Multiple solutions for a higher order variational problem in conformal geometry

Paolo Piccione

Departamento de Matemática Instituto de Matemática e Estatística Universidade de São Paulo

August 17th, 2017

Paolo Piccione Higher order variational problem in conformal geometry

Outiline of this talk

Q-curvature and the Paneitz operator

- Intro: best constant in Sobolev embeddings
- Conformal invariance
- Paneitz operator and Q-curvature in Riemannian manifolds

Multiplicity results

- Yamabe type invariants
- Aubin inequality
- A topological argument
- Bifurcation

Examples (explicit computations)

- homogeneous fibrations
- Hopf bundles, Berger spheres

Acknowledgements

My co-authors

Renato Bettiol (UPenn)

Yannick Sire (Johns Hopkins)

My sponsors

Intro: Sobolev embeddings (M. Gursky)

■ Sobolev embedding:
$$H^2(\mathbb{R}^n) \hookrightarrow L^{\frac{2n}{n-4}}(\mathbb{R}^n)$$
 $(n \ge 5)$
 $\Rightarrow \|\Delta u\|_{L^2(\mathbb{R}^n)}^2 \ge \lambda_n \cdot \|u\|_{L^{\frac{2n}{n-4}}}^2$

- Best λ_n known (Lions, Edmunds, Fortunato, Jannelli)
- it is attained at some radial function u satisfying:

$$\Delta^2 u = u^{\frac{n+4}{n-4}}$$

- minimizers are positive
- equation is conformally invariant: solutions u invariant by:
 - translations $u(x) \mapsto u(x + v)$

dilations
$$u(x) \mapsto t^{\frac{n-4}{2}}u(t \cdot x)$$

• inversions
$$u(x) \mapsto |x|^{4-n} \cdot u\left(\frac{x}{|x|^2}\right)$$

Question

Does there exist an analogous operator in Riemannian manifolds? (conformally invariant, positive minimizers, ...)

Theorem (Paneitz 1983)

Given (M^n, \mathbf{g}) , $n \ge 5$, there exists a differential operator $P_{\mathbf{g}}$ such that:

•
$$P_{g} = \Delta_{g}^{2} + lower order terms of order \leq 2$$

if
$$\widehat{\mathbf{g}} = u^{\frac{4}{n-4}} \cdot \mathbf{g}$$
, then $P_{\widehat{\mathbf{g}}}(\phi) = u^{\frac{n+4}{n-4}} P_{\mathbf{g}}(u \cdot \phi)$.

Examples.

$$\blacksquare P_{\mathbb{R}^n} = \Delta^2$$

$$\blacksquare P_{\mathbb{S}^n} = \Delta_{\mathbb{S}^n} (\Delta_{\mathbb{S}^n} - c).$$

Definition of *Q*-curvature and Paneitz operator

(*M*^{*n*}, **g**), *n* ≥ 5 ■ *Q*-curvature:

$$Q_{\mathbf{g}} = c_n \cdot \Delta_{\mathbf{g}}(\operatorname{scal}_{\mathbf{g}}) + d_n \cdot \|\operatorname{Ric}_{\mathbf{g}}\|^2 + e_n \cdot \operatorname{scal}_{\mathbf{g}}^2$$

$$\diamond \quad \boxed{C_n = \frac{1}{2(n-1)}} \quad \boxed{d_n = -\frac{2}{(n-2)^2}} \quad \boxed{e_n = \frac{n^3 - 4n^2 + 16n - 16}{8(n-1)^2(n-2)^2}}$$

Paneitz operator:

$$P_{\mathbf{g}}\psi = \Delta_{\mathbf{g}}^{2}\psi + \alpha_{\mathbf{n}} \cdot \operatorname{div}_{\mathbf{g}}(\operatorname{Ric}_{\mathbf{g}}(\nabla\psi, \boldsymbol{e}_{i})\boldsymbol{e}_{i}) - \beta_{\mathbf{n}} \cdot \operatorname{div}_{\mathbf{g}}(\operatorname{scal}_{\mathbf{g}} \cdot \nabla\psi) + \gamma_{\mathbf{n}} \cdot \boldsymbol{Q}_{\mathbf{g}}\psi$$

$$\diamond \boxed{\alpha_n = \frac{4}{n-2}} \qquad \beta_n = \frac{n^2 - 4n + 8}{2(n-1)(n-2)} \qquad \boxed{\gamma_n = \frac{n-4}{2}}$$

Constant Q-curvature

Constant *Q*-curvature metric: $\mathbf{g} = u^{\frac{4}{n-4}} \cdot \mathbf{g}_0$

$$P_{\mathbf{g}_0} u = \lambda \cdot u^{\frac{n+4}{n-4}}, \qquad \lambda = \frac{n-4}{2} Q_{\mathbf{g}}.$$

Variational formulation. Solutions are critical points of associated quadratic functional:

$$E_{\mathbf{g}_0}(u) = \frac{1}{2} \int_M u \cdot P_{\mathbf{g}_0} u \, \mathrm{d}M$$

in the space:

$$\left\{ u \in H^2(M) : \|u\|_{L^{\frac{2n}{n-4}}} = \text{const.} \right\}$$

Problems:

- non-compact embedding

 minimizing sequences may converge weakly to 0;
- minimizers may not be positive.

Yamabe problem

(constant scal curvature)

- Non-compact embedding: $H^1 \hookrightarrow L^{\frac{2n}{n-2}}$
- Conf. invariant operator: conformal Laplacian $L_{g} = \Delta_{g} + \frac{n-2}{4(n-1)} \operatorname{scal}_{g}$
- scalar curvature scal_g: $\mathbf{q} = u^{\frac{4}{n-2}} \mathbf{q}_0$

 $\operatorname{scal}_{\mathbf{g}} = \frac{4(n-1)}{n-2} u^{-\frac{n+2}{n-2}} \cdot L_{\mathbf{g}_0}(u)$

 minimizers exist and have constant scal_g.

Constant Q-curvature

- Non-compact embedding: $H^2 \hookrightarrow L^{\frac{2n}{n-4}}$
- Conf. inv. operator: Pg
- *Q*-curvature Q_g : $\mathbf{g} = u^{\frac{4}{n-4}} \mathbf{g}_0$

 $Q_{\mathbf{g}} = rac{2}{n-4}u^{-rac{n+4}{n-4}} \cdot P_{\mathbf{g}_0}(u)$

- Positivity of minimizers? When so, they give constant *Q*-curvature.
- Very little known on the existence of positive minimizers: scal_{g0} > 0 and Q_{g0} almost positive.

Yamabe-type invariants

$$\mathcal{L}_{\mathbf{g}_{0}}(u) = \int_{M} u \cdot L_{\mathbf{g}_{0}} u \, \mathrm{d}M \qquad \mathcal{E}_{\mathbf{g}_{0}}(u) = \int_{M} u \cdot P_{\mathbf{g}_{0}} u \, \mathrm{d}M$$

Yamabe invariant: $Y(M, \mathbf{g}_{0}) = \inf_{u \neq 0} \frac{\mathcal{L}(u)}{\|u\|_{L^{\frac{2n}{n-2}}}^{2}}$

$$Y_4(M,\mathbf{g}_0) = \inf_{u\neq 0} \frac{\mathcal{E}(u)}{\|u\|_{L^{\frac{2n}{n-4}}}^2}$$

$$Y_{4}^{+}(M, \mathbf{g}_{0}) = \inf_{u > 0} \frac{\mathcal{E}(u)}{\|u\|_{L^{\frac{2n}{n-4}}}^{2}}$$

Theorem (Gursky-Han-Lin, 2016)

If $\exists g \in [g_0]$ with $\operatorname{scal}_g > 0$ and $Q_g > 0$, then:

$$Y_4(M,\mathbf{g}_0)=\mathbf{Y}_4^+(M,\mathbf{g}_0)(\geq 0),$$

with infimum attained by some positive function.

Not known if $Y_4 > 0$ when Y > 0 and *Q* almost positive.

A new invariant and Aubin inequality

Aubin inequality:
$$Y(M^n, \mathbf{g}_0) \leq Y(\mathbb{S}^n, \mathbf{g}_{round})$$

Theorem (Gursky–Han–Lin 2016)

Assume $Y(M, \mathbf{g}_0) > 0$ and $Q_{\mathbf{g}_0}$ almost positive. Then:

• Ker $(P_{\mathbf{g}_0}) = \{0\}$ and $P_{\mathbf{g}_0} > 0$;

Green function $G_{P_{g_n}}$ positive on $M \times M$.

Inverse of P_{g_0} : $G_{g_0}f(p) = \int_M G_{P_{g_0}}(p,q)f(q) \,\mathrm{d} q$

Quadratic functional: $\mathcal{G}_{g_0}(f) = \int_M f \cdot G_{g_0} f \, \mathrm{d}M$

New invariant: $\Theta_4(M, \mathbf{g}_0) = \sup_{f \in L^{\frac{2n}{n+4}}} \overline{\mathcal{G}}(f) = \sup_{f \in L^{\frac{2n}{n+4}}} \frac{\mathcal{G}_{\mathbf{g}_0}(f)}{\|f\|_{L^{\frac{2n}{n+4}}}}$

- Supremum always attained at some smooth positive f, $f^{\frac{4}{n-4}} \cdot \mathbf{g}_0$ has constant Q-curvature.
- $\ \ \, \Theta_4(M^n,{\bf g}_0)\geq \Theta_4(\mathbb{S}^n,{\bf g}_{\textit{round}})$

Theorem

For $n \ge 5$ and $0 \le k < \frac{n-4}{2}$, there are infinitely many pairwise nonhomothetic complete metrics with constant *Q*-curvature on $\mathbb{S}^n \setminus \mathbb{S}^k$ that are conformal to the round metric.

Proof.

•
$$\mathbb{S}^n \setminus \mathbb{S}^k$$
 conf. equivalent to $\mathbb{S}^{n-k-1} \times \mathbb{H}^{k+1}$

■ scal = (n - 2k - 2)(n - 1) $Q = \frac{1}{8}n(n - 2k)(n - 2k - 4)$ are positive when $k < \frac{n-4}{2}$;

topological argument + Aubin inequality.

The topological argument

 II 𝔅^{k+1} has compact quotients that give an infinite tower of finite-sheeted Riemannian coverings:

$$(\mathbb{H}^{k+1}, g_{\mathsf{hyp}}) o \ldots o (\Sigma_2, g_2) o (\Sigma_1, g_1) o (\Sigma_0, g_0)$$

2 Multiply by (S^{n-k-1}, g_{round}) , product metrics:

$$\ldots
ightarrow (S^{n-k-1} imes \Sigma_1, g_{\mathsf{round}} \oplus g_1)
ightarrow (S^{n-k-1} imes \Sigma_0, g_{\mathsf{round}} \oplus g_0)$$

- 3 pull-back Θ_4 -metric in $[g_{round} \oplus g_0]$: energy $\overline{\mathcal{G}}$ goes to 0! (uses scal > 0 and Q > 0)
- 4 By Aubin inequality, maximum of \$\overline{G}\$ must be attained at some other metric in the conformal class of the product.
- 5 Iterate.

Coverings of hyperbolic surfaces

Profinite completion and residually finite groups

Infinite tower of finite-sheeted coverings:

$$\ldots \rightarrow M_k \rightarrow M_{k-1} \rightarrow \ldots \rightarrow M_1 \rightarrow M_0$$

iff $G = \pi_1(M_0)$ has infinite profinite completion \widehat{G} . **Def.** $\widehat{G} = \lim_{\leftarrow} G/\Gamma$, $\Gamma \trianglelefteq G$, $[G:\Gamma] < +\infty$. Canonical homomorphism $\iota: G \to \widehat{G}$

$$\operatorname{Ker}(i) = \bigcap_{\substack{\Gamma \trianglelefteq G \\ [G:\Gamma] < +\infty}} \Gamma$$

Def. G is residually finite if: $\bigcap_{\substack{\Gamma \trianglelefteq G \\ [G:\Gamma] < +\infty}} \Gamma = \{1\}$

Theorem (Borel)

Symmetric spaces of noncompact type X admit irreducible compact quotients X/Γ .

 X/Γ loc. symmetric \implies constant scalar and *Q*-curvature Selberg–Malcev lemma

Finitely generated linear groups are residually finite.

Corollary. $\Gamma = \pi_1(X/\Gamma)$ has infinite profinite completion.

Theorem

 \blacksquare (*M*, **g**) closed, (*X*, **h**) as above

scal and *Q*-curvature of $\mathbf{g} \oplus \mathbf{h}$ positive.

Then, there are infinitely many complete constant *Q*-curvature metrics in $[\mathbf{g} \oplus \mathbf{h}]$.

Bifurcation theory for the *Q*-curvature problem

Need a (compact) manifold *M* with a family $(\mathbf{g}_t)_{t \in [a,b]}$ of constant *Q*-curvature metrics with *computable* Morse index.

Ansatz: Riemannian submersions $\pi_t : (M, \mathbf{g}_t) \to (B, \mathbf{g}_B)$ with:

- scal_{g_t} and Q_{g_t} constant;
- minimal fibers;
- horizontally Einstein: $\operatorname{Ric}_{\mathbf{g}_t} = \kappa_t \cdot \mathbf{g}_t$ on the horizontal distribution.
- Typical example: Homogeneous fibration.
 - $H \subset K \subset G$ compact Lie groups
 - $K/H \rightarrow G/H \rightarrow G/K$ with bi-invariant metric \mathbf{g}_1 on G
 - **g**_t obtained by rescaling metric of fibers.

A bifurcation criterion

Theorem

• M^n closed manifold with $n \ge 5$

■ π_t : $(M, \mathbf{g}_t) \rightarrow (B, \mathbf{g}_B)$, $t \in [t_* - \varepsilon, t_* + \varepsilon]$, a 1-parameter family of horizontally Einstein (κ_t) Riemannian submersions with minimal fibers

scal_{g_t} and
$$Q_{g_t}$$
 constant for all t
 $\alpha_t = \frac{(n^2 - 4n + 8)\operatorname{scal}_{g_t} - 8\kappa_t(n-1)}{4(n-1)(n-2)}$, $\beta_t = -2 Q_g$

If for some $\lambda \in \operatorname{spec}(\Delta_{\mathbf{g}_B})$:

$$\frac{1}{2}\lambda^2 + \alpha_{t_*}\lambda + \beta_{t_*} = 0$$
$$\alpha'_t \lambda + \beta'_t \neq 0,$$

then t_* is a bifurcation instant for $(\mathbf{g}_t)_t$. If $\lambda \neq \frac{\operatorname{scal}_{\mathbf{g}_{t_*}}}{n-1}$, then bifurcation metrics do not have constant scalar curvature.

- Hopf bundle $\mathbb{S}^1 \to \mathbb{S}^{2n+1} \to \mathbb{C}P^n$
- Berger metric $\mathbf{g}_t = t \, \mathbf{g}_{\mathcal{V}} + \mathbf{g}_{\mathcal{H}}$ (\mathbf{g}_1 unit round metric)
- homogeneous fibration corresponding to U(n) ⊂ U(n)U(1) ⊂ U(n + 1)
- horizontal space $\mathcal{H} \cong \mathbb{C}^n$ irreducible U(n)-representation,
- vertical space $\mathcal{V}\cong\mathbb{R}$ does not contain copies of this irreducible

Upshot

For $n \ge 6$, \exists sequence $t_k \to +\infty$ bifurcation instants for $(\mathbb{S}^{2n+1}, \mathbf{g}_t)$.

If $6 \le n \le 9$, then infinitely many of these bifurcating branches issue from metrics on \mathbb{S}^{2n+1} that have scal < 0 and Q < 0.

The Berger spheres \mathbb{S}^{4n+3}

- Hopf bundle $\mathbb{S}^3 \to \mathbb{S}^{4n+3} \to \mathbb{H}P^n$
- Berger metric $\mathbf{g}_t = t \, \mathbf{g}_{\mathcal{V}} + \mathbf{g}_{\mathcal{H}}$ (\mathbf{g}_1 unit round metric)
- homogeneous fibration corresponding to $Sp(n) \subset Sp(n)Sp(1) \subset Sps(n+1)$
- horizontal space $\mathcal{H} \cong \mathbb{H}^n$ irreducible Sp(n)-representation,
- vertical space $\mathcal{V}\cong\mathbb{R}^3$ does not contain copies of this irreducible

Upshot

For $n \ge 2$, \exists sequences $t_k \to +\infty$ and $t'_k \to 0$ of bifurcation instants for $(\mathbb{S}^{2n+3}, \mathbf{g}_t)$.

Infinitely many of these bifurcating branches issue from metrics on S^{2n+3} that have scal < 0 and Q < 0.

Similar results for Hopf bundle $\mathbb{C}P^{2n+1} \to \mathbb{H}P^n$.

Thanks for your attention!! Rad Picciae

See you at ICM2018!

Paolo Piccione Higher order variational problem in conformal geometry