
Sunrise Project

Object

Database

Adapter

Programmer’s Guide and Reference Manual

Francisco Reverbel

Advanced Computing Laboratory

Los Alamos National Laboratory

Los Alamos, NM 87545

August, 1996

Abstract

This document describes the Object Database Adapter (ODA) developed as part of

the Sunrise Project at Los Alamos National Laboratory. Chapter 1 is an introduction

to the adapter services and architecture. Chapter 2 is a programmer’s guide for ODA

users. Chapter 3 is a reference manual of the ODA API. While the first chapter

addresses general Object Database Adapter issues, the remaining two chapters are

aimed at the Sunrise ODA release for Orbix 2.x and ObjectStore 4.x.

ii

Contents

1 Introduction 1

1.1 Why an Object Database Adapter? 1

1.1.1 Persistence of CORBA Objects: the Issues 2

1.1.2 Persistence of CORBA Object References 4

1.1.3 Storability of CORBA Object References 4

1.2 The Sunrise ODA . 5

1.2.1 Object Persistence Approaches 5

1.2.2 Support for Local Transactions 7

1.2.3 The ODA Architecture . 7

1.2.4 Dependency Upon ORB and ODBMS Features 8

2 Programmer’s Guide 11

2.1 Getting Started . 11

2.1.1 Defining IDL Interfaces . 11

2.1.2 Writing Implementation Classes 12

2.1.3 Obtaining CORBA References to Persistent Objects 14

2.1.4 Generating the Database Schema 16

2.1.5 Writing the Server Mainline 19

2.1.6 Compiling and Linking the Library Server 21

2.2 Additional Topics . 25

2.2.1 Server-Side Exception Handling 25

2.2.2 Deleting Persistent CORBA Objects 29

2.2.3 Referential Integrity of Persistent CORBA Objects 29

2.2.4 Database Transactions . 31

2.2.5 Implementation Objects Not Managed By ObjectStore 32

iii

2.2.6 IDL Interfaces Defined Within a Module 36

2.2.7 Persistent Strings . 36

3 Reference Manual 37

3.1 The class ODA . 38

3.1.1 ODA::initialize . 39

3.1.2 ODA::multi op transaction mode 40

3.1.3 ODA::commit transaction 41

3.1.4 ODA::abort transaction . 42

3.1.5 ODA::register update op . 43

3.1.6 ODA::Delete . 44

3.2 Persistence Directives and ODA-Generated Functions 45

3.2.1 ODA def server . 46

3.2.2 ODA def persistent . 47

3.2.3 ODA def activated . 48

3.2.4 ODA Def Server . 50

3.2.5 ODA Def Persistent . 51

3.2.6 ODA Def Activated . 52

3.3 Exception Handling Directives . 54

iv

1

Introduction

The Sunrise ODA is an Object Database Adapter that provides a general, application-

independent way of using an ODBMS back-end to make CORBA objects persistent.

Initially targeted at Iona’s ORB, Orbix, and Object Design’s ODBMS, ObjectStore,

the ODA was later ported to a relational engine, mSQL, accessed in an object-oriented

fashion (as an ODBMS), through a simple smart pointer-based object/relational me-

diator. Subsequently the ODA was ported to a second ORB, Visigenic’s VisiBroker

for C++ (formerly ORBeline). Currently there are ODA releases for:

• Orbix and ObjectStore;

• Orbix, mSQL, and a simple object/relational mediator;

• VisiBroker and ObjectStore.

Future plans include an ODA release for a full-fledged relational DBMS (initially

Oracle), accessed through a commercially available object/relational mediator.

1.1 Why an Object Database Adapter?

An Object Database Adapter allows CORBA object implementations to be written

in the database programming language of the ODBMS, a language that incorporates

persistence into the programming environment. This is usually an extension of the

C++ language that provides the programmer with a unified, single-level model of the

memory hierarchy. “Single-level store model” means that no explicitly programmed

1

read/write calls are employed to copy objects back and forth between main memory

and magnetic storage. The ODBMS performs these tasks automatically, allowing the

application to access persistent objects in the same way it accesses transient objects.

The object implementation — a CORBA server — is still responsible for managing

the persistent state of the objects it implements, but the object implementor’s task

is much simpler in ODBMS programming environment. Besides persistence, other

database features – data consistency in the presence of concurrent accesses, crash

recovery, and so forth – are available to the object implementation.

In existing database systems, regardless of their data model (object-oriented or

relational), database clients must have some knowledge of the database schema. In

the case of an object-oriented DBMS, clients need to know the object layout. In a

relational DBMS, views can be used for data independence. But relational clients

still need to know the external (view level) schema. By contrast, an Object Database

Adapter makes database objects accessible to CORBA clients without exposing the

database schema to these clients. The data members and the layout of a persistent

CORBA object remains private, only its interface (a set of methods) is made public.

This is specially interesting for web browser access to databases. With the integration

of the Java language into the ORB environment, Java applets can interact with per-

sistent CORBA objects through domain-specific interfaces, without any knowledge of

how the objects are actually stored.

ORB/ODBMS integration, as realized by an Object Database Adapter, leads to

ORB-connected multidatabases. Together with OTS, the Object Transaction Service1

specified by the OMG, it enables the construction of distributed object databases

that are truly heterogeneous, even with respect to the DBMS software running on the

various database server nodes.

1.1.1 Persistence of CORBA Objects: the Issues

The gap between object access times in the ORB and in the ODBMS environment is

the first issue an Object Database Adapter must address. Because CORBA clients

access objects via remote method invocation, access times for CORBA objects are

1OTS implements the two-phase commit protocol in a CORBA environment. Its model can be

viewed as an object-oriented extension of the X/Open DTP model.

2

expressed in milliseconds. Because ODBMSs keep an object cache at the client side,

ODBMS clients can access objects much faster: access times for ODBMS objects are

typically expressed in microseconds.

Due to the this performance gap, an Object Database Adapter cannot force all

accesses to the objects in a database to be made through the ORB remote method

invocation mechanism. In the case of a large collection of very small objects, the

overhead would be unacceptable. Instead, the ODA should let the object implementor

choose a suitable subset of database objects, presumably the higher level ones, to be

accessed as CORBA objects. Since this subset may still be large, individual regis-

tration of its objects with the ORB is not practical. The ODA should allow a subset

of database objects to be accessed through the ORB, without requiring an explicit

registration call for each object.

Moreover, in the common case of an ODBMS that adds database features to C++,

an object implementation (a CORBA server) cannot simply store in an object data-

base the CORBA objects it implements:

1. It would be a waste of space: a C++ CORBA object has ORB-specific data

members that should not be stored in the database. It also has a pair of hidden

vbase and vtable pointers for each IDL interface in its inheritance chain up to

CORBA::Object.

2. More importantly, the CORBA operations duplicate and release update the

object’s reference count. If the reference count were actually stored in the data-

base, every operation on the object would have to be performed within an update

transaction (because duplicate and release appear everywhere).

3. Yet more importantly, ORB implementations keep a hash table of active objects:

a new entry is inserted into this table whenever the constructor of a CORBA

object is invoked. In an ODBMS, the constructor of a persistent object is only

invoked when the the object is added to the database. As far as the ORB is

concerned, CORBA objects stored by other processes would not be active (the

ORB keeps a table of active objects per process).

An Object Database Adapter has to solve these problems, ideally in a way that

makes persistent CORBA objects appear exactly like ordinary database objects. As

3

much as possible, object implementors should be unaware that a persistent CORBA

object does not really live in the database.

1.1.2 Persistence of CORBA Object References

Besides providing persistence to CORBA objects, an Object Database Adapter must

also provide persistence to the corresponding object references. In CORBA, persis-

tence of object references means that “a client that has an object reference can use it

at any time without warning, even if the (object) implementation has been deactivated

or the (server) system has been restarted”.

With persistence of object references, it makes perfect sense for a client to store an

object reference for later use. References to persistent CORBA objects implemented

by server X can be stored by server Y (a client of server X) and vice-versa, thereby

enabling the construction of ORB-connected multidatabases. In such a multidatabase,

references to remote objects are used to express relationships between CORBA objects

implemented by different servers. If distributed transactions are needed, they can be

supported by a TP monitor that implements the Object Transaction Service specified.

1.1.3 Storability of CORBA Object References

Because an object reference is opaque and ORB-dependent, CORBA provides opera-

tions that convert an object reference to string and vice-versa. Object references are

stored as strings; upon retrieval they must be converted back to their native form.

Translation to and from string format provides maximum flexibility, allowing ob-

ject references to be kept in any media. In an ODBMS environment, however, ob-

ject storage and retrieval are transparent to the programmer. The need for explicit

translation of stored references does not prevent the construction of ORB-connected

multidatabases, but is unnatural in the context of an object database: ODBMS users

expect stored references that behave like any other database object.

Transparent storability of CORBA object references is yet another desirable feature

of an Object Database Adapter. It eliminates the need for explicit object reference

conversions, both before storage and after retrieval, and allows transparent use of

stored references to invoke methods on possibly remote objects.

4

1.2 The Sunrise ODA

The present document describes the Object Database Adapter developed as part of

the Sunrise Project and currently being used by the TeleMed and TeleFlex projects

at Los Alamos National Laboratory. Henceforth referred to as ODA, this adapter

• provides an application-independent way of storing C++ CORBA objects in an

object database, and

• makes CORBA object references persistent, but not transparently storable2.

1.2.1 Object Persistence Approaches

To solve the problems of storing C++ CORBA objects in an object database, the ODA

uses the delegation (tie) approach to interface implementation. Only implementation

objects are stored in the database. The corresponding CORBA objects (tie objects)

are automatically instantiated by the ODA whenever they are needed and deleted

when not needed. CORBA references to such tie objects are generated and made

persistent by the ODA, which

1. embeds a stringfied ODBMS reference to the corresponding implementation ob-

ject into the id (ReferenceData) field of a CORBA reference to a tie object;

2. provides an object activation function that (re)constructs the tie object, using

the information contained in its id.

Even though CORBA objects are not fully stored, clients can use and manipulate

these objects as if they lived in an object database. This is called pseudopersistence.

In the pseudopersistence approach, all relationships between CORBA objects

“stored” in a database are actually relationships between the corresponding imple-

mentation objects. Because the traversal of database relationships by a CORBA

server involves only persistent implementation objects, not full CORBA objects, such

a traversal is performed at ODBMS speeds. The only CORBA objects that need to

2A second and experimental adapter, with enhanced functionality, was also produced by the

Sunrise Project. In addition to the ODA features, the enhanced adapter provides also transparent

storability of CORBA object references. This document does not describe the experimental adapter.

5

be activated are the ones whose references are passed to CORBA clients. To this

end, the ODA provides the CORBA server with a primitive that returns a reference

to the CORBA object associated with a given implementation object. For efficient

implementation of this primitive, the ODA maintains an in-memory table of active

pseudopersistent objects. The pseudopersistence approach is supported by the ODA

directives ODA def persistent and ODA Def Persistent.

The ODA also supports mere persistence of implementation objects. This is a

simpler approach that makes implementation objects (not full CORBA objects) per-

sistent, but does not make CORBA object references persistent. Hence, persistence

of implementation objects is not an actual solution to the problems of object persis-

tence. The usefulness of this option is limited to “top-level objects”. Among the many

objects implemented by a CORBA server, there is usually a top-level one, which rep-

resents the server itself. The top-level object of a server is known to its clients, which

use it to start interacting with the server. A top-level object uses simple persistence

of implementation and remains active as long as its server is active, because under

this approach it can be assigned an id (marker, in Orbix terminology) arbitrarily

chosen by its server3. With this scheme, a server can choose an id known to its

clients, which in turn use this id to locate the server’s top-level object4. Persistence

of implementation objects is supported by the ODA directives ODA def server and

ODA Def Server.

Persistence of implementation is employed for the top-level object in a CORBA

server, pseudopersistence applies to other CORBA objects. Both approaches, how-

ever, are aimed at CORBA objects whose implementation objects live in an object

database. In these approaches, neither the ODA nor the CORBA server has to deal

with the activation and deactivation of implementation objects, performed automati-

cally by the ODBMS as it transfers objects back and forth between main memory and

magnetic storage. While this is the typical situation, sometimes it is desirable to have

3ODA-assigned object reference ids are used in the pseudopersistence approach.

4Locating servers by their ids is an interim solution. Such practice, supported by Orbix in

substitution to an actual name service, is not in the spirit of the OMG architecture: according to

CORBA, object ids should only be meaningful to the object implementations themselves. This use

of ids will be dropped when implementations of the CORBA Name Service become available.

6

implementation objects activated under control of the CORBA server, so that their

state can be dynamically retrieved from a variety of data sources. One of these data

sources may be an object database kept by the CORBA server. Flat files and other

CORBA servers are also possible data sources. The ODA addresses these situations

with a third persistence approach, pseudopersistence with activation of implementa-

tion objects. This is a variation of the pseudopersistence approach, in which the ODA

dynamically instantiates not only CORBA objects (tie objects), but also their imple-

mentation objects. The persistent state of an implementation object can be retrieved

from various data sources, including an object database. Because implementation ob-

jects are application-specific, the server writer must provide an activation function for

each implementation class. The ODA calls the activation function whenever it needs

to create an instance of the implementation class. Pseudopersistence with activation

of implementation objects is supported by the ODA directives ODA def activated

and ODA Def Activated.

1.2.2 Support for Local Transactions

In an ODBMS, every access to a persistent object must be performed within a trans-

action. The ODA enforces this rule by automatically starting a transaction before each

IDL-defined operation on a persistent object begins execution (if there is no transac-

tion already active), and by committing (or aborting) the auto-started transaction at

the end of the operation. In the ODA’s default transaction mode, each IDL operation

corresponds to a database transaction.

Sometimes multiple IDL operations must be performed within a single transaction.

The ODA addresses these situations by providing functions that allow grouping a

sequence of operations in a single transaction.

1.2.3 The ODA Architecture

The ODA architecture is shown in the figure below. Rather than a replacement of

the Basic Object Adapter (BOA) specified by CORBA, the ODA is an add-on to

the BOA, implemented as a library that uses and extends the BOA services. No

ORB-specific information is kept in the database. Hence, a change of ORB requires

no schema evolution. It is even possible for a a single database to be simultaneously

7

accessed by CORBA servers based upon different ORBs.

ORB Core

IDL
Skeleton

ODA

Object
Implementation

BOA

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State
 State

Transient Object

 Methods

ODBMS Server

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State

Implementation Object

 Methods State
 State

Persistent Object

 Methods

Figure 1.1: The ODA architecture.

1.2.4 Dependency Upon ORB and ODBMS Features

Among the Orbix and VisiBroker features not generally available in all ORBs, the

following ones are used by the ODA:

• full support to object activation, through user-defined loader (Orbix) or activator

(VisiBroker) classes5;

• support to the delegation approach to interface implementation;

• incoming request pre-marshal and outgoing reply post-marshal handlers.

The ODBMS requirements are minimal: pseudopersistence uses only object iden-

tity (ODBMS object references), plus the ability to convert ODBMS references to

strings and vice-versa. Because these are fairly common ODBMS features, other

ODBMSs can be employed instead of ObjectStore. Porting the ODA to other ODBMS

involves only simple changes in the ODA code. With the use of an object/relational

5Although object activation is in the CORBA standard, this feature is listed here because it is

neither fully defined by CORBA nor supported by all ORB implementations.

8

mediator, even a relational DBMS can be employed. In this case, primary keys play

the role of ODBMS references. The mSQL release of ODA demonstrates the applica-

bility of the pseudopersistence scheme to relational DBMSs.

9

10

2

Programmer’s Guide

This chapter shows how a server writer implements persistent CORBA objects using

the ODA release for Orbix 2.x and ObjectStore 4.x. It assumes that the reader is

familiar with the C++ programming language, and has previous knowledge of Orbix

and ObjectStore.

2.1 Getting Started

Consider a simple application in which a CORBA server manages information on

the collection of books in a library. In this bare-bones example, a Book object only

has the attributes author and title. A Library object has a single attribute, the

library’s name, and two operations: add Book, which adds a new book to the library’s

collection, get Book list, which returns a list of all the books in the library. This

“library server” example will be fully developed in the subsections that follow.

2.1.1 Defining IDL Interfaces

Because the ODA realizes the single-level store model, object persistence is transpar-

ent to CORBA clients, which do not have to invoke any “store/restore” operations.

ODA usage has no effect on the IDL interfaces available to clients: interfaces of

persistent objects are defined exactly like interfaces of transient objects. Figure 2.1

shows the file library.idl, which contains the definitions of the interfaces Book and

Library.

11

interface Book {

readonly attribute string author;

readonly attribute string title;

};

typedef sequence<Book> BookList;

interface Library {

readonly attribute string name;

void add Book(in string name, in string author);

BookList get Book list();

};

Figure 2.1: File library.idl.

2.1.2 Writing Implementation Classes

Interfaces defined in IDL are given as input to the Orbix IDL compiler. For each

interface, this compiler generates an pair of C++ classes: an interface class and an

skeleton class. Interface classes have the same names as their corresponding IDL

interfaces, and contain the stub member functions called by clients.

Skeleton classes are employed at the server side only. As the term “skeleton” sug-

gests, these classes do not implement interfaces. They merely act as a path from the

object adapter to the actual implementation classes provided by the object implemen-

tor. These concepts are defined by CORBA and apply to any ORB implementation,

regardless of whether the ODA is used or not.

The single requirement introduced by the ODA is on how skeleton and implemen-

tation classes relate to each other: the delegation (tie) approach must be used. In

this approach, the IDL compiler generates a special form of skeleton class, called a

tie. For each such class, the object implementor provides a corresponding implemen-

tation class. Tie objects (instances of tie classes), which “tie” implementation objects

(instances of implementation classes) to IDL interfaces, are then created at runtime.

In the case of the interfaces in Figure 2.1, the Orbix IDL compiler generates the

interface classes Book and Library. The corresponding implementation classes, say

12

Book impl and Library impl1, are provided by the server writer. Instead of using the

Orbix TIE macros to “tie together” interface and implementation classes, the server

writer uses special ODA macros, as shown in Figure 2.2. By using an ODA macro

instead of an Orbix TIE macro, the server writer both ties together an interface and

an implementation class and specifies that the corresponding CORBA objects (tie

objects) should be made persistent by the ODA. Orbix TIE macros are used for

transient objects only.

#include "library.hh" // IDL-generated interface and skeleton classes

#include <oda.h> // ODA header file

... // the definitions of classes Book impl and Library impl go here

ODA def persistent(Book,Book impl)

ODA def server(Library,Library impl)

Figure 2.2: Specifying that Book impl and Library impl implement persistent

CORBA objects.

Two ODA macros — ODA def persistent and ODA def server — appear in Fig-

ure 2.2. The macro

ODA def persistent(interf,impl)

is used for interface classes of objects made persistent through ObjectStore. An

interface class that corresponds to the “top-level” object of a server, however, is an

exception to this rule. For such a class, the macro

ODA def server(interf,impl)

is used instead. Although a CORBA server may implement a large number of objects,

it typically has one top-level object, which represents the server itself. Within a

server, ODA def server is used for the interface class of the server’s top-level object,

and ODA def persistent is used for all other interface classes whose implementation

objects live in ObjectStore databases.

1Names of implementation classes are completely arbitrary.

13

Referring to Figure 2.2, the library server uses ODA def server for class Library,

because this is the interface class of the server’s top-level object. This example uses

ODA def persistent just for class Book.

Persistent relationships between CORBA objects are realized in terms of the un-

derlying implementation objects. In the library server example, a Library has a

collection of Books. Figure 2.3 shows how this fact is expressed at the level of the

implementation classes Library impl and Book impl, using the ObjectStore template

class os List.

// implementation class for Book

class Book impl {

...

};

// implementation class for Library

class Library impl {

public:

...

private:

...

os List<Book impl*>& book list; // n.b.: Book impl, not Book

};

Figure 2.3: The relationship between a library and its books is expressed as a rela-

tionship between Library impl and Book impl objects.

2.1.3 Obtaining CORBA References to Persistent Objects

By following object relationships expressed at the level of implementation classes, the

server code reaches implementation objects. Whenever the corresponding CORBA

objects are needed, they can be obtained via calls to the ODA.

Suppose that the library server has a pointer to an implementation object of class

Book impl, and wants the corresponding CORBA object, of class Book. The function

Book ptr ODA persistent Book(Book impl* p);

14

returns a Book ptr (an object reference to a Book) given a pointer to a Book impl.

The C++ code for this function is generated by the ODA, as a result of the expansion

of the macro call

ODA def persistent(Book,Book impl)

The server writer does not need to provide a prototype for ODA persistent Book;

the prototype is generated by the macro call ODA def persistent(Book,Book impl).

Normally such a macro call will be placed in a header file, which will be included by

any source files that use the function ODA persistent Book. In general, a macro call

ODA def persistent(interf,impl)

declares and defines the ODA-generated function

interf ptr ODA persistent interf (impl* p);

Figure 2.4 shows how the operation get Book list uses ODA persistent Book to

get CORBA references to persistent Book objects. In each call, the argument to the

function ODA persistent Book is the corresponding implementation object, of class

Book impl, retrieved from the book list. Note that the server code does not call

duplicate on the Book references obtained from ODA persistent Book, because this

function already returns duplicated references.

BookList* Library impl::get Book list(CORBA::Environment&) const {

CORBA::ULong len = book list.cardinality();

Book ptr* buf = BookList::allocbuf(len);

for (CORBA::ULong i = 0; i < len; i++)

buf[i] = ODA persistent Book(book list.retrieve(i));

return new BookList(len, len, buf, 1);

}

Figure 2.4: Using ODA persistent Book to translate pointers to Book impl objects

into references to Book objects.

A call to the ODA is the only way the library server can translate a pointer to a

Book impl object into a reference to a persistent Book object. If this Book object is

15

not currently active, the ODA creates a tie to the implementation (Book impl) object

passed to ODA persistent Book, and embeds a stringfied ObjectStore reference to

this implementation object into the id field of the Book object reference. Object

references returned by calls to the ODA are persistent, in the sense specified by

CORBA.

2.1.4 Generating the Database Schema

Database schema generation is performed with ObjectStore’s schema generator, ossg,

by following the procedure described in the ObjectStore documentation. Unfortu-

nately, ossg does not yet accept some C++ constructs generally accepted by C++

compilers. Because these constructs appear in Orbix header files and in header files

generated by the Orbix IDL compiler, such files cannot be exposed to ossg. Con-

ditional compilation must be used to circumvent this problem, as illustrated by Fig-

ures 2.5, 2.6, and 2.7.

Figure 2.5 shows file schema.cc, the schema definition file for the library example.

// This file is not compiled with CC.

// Instead, it is processed by ossg (ObjectStore’s schema generator),

// which creates the database schema.

#include <ostore/ostore.hh>

#include <ostore/manschem.hh>

#ifndef SCHEMA

#define SCHEMA

#endif

#include "library.h" // contains "#ifndef SCHEMA " directives

void dummy() {

OS MARK SCHEMA TYPE(Library impl);

OS MARK SCHEMA TYPE(Book impl);

}

Figure 2.5: File schema.cc, the schema definition file of the library example.

16

The symbol SCHEMA will be #defined during schema generation only. Header files

included by the schema definition file should use #ifndefs to hide from ossg all Orbix

header files, IDL-generated header files, and CORBA-defined types.

Figures 2.6 and 2.7 show the file library.h, which contains the complete decla-

rations of the implementation classes in the library server. Since this file is included

by schema.cc, it uses directives “#ifndef SCHEMA ” to hide from ossg the IDL-

#ifndef LIBRARY H

#define LIBRARY H

#ifndef SCHEMA

#include "library.hh" // IDL-generated interface and skeleton classes

#endif

#include <oda.h> // ODA header file

#include <aux/pstring.h> // auxiliary persistent string class, String

// implementation class for Book

class Book impl {

public:

Book impl(const char* author, const char* title);

virtual ~Book impl();

static os typespec* get os typespec(); // for ObjectStore

#ifndef SCHEMA

char* author(CORBA::Environment& env) const {

return author.corba string();

}

char* title(CORBA::Environment& env) const {

return title.corba string();

}

#endif

private:

String author;

String title;

};

Figure 2.6: File library.h, which declares the implementation classes of the library

example.

17

// implementation class for Library

class Library impl {

public:

Library impl(const char* name = "");

virtual ~Library impl();

static os typespec* get os typespec(); // for ObjectStore

#ifndef SCHEMA

char* name(CORBA::Environment& env) const {

return name.corba string();

}

void add Book(const char* name, const char* author,

CORBA::Environment& env);

BookList* get Book list(CORBA::Environment& env) const;

#endif

private:

String name;

os List<Book impl*>& book list; // n.b.: Book impl, not Book

};

// ODA directives

#ifndef SCHEMA

ODA def server(Library,Library impl); // top-level obj in server is a Library

ODA def persistent(Book,Book impl); // Books are made persistent by the ODA

#endif // SCHEMA

#endif // LIBRARY H

Figure 2.7: File library.h, which declares the implementation classes of the library

example (continued).

generated header file library.hh, the CORBA-defined type CORBA::Environment,

and the IDL-defined types Library, Book, and BookList. When inserting these

#ifndefs, care must be taken to ensure that the declarations handled to ossg (the

ones in effect when SCHEMA is #defined) are equivalent to the declarations handled

to the C++ compiler (the ones in effect when SCHEMA is not #defined) with respect

to the memory layout of objects. For schema equivalence rules, see the chapter on

schema evolution in the ObjectStore User’s Guide.

18

2.1.5 Writing the Server Mainline

Figures 2.8 and 2.9 show the file server.cc, which implements the main function of the

library server. This Orbix server is also an ObjectStore client; it gives CORBA clients

access to objects persistently stored in an ObjectStore database. As such, its mainline

has initialization calls to both Orbix and ObjectStore. It also calls ODA::initialize,

the initialization function of the ODA.

#include <iostream.h>

#include "dbname.h"

// one and only one source file must #define ODA DEFS before including

// oda.h (since library.h includes oda.h, we are doing it here).

#define ODA DEFS

#include "library.h"

CORBA::ORB ptr orb;

int main(int argc, char **argv)

{

// ObjectStore setup

objectstore::initialize();

os collection::initialize();

OS ESTABLISH FAULT HANDLER;

os database* db;

try {

// initialize ORB

orb = CORBA::ORB init(argc, argv, "Orbix");

// open the database

db = os database::open(app db name, 0, 0664);

// initialize ODA

ODA::initialize();

// register update operations with the ODA

ODA::register update op("Library", "add Book");

Figure 2.8: File server.cc, the CORBA server mainline

19

// start a database transaction and look for the Library impl object

os transaction::begin(os transaction::update);

os database root* a root = db->find root("Library impl");

if (!a root) { // then create it

a root = db->create root("Library impl");

a root->set value(

new(db, Library impl::get os typespec()) Library impl(),

Library impl::get os typespec()

);

}

// get the Library impl object

Library impl* lib impl = (Library impl*)

a root->get value(Library impl::get os typespec());

// create the top-level server object, a tie to this Library impl

ODA server(Library,Library impl) lib(lib impl);

// server is ready to handle requests

CORBA::Orbix.impl is ready("LibraryDB", 0);

// end of transaction, changes are committed to the database

os transaction::commit();

// start the server event loop

CORBA::Orbix.processEvents(CORBA::Orbix.INFINITE TIMEOUT);

}

catch (const CORBA::SystemException& excep) {

cout << "Server exception: " << endl;

cout << (CORBA::SystemException*) &excep << endl;

return 1;

}

catch (...) {

cerr << "Unexpected server exception" << endl;

}

db->close();

OS END FAULT HANDLER;

return 0;

}

Figure 2.9: File server.cc, the CORBA server mainline (continued)

20

The ODA ensures that every IDL operation is executed within a database trans-

action. Its default transaction mode, used by the library server, is transaction per

operation. In this mode, the ODA starts and ends transactions so that each operation

is encompassed by an individual transaction. Read-only transactions are used by

default. The call to ODA::register update op in Figure 2.8 tells the ODA to use an

update transaction in the case of the operation add Book of the Library interface.

Before calling impl is ready on CORBA::Orbix, the server mainline creates the

top-level server object, an instance of the class ODA server(Library,Library impl).

This is a “tie class” that ties together the top-level interface class Library and its

implementation class Library impl. Its declaration is generated by the expansion of

the macro call

ODA def server(Library,Library impl)

in file library.h (see Figure 2.6).

The top-level server object is created by the line

ODA server(Library,Library impl) lib(lib impl)

of server.cc (see Figure 2.9). This line is a variable declaration. It declares and

defines the variable lib, of type ODA server(Library,Library impl), which is ini-

tialized to a server object that corresponds to the implementation object lib impl.

Finally, note the definition of the symbol ODA DEFS in Figure 2.8. The ODA macros

ODA def server and ODA def persistent expand into declarations and definitions of

ODA-generated classes and functions. While the declarations may appear in many

source files, the definitions should appear just once in all source files. If the symbol

ODA DEFS is #defined by the time oda.h is included, both the declarations and the

definitions are generated. Otherwise, only declarations are generated. One and only

one source file must #define ODA DEFS before including the server header files that

call the macros ODA def server and ODA def persistent. These header files must

include oda.h. In the library example, library.h is the only such header file.

2.1.6 Compiling and Linking the Library Server

Most of the C++ code for the library example was already presented. The file

library.cc, which contains member function definitions for classes Book impl and

21

Library impl, is shown in Figure 2.10. (One such member function was already

presented in Figure 2.4. For completeness, it appears again in Figure 2.10.)

#include "library.h"

Book impl::Book impl(const char* author, const char* title)

: author(author), title(title) {}

Book impl::~Book impl() {}

Library impl::Library impl(const char* name)

: name(name),

book list(os List<Book impl*>::create(os segment::of(this))) { }

Library impl::~Library impl() {}

void Library impl::add Book(const char* name, const char* author,

CORBA::Environment&) {

book list.insert(new(os segment::of(this),

Book impl::get os typespec()) Book impl(name, author));

}

BookList* Library impl::get Book list(CORBA::Environment&) const {

CORBA::ULong len = book list.cardinality();

Book ptr* buf = BookList::allocbuf(len);

for (CORBA::ULong i = 0; i < len; i++)

buf[i] = ODA persistent Book(book list.retrieve(i));

return new BookList(len, len, buf, 1);

}

Figure 2.10: File library.cc, containing member function definitions for classes

Book impl and Library impl

.

The set of source files for the library server consists of:

• library.idl, shown in Figure 2.1;

• library.h, shown in Figures 2.6 and 2.7;

• library.cc, shown in Figure 2.10;

22

• server.cc, shown in Figures 2.8 and 2.9;

• schema.cc, shown in Figure 2.5.

File library.idl is given as input to the Orbix IDL compiler. File schema.cc

is processed by the ObjectStore schema generator, ossg. The remaining files, as well

as the C++ source files generated the IDL compiler (library.hh, libraryC.cc, and

libraryS.cc) and the one generated by ossg (osschema.cc), are given as input to

the C++ compiler. Figures 2.11, 2.12, and 2.13 present a Makefile that builds the

library server in a Solaris 2.x (SunOS 5.x) environment.

#

Database files will be placed in LIBRARY DB DIR

#

Compiler flags

CCC = CC # Using Sun C++ compiler

CCFLAGS = -pta -vdelx -mt

CPPFLAGS = -I. -I$(ODA ROOT)/include \

-I$(ORBIX2 HOME)/include -I$(OS ROOTDIR)/include

Link flags and libraries

LDFLAGS = -L$(ODA ROOT)/lib -L$(ORBIX2 HOME)/lib -L$(OS ROOTDIR)/lib

SRVLIBS = -loda -loscol -los -losthr -mt \

-lorbix -lITini -Bdynamic -lnsl -lsocket

CLTLIBS = -lorbix -lITini -Bdynamic -lnsl -lsocket

Schema flags and macros

SCHEMA SRC = schema.cc

APP SCHEMA SRC = osschema.cc

APP SCHEMA OBJ = osschema.o

APP SCHEMA HDRS = library.h # just one in this case (there could be more)

APP SCHEMA DB = $(SCHEMA DB DIR)library.adb

LIB SCHEMA DBS = $(OS ROOTDIR)/lib/liboscol.ldb

SCHEMA DB DIR = $(LIBRARY DB DIR)/

APP DB DIR = $(LIBRARY DB DIR)/

Figure 2.11: Makefile for the library server

.

23

Other flags and macros

EXECUTABLES = server

APP DB = $(APP DB DIR)library.db

IDL = $(ORBIX2 HOME)/bin/idl

IDLFLAGS = -c C.cc -s S.cc

Targets

all: ${EXECUTABLES}

IDL targets

Generate library.hh, libraryC.cc, and libraryS.cc from library.idl

idl library.hh libraryC.cc libraryS.cc: library.idl

$(IDL) $(IDLFLAGS) library.idl

Schema targets

Generate $(APP SCHEMA SRC) and $(APP SCHEMA DB) from

$(SCHEMA SRC) and $(LIB SCHEMA DBS)

$(APP SCHEMA SRC): $(SCHEMA SRC) $(APP SCHEMA HDRS)

ossg -assf $(APP SCHEMA SRC) -asdb $(APP SCHEMA DB) \

$(CPPFLAGS) $(SCHEMA SRC) $(LIB SCHEMA DBS)

Build $(APP SCHEMA OBJ) from $(APP SCHEMA SRC)

$(APP SCHEMA OBJ): $(APP SCHEMA SRC)

$(CCC) $(CPPFLAGS) $(TFLAGS) -c $(APP SCHEMA SRC)

Other targets

server : server.o library.o libraryS.o $(APP SCHEMA OBJ)

$(CCC) -o server server.o library.o libraryS.o \

$(APP SCHEMA OBJ) $(LDFLAGS) $(SRVLIBS)

os postlink server

server.o : dbname.h server.cc library.h libraryS.cc

Figure 2.12: Makefile for the library server (continued)

.

24

library.o : library.cc library.h libraryS.cc

dbname.h: Makefile

echo ’static char *app db name= "$(APP DB)";’ > dbname.h

clean:

-osrm -f $(APP SCHEMA DB) $(APP DB)

-rm -f $(EXECUTABLES) $(APP SCHEMA SRC) $(APP SCHEMA OBJ) *.o *.hh

-rm -f dbname.h core *.~*~ *C.cc *S.cc

ptclean

Rules

.SUFFIXES: .o .cc

.cc.o:

$(CCC) $(CPPFLAGS) $(CCFLAGS) -c -o $@ $<

Figure 2.13: Makefile for the library server (continued)

.

This Makefile is Solaris-specific. Changes will be probably needed in order to

build the library server on other operating system. When modifying the Makefile, one

should pay special attention to ossg usage and switches, which tend to vary among

operating systems.

2.2 Additional Topics

For simplicity, the “library server” example avoided a number of issues. These issues

are examined in the following subsections.

2.2.1 Server-Side Exception Handling

At the client side, exceptions work exactly as described in the Orbix documentation.

Orbix clients handle exceptions in the same way, regardless of whether they use an

ODA-based server or not.

25

At the server side, however, differences arise when the ODA is used. This is a

consequence of the differences between the exception mechanisms employed by Orbix

and by ObjectStore. Orbix relies on native C++ exceptions; ObjectStore uses its own

exception handling facility (TIX exceptions).

To aid the server writer, the ODA provides a set of exception macros that unifies

the exception handling mechanisms of Orbix and ObjectStore. These macros, defined

in the header file oda/except.h, mimic the C++ style of exception handling. They

are similar to the TRY/CATCH macros provided by Orbix for use with C++ compilers

without exception handling. Four exception macros are defined in oda/except.h:

TRY, CATCH, CATCHANY, and ENDTRY. Figure 2.14 illustrates their usage.

TRY {

... // do something

}

CATCH(SomeException, some except) {

... // branch to this point if SomeException

}

CATCH(CORBA::SystemException, sys except) {

... // branch to this point if CORBA::SystemException

}

CATCHANY {

... // branch to this point if any other exception

}

ENDTRY

... // proceed here if no exception

Figure 2.14: TRY/CATCH macros for server-side exception handling.

Whenever a TRY clause is used, an ENDTRY and must appear at the end. The CATCH

and CATHCHANY clauses are optional and have the same semantics as the corresponding

C++ constructs. That is, the clause

CATCH(SomeException, some except)

works like the C++ construct

catch(SomeException& some except)

and a CATCHANY clause works like the C++ construct catch(...).

26

Both Orbix and ObjectStore exceptions may be raised within a TRY block. The TRY

macro converts ObjectStore TIX exceptions to native C++ exceptions. All Object-

Store exceptions are mapped to a specific system exception standardized by CORBA,

CORBA::PERSIST STORE. The “report” string of an ObjectStore exception is passed as

a parameter to the constructor of the system exception CORBA::PERSIST STORE. Oc-

currence of an ObjectStore exception within a TRY block has also the effect of aborting

the current database transaction.

When an exception is raised inside a TRY block, control is immediately transferred

to the appropriate CATCH or CATCHANY block. If the exception was not generated

by ObjectStore, it works exactly like a native C++ exception: any objects declared

inside the TRY block have their destructors called upon exit of the block. In the case

of an ObjectStore exception just mapped to CORBA::PERSIST STORE, however, these

destructors may not be called. For this reason one should not declare, within a TRY

block that may raise ObjectStore exceptions, any local objects that allocate extra

memory via operator new and that rely upon their destructors to release this memory.

This restriction applies only to ObjectStore exceptions just generated and mapped

to CORBA::PERSIST STORE, and not to the propagation of CORBA::PERSIST STORE

exceptions.

Note that there is no exception macro to raise an exception. Exceptions are raised

using the C++ statement throw. Uncaught exceptions are propagated to the caller, up

to the CORBA client. Consider, for instance, an IDL operation that does not handle

any exception, but simply converts ObjectStore exceptions into C++ exceptions that

propagate up to the CORBA client. The implementation of such an operation would

look like

void some_operation_implementation(CORBA::Environment& env) {

// the TRY block is here just to convert

// ObjectStore exceptions into C++ exceptions

TRY {

... // perform operation \\

}

CATCHANY { throw; } ENDTRY

}

27

Revisiting the Library Example

The library server, as implemented in Section 2.1, does not handle any ObjectStore

exceptions that may be raised during the execution of IDL operations. The occurrence

of such an exception would therefore cause the server to exit. To fix this problem,

exception handling code should be added to each of the functions that implement an

IDL operation:

• Book impl::author,

• Book impl::title,

• Library impl::name,

• Library impl::add Book, and

• Library impl::get Book list.

The function Library impl::add Book, for example, should be rewritten as shown

in Figure 2.15. This way an ObjectStore exception raised within the TRY block is

converted into a CORBA::PERSIST STORE exception. Rather than causing the server

to exit, the converted exception is now passed on to the CORBA client.

void Library impl::add Book(const char* name, const char* author,

CORBA::Environment&) {

TRY {

book list.insert(new(os segment::of(this),

Book impl::get os typespec()) Book impl(name,

author));

}

CATCHANY { throw; } ENDTRY

}

Figure 2.15: Using a TRY block in an IDL operation

.

28

2.2.2 Deleting Persistent CORBA Objects

The function

void ODA::Delete(CORBA::Object ptr objp);

must be called to delete a persistent CORBA object. This function deletes just a

“tie object” managed by the ODA, not its implementation object. It should be called

when the implementation object is removed from its database: the destructor of the

implementation object should call ODA::Delete.

Revisiting the Library Example

The library server, as implemented in Section 2.1, does not provide any way to remove

a book from the library’s collection. There is no IDL operation that performs this task.

If there were such an IDL operation, its implementation would simply call the C++

operator delete on a persistent Book impl object. The destructor of this should be

written as shown in Figure 2.16. In this destructor, the call to ODA::Delete has the

purpose of ensuring that the corresponding “tie object” is also deleted.

Book impl::~Book impl() {

ODA::Delete(ODA persistent Book(this));

};

Figure 2.16: Using ODA::Delete.

2.2.3 Referential Integrity of Persistent CORBA Objects

A problem arises if persistent CORBA objects may be deleted upon request of clients.

Suppose that clients A and B both hold CORBA references to a given persistent object.

If client B uses its reference to delete the object, the reference held by client A will be

no longer valid. Client A, not being aware of this fact, might still use its reference to

issue an operation on a persistent object that does not exist anymore. In the absence

of referential integrity, such an attempt results in a server crash. Referential integrity

means that the CORBA server checks the validity of incoming object references before

29

using them. With referential integrity, a client may still attempt to issue an operation

on a deleted object. In this case, rather than causing a server crash, the client will

get a system exception CORBA::OBJECT NOT EXIST.

The ODA supports referential integrity of persistent CORBA objects. Because

referential integrity has a cost, it is provided as an optional feature: the ODA library

comes in two versions, one without support to referential integrity, another one with

support to referential integrity. Usage of referential integrity is highly recommended

in any environment that admits deletion of persistent CORBA objects. To have

referential integrity, the server writer must do three things:

1. #define the symbol oda REF PROTECTED before each inclusion of the ODA

header oda.h.

2. Employ the appropriate ODA library. In an Unix environment, this means

specifying the -lodap switch in the server link line. The server is therefore

linked with the library libodap.a, which supports referential integrity.

In the same Unix environment, a server that does not want referential integrity

should be generated with the -loda switch in the link line. The server is therefore

linked with the library liboda.a, which does not support referential integrity.

The ODA library employed at link time must be consistent with the definition

of oda REF PROTECTED at compile time: -lodap can be used if and only if a

definition of oda REF PROTECTED was seen, at compile time, before each inclusion

of oda.h.

3. Ensure that each persistent implementation object that may be deleted is regis-

tered as such with ObjectStore, at object creation time.

Item 3 is neccessary because the ODA support to referential integrity of persistent

CORBA objects relies upon the corresponding ObjectStore feature for implementation

objects. It is accomplished by creating, for each implementation object that may

be deleted, an instance of the ObjectStore-defined class os Reference protected

referring to the implementation object. This should be done within the constructor of

the implementation object, as shown in the following example.

30

Revisiting the Library Example

To have referential integrity of Book objects, the Book impl constructor should be

rewritten as shown in Figure 2.17. Note that the variable my os ref protected is local

to the constructor block. The short lifetime of this variable is not a problem, because

ObjectStore retains information on protected references even after their destruction.

Book impl::Book impl(const char* author, const char* title)

: author(author), title(title) {

os Reference protected<Book impl> my os ref protected = this;

};

Figure 2.17: Registering Book impl objects with ObjectStore, for referential integrity.

2.2.4 Database Transactions

In ObjectStore, every access to persistent data must be performed within a database

transaction. Even so, the library server presented in Section 2.1 does not contain

explicit ObjectStore calls to start and commit transactions. The library example uses

the ODA’s default transaction mode, transaction per operation. In this mode, each

IDL operation corresponds to a database transaction. Before an IDL operation begins

executing, the ODA automatically starts a database transaction. At the end of the

operation, the ODA commits (or aborts) the transaction.

In the transaction per operation mode, auto-started transactions are automatically

committed by the ODA at the end of the current operation, except for the following

cases:

1. If an ObjectStore-generated CORBA::PERSIST STORE exception occurs, the ODA

immediately aborts the auto-started transaction.

2. If the Orbix server calls ODA::abort transaction, the ODA aborts the auto-

started transaction at the end of the current operation.

3. If the Orbix server calls ODA::multi op transaction mode, the ODA switches

to multioperation transaction mode. The auto-started transaction is neither

committed nor aborted by the ODA the at the end of the current operation.

31

Grouping IDL Operations in a Single Transaction

A call to ODA::multi op transaction mode instructs the ODA to extend the dura-

tion of the current auto-started transaction. Instead of being committed at the end

of the current operation, this transaction will encompass subsequent operations. In

multioperation transaction mode, the ODA ceases auto-starting transactions at the

beginning of each operation. A sequence of operations is performed within a single

transaction (the last auto-started one), until one of the following events occur:

1. If an ObjectStore-generated CORBA::PERSIST STORE exception is raised, the

ODA immediately aborts the transaction.

2. If the Orbix server calls ODA::commit transaction, the ODA commits the

transaction at the end of the current operation.

3. If the Orbix server calls ODA::abort transaction, the ODA aborts the trans-

action at the end of the current operation.

Each of these events reverts the transaction mode back to transaction per operation.

Defining the Type of Auto-Started Transactions

By default, auto-started transactions are read-only transactions. The ODA starts

update transactions only in the case of IDL operations previously registered as update

operations. A call to the function

void ODA::register update op(const char* interf, const char* op);

must be issued for each update operation.

2.2.5 Implementation Objects Not Managed By ObjectStore

Managing persistent CORBA objects whose implementation objects live in an Object-

Store database is the most commonly used ODA service. The is the case addressed

by the macro ODA def persistent, which

• assumes that implementation objects are managed by ObjectStore, and therefore

32

• instructs the ODA to manage CORBA objects, but not their corresponding

implementation objects.

In this setting, ObjectStore is responsible for activating and deactivating implemen-

tation objects, as it transfers these objects back and forth between main memory and

magnetic storage.

In some situations2, however, keeping entire implementation objects in an Object-

Store database is undesirable. Instead, just part of the implementation object’s state

should be kept in the database. The rest of the object’s state should be dynamically

retrieved from other data sources, such as flat files or other CORBA servers. The

ODA addresses these situations with the macro

ODA def activated(interf,impl)

ODA def activated is used for persistent CORBA objects whose implementation ob-

jects are managed by the ODA, not by ObjectStore. It is similar to the macros

ODA def persistent and ODA def server, in that it “ties together” an interface class

and an implementation class. With ODA def activated, however, implementation ob-

jects are activated by the ODA, through calls to an activation function provided by

the server writer. This scheme gives the server writer complete freedom for specifying

the set of data sources from which the activation function will retrieve the object’s

state.

Writing ODA-Activated Implementation Classes

An implementation class passed as the impl parameter to ODA def activated must

have ODA::Activated as a public base class:

class MyImplementationClass : public ODA::Activated {

...

};

2As an example of such a situation, consider the TeleMed system, a CORBA-based virtual patient

record system developed at Los Alamos National Laboratory. A TeleMed server (a CORBA server)

dynamically harvests patient data from multiple repositories. While part of the information on a

given patient may be stored in an ObjectStore database local to the server, additional information

may come from other TeleMed servers. Both local and remote data is merged into a “virtual patient”

object, which encapsulates all the available information on the patient.

33

Moreover, the implementation class must redefine three functions inherited from class

ODA::Activated: key, id, and activate.

class MyImplementationClass : public ODA::Activated {

// private section

// application-specific data members and/or member functions

...

public:

// public section

// application-specific data members and/or member functions

...

// redefinition of functions inherited from class ODA::Activated

virtual CORBA::ULong _key();

virtual char* _id();

static void* _activate(const char* id);

};

The purpose and the specification of the functions key, id, and activate is:

CORBA::ULong key();

This is a public member function declared as pure virtual in the base class

ODA::Activated. The server writer should redefine it in the implementation

class, so that it returns the object’s key.

The key of an implementation object should be a 32-bit integer that uniquely

identifies the object amongst all instances of its implementation class. The

server writer is responsible for assigning keys to implementation objects. Dis-

tinct instances of a given implementation class should have different key values.

Instances of different implementation classes, however, may have the same key

value.

char* id();

This is also a public member function declared as pure virtual in the base class

ODA::Activated. The server writer should redefine it in the implementation

class, so that it returns a buffer allocated via CORBA::String alloc, containing

the implementation object’s ID.

34

The ID of an implementation object should be a null-terninated string that

uniquely identifies the object amongst all instances of its implementation class.

IDs and keys play the same role, but have different types: keys are integer values,

IDs are strings. When assigning IDs to implementation objects, the server writer

is free to choose object IDs that do not bear any relationship with object keys.

The natural choice, however, is to pick object IDs that depend upon object keys

(by converting keys to strings of hexadecimal digits, for instance).

static void* activate(const char* id);

This public function is declared as static by the base class ODA::Activated.

The server writer should redefine activate in the implementation class, so

that it activates the implementation object identified by the id parameter. The

redefined function should create the implementation object in virtual memory

(possibly after retrieving its state from various data sources) and return its

address.

An ODA-activated implementation object may have part of its state in an ObjectStore

database. In a typical setting, the “main part” of the implementation object, instan-

tiated in transient memory, would contain an ObjectStore reference to the object’s

“persistent part”, which lives in an ObjectStore database. The function activate

should construct the main part of the object and initialize its data members, including

the one that refers to the persistent part of the object.

Obtaining CORBA References to ODA-Activated Objects

The macro call

ODA def activated(interf,impl)

declares and defines the ODA-generated functions

interf ptr ODA activated interf(impl* p);

interf ptr ODA activated interf(long keyval);

Both functions return an object reference to the CORBA object that corresponds to a

given implementation object. The first one receives as input parameter a pointer to the

35

implementation object3. The second one receives as input parameter the implementa-

tion object’s key. It returns a null pointer if no active instance of the implementation

class has this key value.

2.2.6 IDL Interfaces Defined Within a Module

The macros

ODA def server(interf,impl)

ODA def persistent(interf,impl)

ODA def activated(interf,impl)

work only in the case of IDL interfaces not defined within a module. A similar set of

macros is provided for use in the case of interfaces defined within an IDL module:

ODA Def Server(module,interf,impl)

ODA Def Persistent(module,interf,impl)

ODA Def Activated(module,interf,impl)

The first parameter taken by these macros is the name of the IDL module in which

interf is defined.

2.2.7 Persistent Strings

The library server presented in Section 2.1 uses an auxilary class, String, whose

instances are persistent strings. Class String is especially useful for CORBA servers

that need to copy persistent strings into dynamically allocated CORBA strings (i.e.,

strings allocated via CORBA::String alloc). Such task, performed whenever an IDL

operation returns a string retrieved from an ObjectStore database, is encapsulated by

the member function String::corba string.

Class String is implemented by the header file aux/pstring.h provided with the

ODA release. This class is not really part of the object database adapter, nor does it

make use of the adapter. It is included in the ODA release just because it is likely to

be useful to ODA applications.

3This function is similar to the function ODA persistent interf , generated by the macro call

ODA def persistent(interf,impl).

36

3

Reference Manual

This chapter describes the C++ API provided by the ODA release for Orbix 2.x and

ObjectStore 4.x. The ODA C++ interface consists of the following elements:

• the class ODA;

• persistence directives, implemented as C++ macros;

• ODA-generated functions on persistent CORBA objects;

• exception handling directives, implemented as C++ macros.

The class ODA and the persistence directives are defined in the header file oda.h. The

C++ code of the functions on persistent CORBA objects is generated by the macro

expansion of persistence directives. The exception handling directives are defined in

the header file oda/except.h.

37

3.1 The class ODA

Figure 3.1 shows the public members of this class.

class ODA {

public:

static void initialize(unsigned object cache size = 1023,

unsigned update ops table = 1023,

unsigned interf table size = 101);

static void multi op transaction mode();

static void commit transaction();

static void abort transaction();

static void register update op(const char* interf name,

const char* op name);

static void Delete(CORBA::Object ptr objp);

private:

...

};

Figure 3.1: The C++ class ODA.

38

3.1.1 ODA::initialize

static void initialize(unsigned object cache size = 1023,

unsigned update ops table = 1023,

unsigned interf table size = 101);

A server must call this function before issuing any other call to the ODA. The param-

eters to ODA::initialize specify the number of pseudopersistent objects cached by

the ODA, the size of the hash table in which the ODA keeps information on update

operations (IDL operations that must be performed within update transactions), and

the size of the hash table in which the ODA keeps information on IDL interfaces.

39

3.1.2 ODA::multi op transaction mode

static void multi op transaction mode();

Enter multioperation transaction mode. The current transaction will be extended to

encompass a sequence of IDL operations. In the absence of ObjectStore-generated

exceptions, this sequence ends when an operation calls ODA::commit transaction

or ODA::abort transaction. Such operation is also performed within the current

transaction, and is the last one encompassed by the transaction.

The sequence of IDL operations encompassed by the transaction may also end

with an ObjectStore-generated CORBA::PERSIST STORE exception, which immediately

aborts the current transaction. At the end of a multioperation transaction, in any case

(call to ODA::commit transaction, call to ODA::abort transaction, or ObjectStore

exception), the transaction mode switches back to transaction per operation.

40

3.1.3 ODA::commit transaction

static void commit transaction();

Causes the current transaction to be committed at the end of the current operation.

When called in multioperation transaction mode, it also reverts the transaction mode

back to transaction per operation.

A server calls ODA::commit transaction to leave multioperation transaction

mode and commit the current transaction. Calling this function when the transaction

mode is already transaction per operation is superfluous, as the transaction would be

committed anyway, by default, at the end of the current operation.

41

3.1.4 ODA::abort transaction

static void abort transaction();

Causes the current transaction to be aborted at the end of the current operation.

When called in multioperation transaction mode, it also reverts the transaction mode

back to transaction per operation.

42

3.1.5 ODA::register update op

static void register update op(const char* interf name,

const char* op name);

Installs interf name::op name in the hash table of update operations maintained by

the ODA. Subsequent invocations of this operation, in transaction per operation mode,

will be encompassed by update transactions.

43

3.1.6 ODA::Delete

static void Delete(CORBA::Object ptr objp);

Deletes a persistent CORBA object. Just the “tie object” managed by the ODA

is deleted, not its implementation object. Should be called only by destructors of

implementation classes passed to ODA def persistent or ODA Def Persistent.

44

3.2 Persistence Directives and ODA-Generated

Functions

ODA persistence directives are implemented as C++ macros. A set of macros, shown

in Figure 3.2, is used in the case in the case of IDL interfaces not encompassed by any

module. Another set of macros, shown in Figure 3.3, is used in the case of interfaces

defined within a module.

ODA def server(interf,impl)

ODA def persistent(interf,impl)

ODA def activated(interf,impl)

Figure 3.2: ODA macros used for interfaces not encompassed by any module.

ODA Def Server(module,interf,impl)

ODA Def Persistent(module,interf,impl)

ODA Def Activated(module,interf,impl)

Figure 3.3: ODA macros used for interfaces defined within a module.

Each of these directives declares/defines ODA-generated functions. In what fol-

lows, ODA-generated functions are examined together with the corresponding persis-

tence directive.

ODA persistence directives expand into declarations/definitions of ODA-generated

classes and functions. While the declarations may appear in many source files, the

definitions should appear just once in all source files. If the symbol ODA DEFS is

#defined by the time oda.h is included, these directives expand into declarations

and definitions. Otherwise they expand into declarations only. A persistence directive

may — and usually will — be visible to several source files, typically through the

inclusion of a header file that contains the directive. One and only one of these source

files must #define ODA DEFS before including oda.h.

45

3.2.1 ODA def server

ODA def server(interf,impl)

C++ macro that “ties together” the interface class and the implementation class of

the top-level object in a server. Used for IDL interfaces not encompassed by any

module. Its expansion generates the following “tie class”:

class oda interf impl server {

public:

oda interf impl server(impl* p);

...

virtual void* deref();

private:

...

};

Application code should avoid any dependence on the name of the tie class above, the

ODA-generated identifier oda interf impl server. The macro call

ODA server(interf,impl)

expands into this identifier, and should be used instead.

ODA def server-Generated Functions

ODA server(interf,impl)(impl * p);

Constructor of the tie class ODA server(interf,impl). Note that this con-

structor is public. The server mainline should use it to create the top-level

server object, an instance of this class, before it calls impl is ready.

void* deref();

Member function of the ODA-generated tie class. Returns the address of the

corresponding implementation object.

46

3.2.2 ODA def persistent

ODA def persistent(interf,impl)

C++ macro that “ties together” the interface and implementation classes of persistent

CORBA objects. Used for IDL interfaces not encompassed by any module. Its

expansion generates the following “tie class”:

class oda persistent interf {

public:

...

virtual void* deref();

private:

...

};

interf ptr ODA persistent interf(impl* p);

Application code should avoid any dependence on the name of the tie class above.

ODA def persistent-Generated Functions

void* deref();

Member function of the ODA-generated tie class. Returns the address of the

corresponding implementation object.

interf ptr ODA persistent interf (impl * p);

Returns a reference to a persistent CORBA object (whose interface class is

interf), given a pointer to its implementation object (of class impl).

The constructor of the ODA-generated tie class is not public. Instances of this class

are managed by the ODA and cannot be created by the application code.

47

3.2.3 ODA def activated

ODA def activated(interf,impl)

C++ macro that “ties together” the interface and implementation classes of ODA-

activated CORBA objects. Used for IDL interfaces not encompassed by any module.

Its expansion generates the following “tie class”:

class oda activated interf {

public:

...

virtual void* deref();

private:

...

};

interf ptr ODA activated interf(impl* p);

interf ptr ODA activated interf(long keyval);

Application code should avoid any dependence on the name of the tie class above.

ODA-Activated Implementation Classes

An implementation class passed as the impl parameter to ODA def activated must

have ODA::Activated as a public base class, and must redefine the following functions

inherited from ODA::Activated:

CORBA::ULong _key();

char* _id();

static void* _activate(const char* id);

See details in pages 32–34.

48

Functions Generated by ODA def activated

void* deref();

Member function of the ODA-generated tie class. Returns the address of the

corresponding implementation object.

interf ptr ODA activated interf (impl * p);

Returns a reference to an ODA-activated CORBA object (whose interface class

is interf), given a pointer to its implementation object (of class impl).

interf ptr ODA activated interf (long keyval);

Returns a reference to an ODA-activated CORBA object (whose interface class

is interf), given the key to its implementation object (of class impl). Returns a

null pointer if no active instance of the implementation class has this key value.

The constructor of the ODA-generated tie class is not public. Instances of this class

are managed by the ODA and cannot be created by the application code.

49

3.2.4 ODA Def Server

ODA Def Server(module,interf,impl)

C++ macro that “ties together” the interface class and the implementation class of

the top-level object in a server. Used for IDL interfaces defined within a module. Its

expansion generates the following “tie class”:

class oda module interf impl server {

public:

oda module interf impl server(impl* p);

...

virtual void* deref();

private:

...

};

Application code should avoid any dependence on the name of the tie class above, the

ODA-generated identifier oda module interf impl server. The macro call

ODA Server(module,interf,impl)

expands into this identifier, and should be used instead.

ODA Def Server-Generated Functions

ODA Server(module,interf,impl)(impl * p);

Constructor of the tie class ODA Server(module,interf,impl). Note that this

constructor is public. The server mainline should use it to create the top-level

server object, an instance of this class, before it calls impl is ready.

void* deref();

Member function of the ODA-generated tie class. Returns the address of the

corresponding implementation object.

50

3.2.5 ODA Def Persistent

ODA Def Persistent(module,interf,impl)

C++ macro that “ties together” the interface and implementation classes of persistent

CORBA objects. Used for IDL interfaces defined within a module. Its expansion

generates the following “tie class”:

class oda persistent module interf {

public:

...

virtual void* deref();

private:

...

};

interf ptr ODA persistent module interf(impl* p);

Application code should avoid any dependence on the name of the tie class above.

ODA Def Persistent-Generated Functions

void* deref();

Member function of the ODA-generated tie class. Returns the address of the

corresponding implementation object.

interf ptr ODA persistent module interf (impl * p);

Returns a reference to a persistent CORBA object (whose interface class is

interf), given a pointer to its implementation object (of class impl).

The constructor of the ODA-generated tie class is not public. Instances of this class

are managed by the ODA and cannot be created by the application code.

51

3.2.6 ODA Def Activated

ODA Def Activated(module,interf,impl)

C++ macro that “ties together” the interface and implementation classes of ODA-

activated CORBA objects. Used for IDL interfaces defined within a module. Its

expansion generates the following “tie class”:

class oda activated module interf {

public:

...

virtual void* deref();

private:

...

};

interf ptr ODA activated module interf(impl* p);

interf ptr ODA activated module interf(long keyval);

Application code should avoid any dependence on the name of the tie class above.

ODA-Activated Implementation Classes

An implementation class passed as the impl parameter to ODA Def Activated must

have ODA::Activated as a public base class, and must redefine the following functions

inherited from ODA::Activated:

CORBA::ULong _key();

char* _id();

static void* _activate(const char* id);

See details in pages 32–34.

52

Functions Generated by ODA Def Activated

void* deref();

Member function of the ODA-generated tie class. Returns the address of the

corresponding implementation object.

interf ptr ODA activated module interf (impl * p);

Returns a reference to an ODA-activated CORBA object (whose interface class

is interf), given a pointer to its implementation object (of class impl).

interf ptr ODA activated module interf (long keyval);

Returns a reference to an ODA-activated CORBA object (whose interface class

is interf), given the key to its implementation object (of class impl). Returns a

null pointer if no active instance of the implementation class has this key value.

The constructor of the ODA-generated tie class is not public. Instances of this class

are managed by the ODA and cannot be created by the application code.

53

3.3 Exception Handling Directives

The following macros support server-side exception handling:

TRY

Replaces the C++ construct try.

CATCH(class,var)

Replaces the C++ construct catch(class & var).

CATCHANY

Replaces the C++ construct catch(...).

ENDTRY

Must be placed immediately after the last CATCH or CATCHANY block of a

TRY/CATCH/CATCHANY sequence.

These macros are defined in the header file oda/except.h. See pages 24–26 for details

on their usage.

54

