between types.
return (parType.isInstance(argType));

}
}

Listing 7. A selector to pick methods with a parameter that is
compatible with a specified type

the desired type, the join point is matched. If it is a supertype of
the desired type (for example, it is an Object while we want an
Integer), it defers the decision to run time. In any other case, the
join point does not match. The second method tests at run time
whether the concrete argument given in the call is compatible with
the desired one.

This example shows how we can use both weave and run-
time information to build a selector algorithm in a simple way. It
makes decisions at weave time whenever possible, thus minimizing
the impact of run-time checks. This implementation could still be
optimized, for example, by caching some objects.

5.2 Updater
As seen in section 2.2, the Figure Editor example cannot be imple-
mented in conventional aspect-oriented languages with high point-
cut quality. To solve the problem in a better way, it is necessary
to identify the methods that alter the state of the figures, which is
later read by the redraw method. Here, we propose a specific selec-
tor that uses weave-time information to determine which methods
could potentially alter the state. This is a simple solution based only
on static information, but more elaborate ones could also be devel-
oped with the selector mechanism. Figure 8 shows an outline of
how the solution could be achieved.

@SelectorDef(name="updatesStateReadBy")
public class UpdatesStateReadBy extends SelectorHelper {

/** Weave-time method execution selector */
public SelectionValue matchesExecution(Advisor advisor,

CtMethod m, List<SelectorParam> params) {
// Gets selector parameters
String readerTypeName = params.get(0).getValue();
String readerMethodName = params.get(1).getValue();
// Obtains the reader method
CtClass readerType =
ClassPool.getDefault().get(readerTypeName);

CtMethod readerMethod =
readerType.getDeclaredMethod(readerMethodName);

// Gets the sets of read and updated fields
Set<CtField> readFields =
getFieldsReadByMethod(readerMethod);

Set<CtField> updatedFields =
getFieldsUpdatedByMethod(m);

// Compares sets
boolean result = readFields.removeAll(updatedFields);
return (result ? TRUE : FALSE);

}
/**
* Finds (possibly a superset of) the set of all fields
* updated by the given method, including those those updated
* within calls to other methods (searches recursively).
*
* @param m the method to examine.
* @return a set of fields updated by m.
*/

private Set<CtField> getFieldsUpdatedByMethod(CtMethod m) {
...

}
/**
* Finds (possibly a superset of) the set of all fields
* read by the given method, including those those read
* within calls to other methods (searches recursively).
*
* @param m the method to examine.
* @return a set of fields read by m.
*/

private Set<CtField> getFieldsReadByMethod(CtMethod m) {
...

}
}

Listing 8. A selector to pick join points that update fields read by
a given method

The selector’s private methods getFieldsUpdatedByMethod
and getFieldsReadByMethod, which are not shown, make the
recursive searches for fields that are updated or read in the control
flow of a given method. Because of inheritance and conditionals
that might affect the result, these methods work with the worst case
scenario. They guarantee that no correct answer will be left out,
but might also have false matches. More elaborate solutions have
been proposed ([14], [19]), involving the creation of new pointcut
languages. We believe that such solutions could be implemented
as selectors, without the need for a new language, but we have not
validated this hypothesis yet.

The quality of the pointcuts created with this selector will be
higher, because the pointcut will be more resilient to changes and
its intent will be more clear to the reader than a naming pattern.

5.3 Reflective Calls
Method calls using reflection APIs are becoming very common,
especially in frameworks and middleware. Conventional aspect-
oriented languages make it a difficult task to advise these calls
in the caller side, because their pointcut languages do not have
enough expressiveness to filter those kinds of indirect calls. The
usual solution is to do some filtering in the advices, instead of doing
it in the pointcuts, a practice that breaks the intended semantics of
these AOP constructs.

Our proposed selector (figure 9) makes creating pointcuts with
this kind of call as simple as with conventional calls.

@SelectorDef(name="reflectiveCall")
public class ReflectiveCall extends SelectorHelper {

/** Compile-time method execution selector */
public SelectionValue matchesCall(Advisor callingAdvisor,

MethodCall methodCall, List<SelectorParam> params) {
CtMethod invoke = ClassPool.getDefault()

.get("java.lang.reflect.Method")

.getDeclaredMethod("invoke");
// Checks if the called method is Method.invoke(). If so,
// the joinpont must be checked at run time, otherwise it
// can be discarded.
if (methodCall.getMethod().equals(invoke)) {
return CHECK_AT_RUNTIME;

} else {
return FALSE;

}
}

/** Run-time method execution selector */
public boolean matchesCall(Advisor advisor,

AccessibleObject within, Class calledClass,
Method calledMethod, Object target,
Object[] args, List<SelectorParam> selectorParams) {

// Pre-process selector parameters
String methodClassName = selectorParams.get(0).getValue();
String methodName = selectorParams.get(1).getValue();
// Obtains Method object for the target method
Class argType = null;
try {
argType = Class.forName(methodClassName);

} catch (ClassNotFoundException e) {
return false;

}
Method method = getMethod(argType, methodName);
Method targetMethod = (Method) args[0];
return targetMethod.equals(method);

}
/**
* Gets the method with the given name in the given class
*/

private Method getMethod(Class c, String methodName) {
...

}
}

Listing 9. A selector for reflective method calls

When a call is made through reflection, the called method
can be known only at run time. Thus, the weave-time part of
this selector simply flags all calls to the invoke() method in
java.lang.reflect.Method as requiring run-time analysis. The
run-time part captures the target method and returns true if that
method is the one whose name was specified as a selector parame-
ter.

5.4 Domain-Specific Languages
Many domain-specific languages (DSLs) have been proposed to
tailor aspect-oriented programming to specific problem domains.
One of the reasons for creating these specific languages is the lack
of an adequate level of expressiveness in pointcut languages of
conventional AOP approaches. In some cases, it is not possible to
express pointcuts with the necessary detail. In others, a solution
would be possible by a combination of pointcuts and advice, but
it would not be very elegant or practical. We believe that, in many
cases, the need for a specific language could be avoided with the
use of selectors.

An example is the Doxpects language, proposed in [24]. It is a
DSL for processing XML documents in Web Services messages. It
includes a pointcut language for selecting specific elements inside
messages that are exchanged through SOAP communication. This
way, the user does not have to worry about where in the base
program the advice should be bound, and how to extract the desired
elements from the message.

The language includes two new pointcut designators2, header
and body, that match the header and the body of a SOAP message.
These pointcuts have as arguments XPath queries, which select
specific elements inside SOAP messages.

Additionally, the language also defines two new qualifiers for
advice, request and response. These indicate whether the message
to be matched is part of a request or a response message. We could
also think of these qualifiers as part of the pointcuts, because they
help in the filtering of the join point shadows where the advice will
be inserted.

In figure 10, we outline a similar solution for SOAP request
messages by developing a specific selector. First, at weave time,
this selector chooses the appropriate point to insert the run-time
checks by returning CHECK_AT_RUNTIME when the correct join
point shadow is evaluated. This could also be done with a conven-
tional pointcut expression, but the selector hides the details about
the framework from the user. In the run-time part of the selector, it
uses the XPath expression that was given as an argument to perform
the match.

While this solution does not offer all the advantages of the orig-
inal Doxpects proposal, it fulfills its most important goal, which is
creating semantic pointcuts for the processing of SOAP messages.
Other features, like the conversion of document elements to Java
objects of specific types, could be added in the future (see section
7). The advantage of our solution over the DSL one is that it does
not require the user to adopt a specific language.

5.5 Frameworks
Many frameworks use meta information to add semantics to a pro-
gram. In some situations, it may be desirable to use this meta infor-
mation as a selection criteria to apply aspects to elements of a pro-
gram. In conventional aspect-oriented languages, the programmer
is left with the task of identifying ways of reading and using this
meta information. Depending on how the framework stores it, such
as annotations or XML, this task can be easy or very hard to ac-

2 In the terminology that we introduce in this paper, these constructs could
be better named selectors, but we kept the author’s original terminology in
this section.

@SelectorDef(name="request")
public class WsRequestSelector extends SelectorHelper {

/** Weave-time method execution selector */
public SelectionValue matchesCall(Advisor callingAdvisor,

MethodCall methodCall, List<SelectorParam> params) {
if (isWsRequestMethod(methodCall)) {
return CHECK_AT_RUNTIME;

} else {
return FALSE;

}
}

/** Run-time method execution selector */
public boolean matchesCall(Advisor advisor,

AccessibleObject within, Class calledClass,
Method calledMethod, Object target, Object[] args,
List<SelectorParam> selectorParams) {

// Gets selector parameters
String xpathExpression = selectorParams.get(0).getValue();
// Gets the XML Document
Document docroot = getWsDocument(target, args);
// Matches the document to the desired elements, given by
// the XPath query in the selector parameters
XPath xpath = XPathFactory.newInstance().newXPath();
try {
NodeSet resultNodes = (NodeSet) xpath.evaluate(
xpathExpression, docroot, XPathConstants.NODESET);

if (resultNodes != null && resultNodes.getLength() > 0) {
return true;

} else {
return false;

}
} catch (XPathExpressionException e) {
return false;

}
}
/**
* Determines if the given method call is the appropriate
* point to insert a run-time check for WS XML request
* documents. It does so with knowledge of the WS framework
* and API.
*/

private boolean isWsRequestMethod(MethodCall methodCall) {
...

}
/**
* Gets the DOM document for the Web Services request.
*/

private Document getWsDocument(Object target,
Object[] args) {

...
}

}

Listing 10. A selector for XML elements in Web Services requests

complish. Either way, though, the users will have to create specific
code to deal with the framework’s meta information representation,
which they do not control. Such a scenario leads to fragile pointcuts
that may break the modularity of a system, instead of improving it.

This problem could be solved by framework-specific selectors.
These selectors could be created as parts of the frameworks, to
be used by the programmers. As an example, consider Hibernate
[1], a popular framework for object/relational mapping. Figure 11
presents a selector for Hibernate property setters. The selector uses
the framework itself to load the meta information. Thus, the mod-
ularity is not broken, and the programmer working with the frame-
work gains a high-level mechanism to deal with the framework ab-
stractions.

To illustrate how this selector can improve pointcut quality, we
can compare some attempts for creating a pointcut that picks setters
of properties of type java.util.Date.

The first example, shown in listing 12, uses a naming pattern to
match the setters. This pointcut works under two assumptions: (1)

@SelectorDef(name = "hibernatePropertySetter")
public class HibernatePersistentPropertySetterSelector

extends SelectorHelper {

/** Weave-time method execution selector */
public SelectionValue matchesExecution(Advisor advisor,

CtMethod m, List<SelectorParam> params) {
SelectionValue result = FALSE;
// Gets the method’s class
Class declaringClass = m.getDeclaringClass().toClass();
// Gets a Hibernate Session Factory
SessionFactory sessionFactory =
new Configuration().configure().buildSessionFactory();

// Gets the class’s persistent properties an iterates
// over them
ClassMetadata cmd =
sessionFactory.getClassMetadata(declaringClass);

String[] persistentProperties = cmd.getPropertyNames();
for (String prop : persistentProperties) {
// Gets the JavaBeans method used to set the property
PropertyDescriptor pd = new PropertyDescriptor(prop,

declaringClass);
Method writeMethod = pd.getWriteMethod();
// If the methods are the same, we found a match
if (writeMethod.equals(m.getName())) {
result = TRUE;
break;

}
}
return result;

}
}

Listing 11. A selector for Hibernate property setters

that all classes under the package com.acme.someapp are mapped
for persistence, and (2) that all methods starting with “set” in
those classes are setters for persistent properties. If any of these
assumptions fails, the pointcut will fail. For example, if we have a
caching system for the persistent objects that uses a Date field to
store the time of its last update, the setter for this field would be
incorrectly selected by this pointcut.

Another drawback is that a programmer looking at this pointcut
will not immediately know that its intent is to capture setters for
persistent properties. A comment would have to be added for that
to become clear. Therefore, this pointcut has low quality: it is not
resistant to change and does not communicate its intent clearly.

@Bind(pointcut =
"execution(void com.acme.someapp.*->set*(java.util.Date))")

Listing 12. A pointcut based on naming conventions

In the second example, shown in figure 13, we use the specific
hibernatePropertySetter selector to choose only the methods
that are setters for persistent properties. We still have a clause to
filter execution of methods in a specific package and with specific
parameter and return types, but we do not rely on a naming con-
vention anymore. This pointcut would not match the setter for the
last update time field cited previously. Additionally, it is clear to
the programmer that we are picking only methods that are setters
for Hibernate properties. Therefore, we have enhanced the pointcut
quality considerably. Another advantage of this approach is that the
access to framework-specific meta information is encapsulated in-
side the framework classes that are used by the selector. This way,
artifact boundaries are crossed in a way that is transparent to the
aspect programmer.

A point that must be stressed is that selectors like the one
presented here would better be provided as parts of the framework
on which they rely. Such an arrangement preserves the modularity

of the framework and shields the application/aspect programmer
from framework-specific details.

@Bind(pointcut =
"execution(void com.acme.domain.*->*(java.util.Date)) " +
"AND hibernatePropertySetter()")

Listing 13. A pointcut based on the hibernatePropertySetter spe-
cific selector

6. Related Work
Several approaches have been proposed for improving the expres-
siveness of pointcut languages. Some authors have proposed the
use of logic languages as a basis for pointcut languages. In [6], a
new Aspect-Oriented language, called Andrew, is proposed. It uses
a logic language, similar to Prolog, for the definition of pointcuts.
The base language over which the aspects are applied is Prolog,
and this language’s meta-information facilities are used as a basis
for the join point model. In [7], the authors explain what features
of their language make it a good fit for defining pointcuts.

In [14], the authors propose the AO language Gamma, which is
based on a simplified version of Java, for the base program, and on
Prolog for pointcut definition. The main focus of this approach is
on dynamic pointcuts. It uses a join point model that is based on
a trace of the program execution, with timestamps associated with
each point of the execution. This allows for very easy definition of
pointcuts that depend on the order of events, like cflow. However,
this approach has serious limitations for practical use, and the
authors regard the overcoming of these as future work. Alpha [19]
is a logic-based, language related to Gamma, that uses a less elegant
model, but is more tractable in practice. It uses four sources of
information: a representation of the program’s abstract syntax tree,
a representation of its heap, the static type of every expression in
the program, and a representation of the program execution trace.

In our view, logic languages are good for expressing the types
of pointcuts that are most commonly used today: the ones that use
only the basic join point model. However, they would be very hard
to use in situations like the one we presented in section 5.5, when
other sources of data are necessary besides the basic join point
model. By using an imperative language, preferably the same in
which the base program is written, users can take advantage of
practically any data source they need.

In [5], the authors propose the use of the functional language
XQuery as a replacement for current pointcut languages. They use
an XML representation of Java bytecode as a base over which to run
the queries. They consider that their approach allows for more flex-
ible pointcut definitions, and also that their definitions are clearer.
The main shortcoming of their approach is that it only has weaving-
time information available. It also requires building the XML byte-
code representation, which is an additional step to the weaving pro-
cess that could create complications. Also, XQuery may not be the
most suitable language for defining complex pointcuts, and it re-
quires the programmer to learn another language.

Josh [4] has a lot in common with our approach. It proposes
an extension mechanism that is based on the same language as the
base program, just as ours. It also uses the Javassist bytecode ma-
nipulation framework to obtain weaving-time information about the
program. The main difference is that it does not deal with run-time
information. If a run-time check is necessary, it must be explic-
itly inserted into the program through the bytecode manipulation
framework. Such a task, not needed in our approach, can be diffi-
cult and error-prone.

The AOP part of the Spring framework [10] defines all of its
pointcuts through Java classes. It has a mechanism for the com-
bination of weaving-time and run-time checks that is very similar

to ours. However, it does not provide a language to easily combine
pointcuts, relying instead on a set of verbose XML definitions. That
is a shortcoming that we think is better addressed in our work. Ad-
ditionally, it does not provide access to a structural reflection frame-
work for join point selection, relying exclusively on the standard
Java API. That makes it difficult to use Spring AOP for implement-
ing more powerful selectors, such as the one in section 5.2.

7. Conclusion and Future Work
Current pointcut languages are limited in mechanisms to allow the
construction of new abstractions. Most of them consist of a fixed
set of building blocks that can only be combined by boolean op-
erators. By opening to the programmer the possibility of creating
new building blocks with the full power of a general-purpose pro-
gramming language, higher levels of abstraction can be achieved
without sacrificing the simplicity of pointcut creation.

Our work shows that extension mechanisms for pointcut lan-
guages can increase pointcut quality. It also enables the creation
of new types of pointcuts that were not previously possible, such
as those that depend on meta information that is outside of the
source code itself. In particular, it lets framework implementors de-
fine framework-specific selectors, which allow aspects to cross the
boundary of a given framework and its different artifacts while still
respecting the modularity of that framework.

Our current prototype still has some limitations, which are not
technically difficult to remove. Allowing only Strings as selector
arguments is the most notable of these limitations, whose removal
we regard as future work.

Another feature that will make join point selectors even more
useful is the possibility of aggregating meta information and mak-
ing such information available to advice implementers. That would
be especially useful in selectors that take advantage of external
meta information. This extension would also make it possible to
implement a feature of the Doxpects DSL that the example in sec-
tion 5.4 does not provide: the transformation of XML elements into
Java objects, which are made available to advice programmers.

Finally, the combination of selectors could be easier if we made
the following changes to their semantics:

• Instead of receiving one join point as an argument, a selector
would receive a set of them;

• Instead of returning a boolean, it would return a subset of the
set that was received as an argument.

These slight changes would make it possible to use the result
of one selector as an argument to another one. For example, the
updatesStateReadBy selector of section 5.2 could be divided in
two parts: one would select all fields read by a given method and
the other would select all methods that update any of a given set of
fields. That way, both parts could be reused independently.

In order to implement this approach, however, the architecture
of the weaver would have to be considerably changed, bringing
new performance and functionality challenges. Further research
is needed to determine if these challenges can be satisfactorily
overcome.

References
[1] Christian Bauer and Gavin King. Hibernate in Action. Manning,

2005.

[2] Johan Brichau and Michael Haupt. Survey of aspect-oriented
languages and execution models. Technical Report AOSD-Europe-
VUB-01, AOSD-Europe, May 2005.

[3] Shigeru Chiba. Load-time structural reflection in java. In Elisa
Bertino, editor, ECOOP, volume 1850 of Lecture Notes in Computer
Science, pages 313–336. Springer, 2000.

[4] Shigeru Chiba and Kiyoshi Nakagawa. Josh: an open AspectJ-like
language. In Lieberherr [17], pages 102–111.

[5] Michael Eichberg, Mira Mezini, and Klaus Ostermann. Pointcuts as
functional queries. In Wei-Ngan Chin, editor, APLAS, volume 3302
of Lecture Notes in Computer Science, pages 366–381. Springer,
2004.

[6] K. Gybels. Using a logic language to express cross-cutting through
dynamic joinpoints. In Pascal Costanza, Günter Kniesel, Katharina
Mehner, Elke Pulvermüller, and Andreas Speck, editors, Second
Workshop on Aspect-Oriented Software Development of the German
Information Society. Institut für Informatik III, Universität Bonn,
February 2002. Technical report IAI-TR-2002-1.

[7] Kris Gybels and Johan Brichau. Arranging language features for
pattern-based crosscuts. In Mehmet Akşit, editor, Proc. 2nd Int’ Conf.
on Aspect-Oriented Software Development (AOSD-2003), pages 60–
69. ACM Press, March 2003.

[8] Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In
Lieberherr [17], pages 26–35.

[9] JBoss Inc. JBoss AOP Reference Documentation.

[10] Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu,
Rob Harrop, Thomas Risberg, Darren Davison, Dmitriy Kopylenko,
Mark Pollack, Thierry Templier, and Erwin Vervaet. Spring -
Java/J2EE Application Framework Reference Documentation.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. In J. L. Knudsen, editor,
Proc. ECOOP 2001, LNCS 2072, pages 327–353, Berlin, June 2001.
Springer-Verlag.

[12] Gregor Kiczales. The fun has just begun. keynote. In AOSD 2003,
Boston, March 2003.

[13] Mik Kirsten. Aop@work: Aop tools comparison, part 1: Language
mechanisms. Technical report, IBM Developer Works, February
2005.

[14] Karl Klose and Klaus Ostermann. Back to the future: Pointcuts as
predicates over traces. In Leavens et al. [16].

[15] Christian Koppen and Maximilian Störzer. PCDiff: Attacking the
fragile pointcut problem. In Kris Gybels, Stefan Hanenberg, Stephan
Herrmann, and Jan Wloka, editors, European Interactive Workshop
on Aspects in Software (EIWAS), September 2004.

[16] Gary T. Leavens, Curtis Clifton, and Ralf Lämmel, editors. Founda-
tions of Aspect-Oriented Languages, March 2005.

[17] Karl Lieberherr, editor. Proc. 3rd Int’ Conf. on Aspect-Oriented
Software Development (AOSD-2004). ACM Press, March 2004.

[18] Karl J. Lieberherr, Jeffrey Palm, and Ravi Sundaram. Expressiveness
and complexity of crosscut languages. In Leavens et al. [16].

[19] Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expressive
pointcuts for increased modularity. In Andrew P. Black, editor,
ECOOP, volume 3586 of Lecture Notes in Computer Science, pages
214–240. Springer, 2005.

[20] Apache Struts Project. http://struts.apache.org/.

[21] AspectWerkz Project. http://aspectwerkz.codehaus.org/.

[22] Dominik Stein, Stefan Hanenberg, and Rainer Unland. An UML-
based aspect-oriented design notation. In Gregor Kiczales, editor,
Proc. 1st Int’ Conf. on Aspect-Oriented Software Development
(AOSD-2002), pages 106–112. ACM Press, April 2002.

[23] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice
and dynamic join points in aspect-oriented programming. ACM
Transactions on Programming Languages and Systems, 26(5):890–
910, September 2004.

[24] Eric Wohlstadter and Kris De Volder. Doxpects: aspects supporting
xml transformation interfaces. In AOSD ’06: Proceedings of the 5th
international conference on Aspect-oriented software development,
pages 99–108, New York, NY, USA, 2006. ACM Press.

