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D c TE a smooth distribution (constant rank)

v € D: v is horizontal

Integral submanifold of D: immersed submanifold ¥ C E with

Tez:De, VGEZ

D is integrable if 3 an integral submanifold through every e € E.
D is involutive if ] X,YeD = [X,Y]¢€ D\

Theorem (Frobenius)
D is integrable <= D is involutive.
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E differentiable manifold

D C TE a smooth distribution (constant rank)

v € D: v is horizontal

Integral submanifold of D: immersed submanifold ¥ C E with

Tez:De, VGEZ

D is integrable if 3 an integral submanifold through every e € E.
Dis involutive it X,Y €D = [X,Y]€D|

Theorem (Frobenius)
D is integrable <= D is involutive.

Involutivity is a very strong condition.
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Total differential equations

In local coordinates: U ¢ R¥ x Rk, F : U — Lin(RX, R")
7 : U — R first projection
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7+ U — R first projection

D = Gr(F) is a m-horizontal distribution on U.

A horizontal section s : V ¢ R¥ — R" is a map of the form

s(x) = (x,f(x)), where f : V — Rk is a solution of the total PDE:

df(x) = F(x, f(x)).

f(xo) = Yo, given a curve u : [0,1] — V with u(0) = xo and u(1) = xq,
then g = fou: [0,1] — R" ¥ is a solution of the IVP:

g'(t) = F(u(t), g(t))u'(1),  u(0) = f(yo).
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Total differential equations

In local coordinates: U ¢ R¥ x Rk, F: U — Lin(RX, R"¥)
7+ U — R first projection
D = Gr(F) is a w-horizontal distribution on U.

A horizontal section s : V ¢ R¥ — R" is a map of the form
s(x) = (x,f(x)), where f : V — Rk is a solution of the total PDE:

df(x) = F(x, f(x)).

f(xo) = Yo, given a curve u : [0,1] — V with u(0) = xo and u(1) = xi,
then g = fou: [0,1] — R" ¥ is a solution of the IVP:

g'(t) = F(u(t), g()u'(1), u(0) = 1(yo).

Involutivity of D is the integrability condition for such PDE.
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Horizontal liftings (some terminology)

7 : E — M submersion. D C TE is w-horizontal if ToE = Ker(me) ® De
forall e € E.

Paolo Piccione (IME-USP) On the single-leaf Frobenius Theorem...
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7 : E — M submersion. D C TE is w-horizontal if TeE = Ker(me) @ De
foralle e E.

5 : I — E is horizontal if ¥'(t) € D for all t. Given v : | — M then a
horizontal lifting of v is a horizontal curve 4 : | — E such that m 0§ = ~.
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foralle e E.

v : | — E is horizontal if ¥/(t) € D for all t. Given v : | — M then a
horizontal lifting of ~ is a horizontal curve 4 : | — E such that m o5 = ~.
By standard theory of ODE's, given t, € / and xo € 7' (y(fy)) then 3!
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of [ around fy.
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Horizontal liftings (some terminology)

7 : E — M submersion. D C TE is w-horizontal if TeE = Ker(me) @ De
foralle e E.

v : | — E is horizontal if ¥/(t) € D for all t. Given v : | — M then a
horizontal lifting of ~ is a horizontal curve 4 : | — E such that m o5 = ~.
By standard theory of ODE'’s, given t, € / and xo € 7' (y(fy)) then 3!
maximal horizontal lifting 4 of v with 4(%) = xo defined in a subinterval
of [ around ty.

A local section of a smooth submersion 7 : E — M is a locally defined
smoothmap s: U ¢ M — E such that 7 o s = Idy. A local section s is
called horizontal if the range of ds(m) is Dgm), for all m € U.
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A-parametric family of curves

N-parametric family of curves yon M: ¢ : Z C R x A — M,
Z open, such that: [y = {t e R: (t,A) € Z} C Ris an interval
containing the origin, for all A € A.
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N-parametric family of curves yon M: ¢ : Z C R x A — M,

Z open, such that: /y = {t e R: (t,A\) € Z} C Ris an interval
containing the origin, for all A € A.

A local right inverse of ¢: a locally defined smooth map
a:V CM— Zsuchthat ¢(a(m)) =m,forall me V.
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Z open, such that: [y = {t e R: (t,A) € Z} C Ris an interval
containing the origin, for all A € A.

A local right inverse of ¢: a locally defined smooth map
a:V CM— Zsuchthat ¢(a(m)) = m,forall me V.

Example

M manifold, V connection on M. Given xo € M, set A = T, M.
A-parametric family of curves 1) on M: +(t, \) = exp, (t\);
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Example

M manifold, V connection on M. Given xo € M, set A = T, M.
A-parametric family of curves 1) on M: +(t, \) = exp, (t\);
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Paolo Piccione (IME-USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 7148



A-parametric family of curves

N-parametric family of curves pon M: ) : Z C R x N — M,
Z open, such that: / = {t e R: (t,\) € Z} Cc Ris an interval
containing the origin, for all A € A.

A local right inverse of ¢: a locally defined smooth map

a:V CM— Zsuchthat ¢(a(m)) = m,forall me V.

Example

M manifold, V connection on M. Given xo € M, set A = T, M.
A-parametric family of curves 1) on M: +(t, \) = exp, (t\);
Z= {(t, A):the Dom(eprO)}.

of ¥ V open neighborhood of 0 € Ty,M mapped

diffeomorphically by exp,,  onto an open neighborhood V of xo € M.
Set:

a(m) = (1,(expy, [v,) ' (M)), me V.
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A-parametric family of curves

N-parametric family of curves pon M: ) : Z C R x N — M,
Z open, such that: / = {t e R: (t,\) € Z} Cc Ris an interval
containing the origin, for all A € A.

A local right inverse of ¢: a locally defined smooth map

a:V CM— Zsuchthat ¢(a(m)) = m,forall me V.

Example

M manifold, V connection on M. Given xo € M, set A = T, M.
A-parametric family of curves ¢ on M: ¢(t, \) = exp,, (t));
Z= {(t, A):the Dom(eprO)}.

of ¥ V open neighborhood of 0 € Ty,M mapped

diffeomorphically by exp,,  onto an open neighborhood V of xo € M.
Set:

a(m) = (1,(expy, [v,) ' (M)), me V.

(same construction holds if one replaces the geodesic spray of a
connection with an arbitrary spray).
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The Levi form

If V, W are (local) horizontal fields, [V, W], + Dp € ToM/Dp only
depends on Vp, W,
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The Levi form

If V, W are (local) horizontal fields, [V, W], + Dp € ToM/Dp only
depends on Vp, W,

Definition

£ Dp x Dp — Tp,M/Dp Levi form of D at p:
L5 (v, w) = [V, W]p + Dp, where v,w € D, and V, W are local
extensions of v and w to horizontal fields.
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p € Mis an involutive point for D if £7 = 0.
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The Levi form

If V, W are (local) horizontal fields, [V, W], + Dy, € ToM/Dp only
depends on Vp, Wp.

Definition

£ Dp x Dp — Tp,M/Dp Levi form of D at p:

L5 (v, w) = [V, W]p + Dp, where v,w € D, and V, W are local
extensions of v and w to horizontal fields.

p € Mis an involutive point for D if £7 = 0.
Obs.: If X is an integral submanifold, then every point of ¥ is involutive.

Conversely, if:

@ X is ruled by curves tangent to D
@ every point of X is involutive
then X is an integral submanifold of D.
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The single leaf Frobenius theorem 1

Problem: We want to find conditions for the existence of one integral
submanifold of D C TE through some given e € E.
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The single leaf Frobenius theorem 1

Problem: We want to find conditions for the existence of one integral
submanifold of D c TE through some given e € E.

Lemma

E manifold, D C TE distribution,
R? > U > (t,8) — H(t,s) € E smooth map.
I C R interval, sp € R with | x {sp} C U.
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I C R interval, sy € R with | x {sp} C U. If:
o Y(t,s)eDforall(t,s) € U;
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E manifold, D C TE distribution,
R? > U > (t,8) — H(t,s) € E smooth map.
I C R interval, sy € R with | x {sp} C U. If:
o Y(t,s)eDforall(t,s) € U;
© L) =0foralltel

o (1o, s0) € D for some ty € |
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The single leaf Frobenius theorem 1

Problem: We want to find conditions for the existence of one integral
submanifold of D c TE through some given e € E.

Lemma
E manifold, D C TE distribution,
R? > U > (t,8) — H(t,s) € E smooth map.
I C R interval, sy € R with | x {sp} C U. If:
o Y(t,s)eDforall(t,s) € U;
o gh,.\=0foralltel;

(t,50)
o (1o, s0) € D for some ty € |

then 98(t,s0) € D forall t € .
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The single leaf Frobenius theorem 2

Theorem (local single leaf Frobenius)

7 : E — M submersion, D C TE horizontal distribution

Y :Z C R xN— M be al-parametric family of curves with a local
right inverse o : V. C M — Z.

Let &N: Z — E be a N-parametric family of curves on E such that
t — 1(t, \) is a horizontal lifting of t — (¢, \), for all \ € A.
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. E — M submersion, D C TE horizontal distribution

Y :Z C R xN— M be al-parametric family of curves with a local
right inverse o : V. C M — Z.

Leti) : Z — E be a N-parametric family of curves on E such that

t — (t, \) is a horizontal lifting of t — v(t, \), for all A € \. Assume
that:

(a) the Levi form of D vanishes on the range of ;
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right inverse o : V. C M — Z.

Leti) : Z — E be a N-parametric family of curves on E such that

t — (t, \) is a horizontal lifting of t — v(t, \), for all A € \. Assume
that:

(a) the Levi form of D vanishes on the range of ;
(b) A\P(0,N) : THA — T 0 E takes values in D for all A € A.

Thens = oa:V — E is a local horizontal section of .
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The single leaf Frobenius theorem 2

Theorem (local single leaf Frobenius)

7 : E — M submersion, D C TE horizontal distribution

Y :Z C R xN— M be al-parametric family of curves with a local
right inverse o : V. C M — Z.

Leti) : Z — E be a N-parametric family of curves on E such that

t — (t, \) is a horizontal lifting of t — v(t, \), for all A € \. Assume
that:

(a) the Levi form of D vanishes on the range of ;
(b) A\P(0,N) : THA — T 0 E takes values in D for all A € A.
Thens = oa:V — E is a local horizontal section of .

Obs.: If A — (0, \) is constant, then (b) is satisfied.
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The higher order Frobenius theorem

D C TE smooth distribution
I'(TE) Lie algebra of vector fields on E
(D) = (D) space of horizontal vector fields
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The higher order Frobenius theorem

D C TE smooth distribution

I'(TE) Lie algebra of vector fields on E

(D) = (D) space of horizontal vector fields

Define recursively I'*1(D) c I'(TE) as the space spanned by I'"(D)

and Lie brackets of the form [X, Y], with X € I"(D) and Y € I'(D).
r>~ =72, "(D): Lie subalgebra of TE spanned by (D).
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The higher order Frobenius theorem

D C TE smooth distribution

I'(TE) Lie algebra of vector fields on E

(D) = (D) space of horizontal vector fields

Define recursively I'*1(D) c I'(TE) as the space spanned by I'"(D)
and Lie brackets of the form [X, Y], with X € I"(D) and Y € I'(D).
r>~ =72, "(D): Lie subalgebra of TE spanned by (D).

Theorem

If E is real analytic manifold and D is a real analytic distribution, then
given ey € E, there exists an integral submanifold of D through ey iff
X(€g) € De, forall X € T>°(D).
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Outline

9 The global single leaf Frobenius Theorem
@ Sprays on manifolds
@ The global result
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Sprays on manifolds

M manifold, = : TM — M tangent bundle, d= : T(TM) — TM,
7: T(TM) — TM
Forae R, my: TM — TM multiplication by a.
Definition
A spray on M is a vector field S : TM — T(TM) such that:
@droS=70S
@ admyoS = Somg,forall acR.
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Sprays on manifolds

M manifold, = : TM — M tangent bundle, d= : T(TM) — TM,
7: T(TM) — TM
Forae R, my: TM — TM multiplication by a.
Definition
A spray on M is a vector field S : TM — T(TM) such that:
@droS =708
@ admyoS = Somg,forall acR.

Integral curves \ : | — TM of S are of the form A =/, v =7 o A.
Given )\ =+ integral curve, also t — a-+/(at) is an integral curve of S.
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Example (Geodesic spray)

V connection on M, S(v) is the unique horizontal vector in T, (TM)
with dmy (S(v)). Integral curves of S are /, with v geodesic.
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Example (Geodesic spray)

V connection on M, S(v) is the unique horizontal vector in T, (TM)
with dm,, (S(v)). Integral curves of S are +/, with v geodesic.

Example (one parameter subgroup spray)
G Lie group, g = Lie(G). TG = G x g, hence:

T(TG) = T(Gxg) = (TG) x (Tg) = (Gxg)x(gxg)

S(g,X)=(g,X,X,0), g € G, X € Xis a spray whose solutions are
(translations of) one-parameter subgroups of G.
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Example (Geodesic spray)

V connection on M, S(v) is the unique horizontal vector in T, (TM)
with dm,, (S(v)). Integral curves of S are +/, with v geodesic.

Example (one parameter subgroup spray)
G Lie group, g = Lie(G). TG = G x g, hence:

T(TG) = T(Gxg) = (TG) x (Tg) = (Gxg)x(gxg)

S(g,X)=(g,X,X,0), g € G, X € Xis a spray whose solutions are
(translations of) one-parameter subgroups of G.

Local theory of solutions of sprays totally analogous to geodesics.
There exist normal neighborhoods of every point.
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Theorem (Global single-leaf Frobenius theorem)

E, M manifolds, = : E — M submersion, D C TE horizontal
distribution, S spray on M. Fix xo € M and ey € 7~ '(xg) € E.

Paolo Piccione (IME-USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 15/48



Theorem (Global single-leaf Frobenius theorem)

E, M manifolds, = : E — M submersion, D C TE horizontal
distribution, S spray on M. Fix xo € M and ey € 7~ '(xg) € E.
Assume:

@ every piecewise solution ~y : [a,b] — M of S with vy(a) = xo admits
a horizontal lifting 7 : [a, b] — E with7(a) = ep;
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distribution, S spray on M. Fix xo € M and ey € 7~ '(xg) € E.
Assume:

@ every piecewise solution ~y : [a,b] — M of S with vy(a) = xo admits
a horizontal lifting 7 : [a, b] — E with7(a) = ep;

o ify:[a b] — E is as above, then £5 ) = 0;
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Theorem (Global single-leaf Frobenius theorem)

E, M manifolds, = : E — M submersion, D C TE horizontal
distribution, S spray on M. Fix xo € M and ey € 7~ '(xg) € E.
Assume:

@ every piecewise solution ~y : [a,b] — M of S with vy(a) = xo admits
a horizontal lifting 7 : [a, b] — E with7(a) = ep;

o ify:[a b] — E is as above, then £5 ) = 0;

@ M is (connected and) simply connected.
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Theorem (Global single-leaf Frobenius theorem)

E, M manifolds, = : E — M submersion, D C TE horizontal
distribution, S spray on M. Fix xo € M and ey € 7~ '(xg) € E.
Assume:

@ every piecewise solution ~y : [a,b] — M of S with vy(a) = xo admits
a horizontal lifting 7 : [a, b] — E with7(a) = ep;

o ify:[a b] — E is as above, then £5 ) = 0;

@ M is (connected and) simply connected.

Then, there exists a unique global horizontal section s of E with
s(xo) = ep.
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Global higher order Frobenius theorem

Theorem

E, M real analytic manifolds, = : E — M real analytic submersion,
D C TE real analytic horizontal distribution.
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Global higher order Frobenius theorem

Theorem

E, M real analytic manifolds, = : E — M real analytic submersion,
D C TE real analytic horizontal distribution.
Assume:

@ M is connected and simply connected;

e ify:1— M is real analytic, ty € I, &g € 7' (v(t)), then there
exists a horizontal lifting v : | — E with~(f) = ep.
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Global higher order Frobenius theorem

Theorem

E, M real analytic manifolds, = : E — M real analytic submersion,
D C TE real analytic horizontal distribution.
Assume:

@ M is connected and simply connected;

e ify:1— M is real analytic, ty € I, &g € 7' (v(t)), then there
exists a horizontal lifting v : | — E with~(f) = ep.

Then, every local horizontal section of = defined on a nonempty

connected open subset of M extends to a global horizontal section of

.
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Global higher order Frobenius theorem

Theorem

E, M real analytic manifolds, = : E — M real analytic submersion,
D C TE real analytic horizontal distribution.
Assume:

@ M is connected and simply connected;

e ify:1— M is real analytic, ty € I, &g € 7' (v(t)), then there
exists a horizontal lifting v : | — E with~(f) = ep.

Then, every local horizontal section of = defined on a nonempty
connected open subset of M extends to a global horizontal section of
.
In particular, if D satisfies the assumptions of the Higher Order
Frobenius theorem at some point ey € E, then = admits a global
horizontal section.
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Outline

© LeviCivita connections
@ Levi form of the horizontal distribution of a connection
@ Connections arising from metric tensors
@ Left invariant connections in Lie groups
@ Constant connections in R”

Paolo Piccione (IME-USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 17 /48



Levi form of the horizontal distribution of a connection
7 : E — M vector bundle, E,, = =—'(m) fiber,
¥V connection on E.

R(X,Y)§ =VxVy§ —VyVx{ = Vix v
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Levi form of the horizontal distribution of a connection
7 : E — M vector bundle, E,, = 7~ (m) fiber,
¥V connection on E.

R(X,Y)§ =VxVy{—VyVx§—Vix s

D C TE horizontal distribution of V: given ~ : | — M, a horizontal lifting
v : I — Eis a V-parallel section of E along ~.
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Levi form of the horizontal distribution of a connection

7 : E — M vector bundle, E,, = =—'(m) fiber,
V connection on E.

R(X,Y){ =VxVy§—VyVx{ = Vix v

D C TE horizontal distribution of V: given ~ : | — M, a horizontal lifting
v : I — Eis a V-parallel section of E along ~.

@ Foré € Ep, T:E/D¢ = T¢(Em) = Ker(dmg).
o Te(Em) = En

o dre : D — TM.

o S?:Tme TmM — Epn,
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Levi form of the horizontal distribution of a connection

7 : E — M vector bundle, E,, = =—'(m) fiber,
V connection on E.

R(X,Y){ =VxVy§—VyVx{ = Vix v

D C TE horizontal distribution of V: given ~ : | — M, a horizontal lifting
v : I — Eis a V-parallel section of E along ~.

@ Foré € Ep, T:E/D¢ = T¢(Em) = Ker(dmg).
o Te(Em) = En

o dre : D — TM.

o S?:Tme TmM — Epn,

Lemma
£§D(V’ W) = _Rm(V7 W)é" me Mi 5 € Em J
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Corollary

m : E — M vector bundle, V connection on E.

v Z C R x A\ al parametric family of curves in M
a:V C M — Z local right inverse of v

Y Z — E a section of E along ).
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Corollary

m : E — M vector bundle, V connection on E.

v Z C R x A\ al parametric family of curves in M
a:V C M — Z local right inverse of v

Y Z — E a section of E along . If:

o t— t(t,\) is parallel for all A € A\;

@ )\ — (0, \) is parallel;

® Ry (v, w)d(t,\) =0 forallv,w € Ty, )M and all (t,)) € Z
then 1 o o is a (local) parallel section of E.
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Corollary

7 : E — M vector bundle with connection V.
S sprayonM, xo € M, eg € 71 (xp).
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Corollary

7w : E — M vector bundle with connection V.
S sprayon M, xo € M, ey € 71 (X0). Assume:

@ if~:[a bl — M is a piecewise solution of S with vy(a) = Xo, and
v : [a, b] — E is a section of E along ~ withv(a) = e, then
Rv(b)(v, W);?(b) =0forallv,w e T’y(b)M;

@ M is (connected and) simply connected.

Paolo Piccione (IME-USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 20/48



Corollary
w : E — M vector bundle with connection V.
S sprayon M, xo € M, ey € 71 (X0). Assume:

@ if~:[a bl — M is a piecewise solution of S with vy(a) = Xo, and
v : [a, b] — E is a section of E along ~ withv(a) = e, then
R,y(b)(v, W);?(b) =0forallv,w e T’y(b)M;

@ M is (connected and) simply connected.

Then there exists a unique global parallel section s of E with
s(xg) = €p.
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Lemma
m : E — M real analytic vector bundle with real analytic connection V.
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Lemma

m : E — M real analytic vector bundle with real analytic connection V.
If M is simply connected, then any local parallel section s of E, defined
on a non empty connected open subset U C M, extends to a (unique)
global parallel section.

21/48
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Lemma

m : E — M real analytic vector bundle with real analytic connection V.
If M is simply connected, then any local parallel section s of E, defined
on a non empty connected open subset U C M, extends to a (unique)
global parallel section.

Corollary
7 : E — M real analytic vector bundle with real analytic connection V.
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Lemma

m : E — M real analytic vector bundle with real analytic connection V.
If M is simply connected, then any local parallel section s of E, defined
on a non empty connected open subset U C M, extends to a (unique)
global parallel section.

Corollary

7 : E — M real analytic vector bundle with real analytic connection V.
Given x € M and e € 7~ '(x), assume V¥R(vy,..., Vkr2)e = 0 for all
Vi,...,Vki2 € TxM and all k > 0.
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Lemma

7 : E — M real analytic vector bundle with real analytic connection V.
If M is simply connected, then any local parallel section s of E, defined
on a non empty connected open subset U C M, extends to a (unique)
global parallel section.

Corollary

7 : E — M real analytic vector bundle with real analytic connection V.
Given x € M and e € =~ 1(x), assume VKR(v4,. .., vk,2)e =0 for all
Vi,...,Vki2 € TxM and all k > 0.

Then there exists a local parallel section s of E, defined around x, with
s(x) = e. If M is simply connected, then there exists a global parallel
section s of E with s(x) = e.
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Levi—Civita connections

7w : E — M vector bundle with connection V.

V induces connections on all vector bundle obtained by functorial
constructions on E.

Paolo Piccione (IME-USP)

On the single-leaf Frobenius Theorem...

Recenti sviluppi ... 22/48



Levi—Civita connections

7 . E — M vector bundle with connection V.

V induces connections on all vector bundle obtained by functorial
constructions on E.

Example

E* ® E* vector bundle over M with fiber at m the space of all bilinear
forms on Ep,. V induces a connection V! on E* ® E*:

(V&'9)(& ) = X(9(&.m)) — 9(Vx&,m) — g(& Vxn)

The curvature tensor R of VP js:

(R™(X, ¥)9)(€:m) = —g(R(X, Y)&.n) — g(&, R(X, Y)n)
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Levi—Civita connections

w . E — M vector bundle with connection V.
V induces connections on all vector bundle obtained by functorial
constructions on E.

Example

E* ® E* vector bundle over M with fiber at m the space of all bilinear
forms on E,,. V induces a connection V°! on E* @ E*:

(V%'9)(&m) = X(9(&n) — 9(Vx&.n) — g(& Vxn)

The curvature tensor R of VP js:

(Rb“(X, Y)9)(&n) = —g(R(X,Y)¢n) —g(& R(X, Y)n)

Definition
V symmetric connection on TM, g semi-Riemannian metric tensor on
M. V is the Levi—Civita connection of g if V*'g = 0.

W
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Characterization of Levi—Civita connections

Problem: given a symmetric V, when does there exist g
semi-Riemannian metric with V*'g = 0?
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Characterization of Levi—Civita connections

Problem: given a symmetric V, when does there exist g
semi-Riemannian metric with V*'g = 0?

Equivalently, does there exist a V"!-parallel section g of T*M @ T*M
(symmetric and nondegenerate)?
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Characterization of Levi—Civita connections

Problem: given a symmetric V, when does there exist g
semi-Riemannian metric with V*'g = 0?

Equivalently, does there exist a V"!-parallel section g of T*M @ T*M
(symmetric and nondegenerate)?

Idea: Given my € M and a nondegenerate symmetric bilinear form go,
one can spread gy by parallel transport along the curves of a
A-parametric family, or along solutions of a spray.
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Characterization of Levi—Civita connections

Problem: given a symmetric V, when does there exist g
semi-Riemannian metric with V*'g = 0?

Equivalently, does there exist a V"!-parallel section g of T*M @ T*M
(symmetric and nondegenerate)?

Idea: Given my € M and a nondegenerate symmetric bilinear form go,
one can spread gy by parallel transport along the curves of a
A-parametric family, or along solutions of a spray.

Frobenius theorem gives us that the metric g obtained in this way is a
solution of the problem if and only if R*!(-,-)g = 0. Recalling the form
of RY!, this is equivalent to the g-antisymmetry of R. More precisely:
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Theorem

M manifold, V symmetric connection on TM, mg € M,
9 TmoM < TyyM — R, S spray on M.
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Theorem

M manifold, V symmetric connection on TM, my € M,
90 TmoM < TyyM — R, S spray on M. Assume:
@ given a piecewise solution v : [a, b] — M of S with vy(a) = mg,
P R, 5)Py - TmyM — Ty M is go-antisymmetric;
@ M is (connected and) simply connected.
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Theorem
M manifold, V symmetric connection on TM, my € M,
90 TmoM < TyyM — R, S spray on M. Assume:
@ given a piecewise solution v : [a, b] — M of S with vy(a) = mg,
P R, 5)Py - TmyM — Ty M is go-antisymmetric;
@ M is (connected and) simply connected.

Then, gy extends to a semi-Riemannian metric on M whose
Levi-Civita connection is V.
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Theorem

If M is a simply connected real analytic manifold with real analytic
symmetric connection V. If g is a semi—Riemannian metric defined on
a non empty open connected subset of M whose Levi—Civita
connection is V, then g extends to a globally defined semi-Riemannian
metric tensor on M whose Levi-Civita connection is V.

v
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Theorem

M real analytic, V real analytic symmetric connection on TM. Given
Xo € M and a nondegenerate symmetric bilinear form go on Ty, M if:

(VER)(vy,. ., Vikp2) : TgM — TyuM

is go-antisymmetric for all vy, ..., vk,o € Tx,M and all k > 0, then go
extends to a locally defined semi-Riemannian metric tensor g whose
Levi-Civita connection is V.
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Theorem

M real analytic, V real analytic symmetric connection on TM. Given
Xo € M and a nondegenerate symmetric bilinear form go on Ty, M if:

(VER)(vy,. ., Vikp2) : TgM — TyuM

is go-antisymmetric for all vy, ..., vk,o € Tx,M and all k > 0, then go
extends to a locally defined semi-Riemannian metric tensor g whose
Levi-Civita connection is V.

If M is simply connected, then gy extends to a globally defined
semi-Riemannian metric g with Levi—Civita connection V.
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G Lie group, V left invariant connection on G
(i.e., zero Christoffel symbols in a left invariant referential)
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G Lie group, V left invariant connection on G
(i.e., zero Christoffel symbols in a left invariant referential)
V determined by a linearmap ' : g x g — ¢:

NX,Y)=VxY, X, Y leftinvariant vector fields
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G Lie group, V left invariant connection on G
(i.e., zero Christoffel symbols in a left invariant referential)

V determined by a linearmap ' : g x g — g:
NX,Y)=VxY, X,Y leftinvariant vector fields

Identify " with the map g > X — I'(X,-) € Lin(g).
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G Lie group, V left invariant connection on G
(i.e., zero Christoffel symbols in a left invariant referential)
V determined by a linearmap ' : g x g — g:

NX,Y)=VxY, X,Y leftinvariant vector fields

Identify " with the map g > X — I'(X,-) € Lin(g).
Torsion of V: | T(X, Y) = (X, Y) — (Y, X) - [X, V]|
(V symmetric iff ' : g — Lin(g) is a Lie algebra homomorphism)
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G Lie group, V left invariant connection on G
(i.e., zero Christoffel symbols in a left invariant referential)
V determined by a linearmap ' : g x g — g:

N(X,Y)=VxY, X,Y leftinvariant vector fields
Identify " with the map g > X — I'(X, -) € Lin(g).
Torsion of V: | T(X, Y) = (X, Y) — (Y, X) - [X, Y]]
(V symmetric iff I : g — Lin(g) is a Lie algebra homomorphism)
Curvature of V: |R(X, Y) = [[(X),[(Y)] = T([X, Y])
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G Lie group, V left invariant connection on G
(i.e., zero Christoffel symbols in a left invariant referential)
V determined by a linearmap ' : g x g — g:

NX,Y)=VxY, X,Y leftinvariant vector fields
Identify " with the map g > X — I'(X, -) € Lin(g).
Torsion of V: | T(X, Y) = (X, Y) — (Y, X) - [X, Y]]
(V symmetric iff I : g — Lin(g) is a Lie algebra homomorphism)
Curvature of V: |R(X, Y) = [[(X),[(Y)] - T([X, Y])

Parallel transport of Y along t — exp(tX): |t — e~ TX)Y
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G Lie group, V left invariant connection on G
(i.e., zero Christoffel symbols in a left invariant referential)
V determined by a linearmap ' : g x g — g:

NX,Y)=VxY, X,Y leftinvariant vector fields
Identify " with the map g > X — I'(X, -) € Lin(g).
Torsion of V: | T(X, Y) = (X, Y) — (Y, X) - [X, Y]]
(V symmetric iff I : g — Lin(g) is a Lie algebra homomorphism)
Curvature of V: |R(X, Y) = [[(X),[(Y)] - T([X, Y])

Parallel transport of Y along t — exp(tX): |t — e TX)y

Theorem

V symmetric left-invariant connection on G, h: g x g — R
nondegenerate symmetric bilinear form.

V.
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G Lie group, V left invariant connection on G
(i.e., zero Christoffel symbols in a left invariant referential)
V determined by a linearmap ' : g x g — g¢:

F(X,Y)=VxY, X,Y leftinvariant vector fields
Identify " with the map g > X — I'(X, -) € Lin(g).
Torsion of V: | T(X, Y) = [(X,Y) — (Y, X) - [X, V]|
(V symmetric iff I : g — Lin(g) is a Lie algebra homomorphism)
Curvature of V: |R(X, Y) = [[(X),[(Y)] - T([X, Y])

Parallel transport of Y along t — exp(tX): |t — e~ TX)Y

Theorem

V symmetric left-invariant connectionon G, h: g x g — R
nondegenerate symmetric bilinear form.

Then, h extends to a local semi-Riemannian metric on G whose
Levi—Civita connection is V iff:

@ (rCOrMI-rxM)e™® ¢ oy vx,y,Zeq.
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Lemma
The condition in the above theorem is equivalent to:

adf 7 ([F(X), T(Y)] = T([X, Y])) € so(h), VX,Y,Zeg.
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Lemma
The condition in the above theorem is equivalent to:

adf ) ([M(X),T(YV)] = T([X, Y])) € so(h), VX,Y,Z€cg.

Since Lie groups are real analytic, and so are left-invariant
connections:

Corollary

If G is simply connected, then in the above theorem one has the
existence of a globally defined extension of h to a semi-Riemannian
metric tensor on G whose Levi—Civita connection is V.
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Constant connections in R"

In the special case G = R", a constant connection V has curvature:
R(v,w) = [I(v),[(w)] € Lin(R"), where Vx Y = dY(X) + (X, Y).
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Constant connections in R”

In the special case G = R", a constant connection V has curvature:
R(v,w) = [I’(v), r(w)] € Lin(R™), where Vx Y = dY(X) + (X, Y).

Theorem
LetT : R" x R" — R" a symmetric bilinear map, and let A be the
image of the map R" > v — I (v) € Lin(R").
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Constant connections in R”

In the special case G = R", a constant connection V has curvature:
R(v,w) = [I’(v), r(w)] € Lin(R™), where Vx Y = dY(X) + (X, Y).

Theorem

LetT : R" x R" — R" a symmetric bilinear map, and let A be the
image of the map R" 5 v — I(v) € Lin(R").

A nondegenerate symmetric bilinear form go on R" extends to a
semi-Riemannian metric on R" whose Levi—Civita connection ¥V above
iff:

(adx)X[Y, Z] € so(go), VX,Y,Ze A, Yk >0.
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Constant connections in R”

In the special case G = R", a constant connection V has curvature:
R(v,w) = [I’(v), r(w)] € Lin(R™), where Vx Y = dY(X) + (X, Y).

Theorem

LetT : R" x R" — R" a symmetric bilinear map, and let A be the
image of the map R" 5 v — I'(v) € Lin(R").
A nondegenerate symmetric bilinear form go on R" extends to a
semi-Riemannian metric on R" whose Levi—Civita connection ¥V above
iff:

(adx)X[Y,Z] € s0(g0), VY X,Y,Ze A, Yk >0.

Corollary

Denote by g C Lin(RR") the Lie algebra generated by A, and set
g’ = |g,9]. The conclusion of the Theorem above holds if g C s0(go)-
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Constant connections in R”

In the special case G = R", a constant connection V has curvature:
R(v,w) = [I’(v), r(w)] € Lin(R™), where Vx Y = dY(X) + (X, Y).

Theorem

LetT : R" x R" — R" a symmetric bilinear map, and let A be the
image of the map R" 5 v — I'(v) € Lin(R").
A nondegenerate symmetric bilinear form go on R" extends to a
semi-Riemannian metric on R" whose Levi—Civita connection ¥V above
iff:

(adx)X[Y,Z] € s0(g0), VY X,Y,Ze A, Yk >0.

Corollary

Denote by g C Lin(RR") the Lie algebra generated by A, and set
g’ = |g,9]. The conclusion of the Theorem above holds if g C s0(go)-
If n = 2, the condition g’ C so(go) is also necessary.
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Thecasen=2

Lemma

Let A: R? — RR? be a nonzero linear map. There exists a
nondegenerate symmetric bilinear form gy on R? with A € so(go) if and
only iftr A= 0 and det A # 0; moreover, gy is positive definite (resp.,
has index 1) if and only ifdet A > 0 (resp., detA < 0).
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Thecasen=2

Lemma

Let A: R? — RR? be a nonzero linear map. There exists a
nondegenerate symmetric bilinear form gy on R? with A € so(go) if and
only iftr A= 0 and det A # 0; moreover, gy is positive definite (resp.,
has index 1) if and only ifdet A > 0 (resp., detA < 0).

Corollary

In the case n = 2, the conclusion of the Theorem above holds if and
only if either g’ = 0 or if g’ has dimension 1 and it is spanned by an
invertible 2 x 2 matrix.
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An explicit analysis of 2-dimensional and 3-dimensional Lie algebras g
with 1-dimensional commutator subalgebra g’ leads to the following:
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An explicit analysis of 2-dimensional and 3-dimensional Lie algebras g
with 1-dimensional commutator subalgebra g’ leads to the following:

Corollary

LetT : R? x R? — R? be a symmetric bilinear map and let A C Lin(RR?)
be the range of the linear map v — (v, ).
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An explicit analysis of 2-dimensional and 3-dimensional Lie algebras g
with 1-dimensional commutator subalgebra g’ leads to the following:

Corollary

LetT : R? x R? — R? be a symmetric bilinear map and let A C Lin(IR?)
be the range of the linear map v — I'(v,-). Then the conclusion of the
Theorem above holds if and only if [X, Y] =0, forall X, Y € A. In this
case, a semi-Riemannian metric g on R? with the required property
can be chosen with an arbitrary value go at the origin.
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Outline

@ Existence of affine maps
@ Affine manifolds and affine maps
@ The Cartan—Ambrose—Hicks Theorem
@ Higher order Cartan—Ambrose—Hicks theorem
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Affine manifolds

Let M, N be manifolds endowed with connections V¥ and V.
TN, TM RM RN the torsion and the curvature tensors of VM and VM.
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Affine manifolds

Let M, N be manifolds endowed with connections V¥ and V.
TN, TM RM RN the torsion and the curvature tensors of VM and VM.

A smooth map f: M — N is affine if:

df (VY X) = Vil (df o X).
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Affine manifolds

Let M, N be manifolds endowed with connections V¥ and V.
TN, TM RM RN the torsion and the curvature tensors of VM and VM.

A smooth map f: M — N is affine if: | df, (VMX) = VI (df o X).

Equivalently, f is affine if for every parallel vector field V along a curve
v, df o V is parallel along f o ~.

Paolo Piccione (IME-USP) On the single-leaf Frobenius Theorem... Recenti sviluppi ... 33/48



Affine manifolds

Let M, N be manifolds endowed with connections V¥ and V.
TN, TM RM RN the torsion and the curvature tensors of VM and VM.

A smooth map f: M — N is affine if: | df, (VY X) = VI (df o X).

Equivalently, f is affine if for every parallel vector field V along a curve
v, df o V is parallel along f o ~.
Example
If M C N, then the inclusioni: M — N is affine iff:
@ M is totally geodesic in N;
o VM is the restriction of V.
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Affine maps as parallel sections

Consider the vector bundle E = Lin(TM, TN) over M x N, with fiber
E(m,n) == Lln( 7-,7—)A”7 TnN)
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Affine maps as parallel sections

Consider the vector bundle E = Lin(TM, TN) over M x N, with fiber
E(m,n) = Lin(TmM, TpN). | E = 7{(TM*) @ 75(TN) | where
m :MxN— Mandm : M x N— N are the projections.
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Affine maps as parallel sections

Consider the vector bundle E = Lin(TM, TN) over M x N, with fiber

E(m,n) == Lln( TmM, TnN)

E =i (TM*) @ 73(TN)

where

m :MxN— Mandm: Mx N— N are the projections. By

functoriality, VM and V" induce a connection V on E:

(V.mo)(X) =V

(v,w)

(o(X)) = o (V'X)

veTM,we TN, o : M x N — E section.
(o(X) is seen as a section of the pull back bundle 73(TN) over M x N)
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Affine maps as parallel sections

Consider the vector bundle E = Lin(TM, TN) over M x N, with fiber
E(m,n = Lin(TmM, TpN). | E = 7§ (TM*) @ 73(TN) |  where
m :MxN— Mandm: Mx N— N are the projections. By

functoriality, V™ and V" induce a connection V on E:

(Vma)(X) = V(| 4 (0(X)) = a(Vy'X) |, X vector field on M,
veTM,we TN, o : M x N — E section.

(o(X) is seen as a section of the pull back bundle 73( TN) over M x N)

Given a smooth function f : M — N, the differential is a section of E
along the map M > x — (x, f(x)) € M x N, so that it makes sense Vdf.
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Affine maps as parallel sections

Consider the vector bundle E = Lin(TM, TN) over M x N, with fiber
E(m,n = Lin(TmM, TpN). | E = 7§ (TM*) @ 73(TN) |  where
m :MxN— Mandm : Mx N— N are the projections. By

functoriality, VM and V" induce a connection V on E:
(Vmo)(X) =V ) (0(X)) = o(VVX) |, X vector field on M,

(v,w)

veTM,we TN, o : M x N — E section.
(o(X) is seen as a section of the pull back bundle 73( TN) over M x N)

Given a smooth function f : M — N, the differential is a section of E
along the map M > x — (x, f(x)) € M x N, so that it makes sense Vdf.

Lemma
A smooth map f : M — N is affine iff the differential df is vV -parallel. J
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Affine maps as horizontal sections

Consider the submersion = : E — M given by the composition of the
projection E— M x Nand 7y : M x N — M.
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Affine maps as horizontal sections

Consider the submersion = : E — M given by the composition of the
projection E — M x Nand w1 : M x N — M.

Given o € Lin(TxM, T, N), the tangent space T, E is the direct sum of:
@ TxM @ T,N (the horizontal space of V)
@ Lin(TxM, T,N) (the vertical space, tangent to the fiber).
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Affine maps as horizontal sections

Consider the submersion = : E — M given by the composition of the
projection E — M x Nand w1 : M x N — M.

Given ¢ € Lin(TyM, T, N), the tangent space T, E is the direct sum of:
@ TxM @ T,N (the horizontal space of V)
@ Lin(TxM, T,N) (the vertical space, tangent to the fiber).

Define a distribution D C TE:

D, = Graph(c) @ {0} C (TxM & TyN) & Lin(T M, T,N).
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Affine maps as horizontal sections

Consider the submersion = : E — M given by the composition of the
projection E— M x Nandm : M x N — M.

Given ¢ € Lin(TxM, T, N), the tangent space T, E is the direct sum of:
@ TxM @ T,N (the horizontal space of V)
@ Lin(TxM, T,N) (the vertical space, tangent to the fiber).

Define a distribution D c TE:
D, = Graph(c) ® {0} C (TxM @ TyN) & Lin(TM, T,N).

Lemma

Lets: U C M — E be a smooth local section,|s(x) = (f(x),o(x)) |
where f: U — N and o(x) € Lin(TxM, Ty N).

W
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Affine maps as horizontal sections

Consider the submersion = : E — M given by the composition of the
projection E— M x Nand 1 : M x N — M.

Given ¢ € Lin(TxM, T, N), the tangent space T, E is the direct sum of:
@ TxM @ T,N (the horizontal space of V)
@ Lin(TxM, T,N) (the vertical space, tangent to the fiber).

Define a distribution D c TE:
D, = Graph(c) ® {0} C (TxM @ TyN) & Lin(TM, T,N).

Lemma

Lets: U C M — E be a smooth local section,|s(x) = (f(x),o(x)) |
where f: U — N and o(x) € Lin(TxM, Ty N).
Then, s is D-horizontal iff:

@ o(x) =df(x) forallx and f is affine.

W
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The Levi form of D = Graph(c) & {0}

Lemma
The curvature tensor RE of the connection V of E is given by:

Ricy) (i, W), (v2, w2)) o = RY(wy, w2) 0 0 — 0 0 R (w1, o),

forall (x,y) € M x N, vi,vo € TyM, wy,ws € TyN, o € Lin(TyM, T,N).
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The Levi form of D = Graph(c) & {0}

Lemma
The curvature tensor RE of the connection V of E is given by:

Ry (vi, 1), (va, wp)) o = RY(wy, wp) 0 0 — 0 0 RY (w1, ),

forall (x,y) € M x N, vi,vo € TyM, wy,ws € TyN, o € Lin(TxM, T,N)

v

Lemma

Givenx € M,y € N, o € Lin(TyM, T, N), the Levi form of D at the point
o € E is given by:

£2 (v, v) = (o(TM(w1,5)) — TV (o(w1), 7(v2),

o0 RY(v1,v2) = A} (o(v1),0(2)) 0 7).

for all vy, vo € TyM.

V.
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Induced maps between affine manifolds

Given xo € M, yp € N and o¢ € Lin(T,M, T,,N) and a geodesic

v : [a, b] — M with v(a) = xp, one gets a geodesic y : [a, b] — N with
i(a) = yo and /(a) = oo (+'(a)-
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Induced maps between affine manifolds

Given xo € M, yp € N and o¢ € Lin(T,M, T,,N) and a geodesic
v : [a, b] — M with v(a) = xp, one gets a geodesic y : [a, b] — N with
p(a) = yo and 1/'(a) = ao(v'(a))-

Also, obtain a linear map o : T, ;)M — T, p)N: |0 = P, 00g0 Plf
where P, and P, are the parallel transport.
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Induced maps between affine manifolds

Given xo € M, yp € N and o¢ € Lin(T,M, T,,N) and a geodesic

v : [a, b] — M with v(a) = xp, one gets a geodesic y : [a, b] — N with
p(a) = yo and 1/'(a) = ao(v'(a))-

Also, obtain a linear map o : T (p)yM — T, p)N: |0 = P, 00q0 P,ﬂ
where P, and P, are the parallel transport.

lterating, given a piecewise geodesic v : [a, b] — M starting at xp, one
gets a piecewise geodesic 4 : [a, b] — N starting at yp, and a linear
map o : T'y(b)MH Tu(b)N
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Induced maps between affine manifolds

Given xo € M, yp € N and o¢ € Lin(T,M, T,,N) and a geodesic

v : [a, b] — M with v(a) = xp, one gets a geodesic y : [a, b] — N with
i(a) = yo and /(a) = oo (+'(a)-

Also, obtain a linear map o : T (p)yM — T, p)N: |0 = P, 00q0 Plﬂ
where P, and P, are the parallel transport.

lterating, given a piecewise geodesic v : [a, b] — M starting at x, one
gets a piecewise geodesic x : [a, b] — N starting at yp, and a linear
map o : T'y(b)M_> Tu(b)N

We say that i, and o are induced by v and oy.
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Induced maps between affine manifolds

Given xo € M, yp € N and o¢ € Lin(T,M, T,,N) and a geodesic

v : [a, b] — M with v(a) = xp, one gets a geodesic y : [a, b] — N with
i(a) = yo and /(a) = oo (+'(a)-

Also, obtain a linear map o : T (p)yM — T, p)N: |0 = P, 00q0 Plﬂ
where P, and P, are the parallel transport.

lterating, given a piecewise geodesic v : [a, b] — M starting at x, one
gets a piecewise geodesic x : [a, b] — N starting at yp, and a linear
map o : T'y(b)M_> Tu(b)N

We say that i and o are induced by v and oy.

Observation: If f : M — N is an affine map with f(x) = yo,

v : [a,b] — M is a (piecewise) geodesic with vy(a) = xp, then
f(v(b)) = n(b) and df (v(b)) = o, where p and o are the “objects”
induced by df(xp) and .
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A generalized Cartan—Ambrose—Hicks theorem

Problem: Given (M, VM) and (N,VN), xo € M, yo € N,
oo € Lin(T,M, T,,N), want to find a (local) affine map f: M — N with
f(Xo) =)0 and df(Xo) = 00-
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A generalized Cartan—Ambrose—Hicks theorem

Problem: Given (M, VM) and (N, VN), xo € M, yo € N,

oo € Lin(T,M, T,,N), want to find a (local) affine map f: M — N with
f(Xo) =)0 and df(Xo) = 00-

Candidate: construct f using geodesics induced by oy:

f(v(b)) = u(b).
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A generalized Cartan—Ambrose—Hicks theorem

Problem: Given (M, VM) and (N, VN), xo € M, yy € N,

oo € Lin(T,M, T,,N), want to find a (local) affine map f: M — N with
f(Xo) =Y and df(Xo) = 00-

Candidate: construct f using geodesics induced by oy:

f(v(b)) = p(b). By the single leaf Frobenius theorem, this works iff the
Levi form of D vanishes along the section (x, f(x)).
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A generalized Cartan—Ambrose—Hicks theorem

Problem: Given (M, VM) and (N, VN), xo € M, yy € N,

oo € Lin(T,M, T,,N), want to find a (local) affine map f: M — N with
f(Xo) =Y and df(Xo) = 00-

Candidate: construct f using geodesics induced by oy:

f(v(b)) = p(b). By the single leaf Frobenius theorem, this works iff the
Levi form of D vanishes along the section (x, f(x)).

Theorem

U c Tx,M open and star-shaped at the origin, exp,, : U S VCN.
assume o(U) C Dom(exp,, ).

4
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A generalized Cartan—Ambrose—Hicks theorem

Problem: Given (M, VM) and (N, VN), xo € M, yy € N,

oo € Lin(T,M, T,,N), want to find a (local) affine map f: M — N with
f(Xo) =Y and df(Xo) = 00-

Candidate: construct f using geodesics induced by oy:

f(v(b)) = p(b). By the single leaf Frobenius theorem, this works iff the
Levi form of D vanishes along the section (x, f(x)).

Theorem

U c Tx,M open and star-shaped at the origin, exp,, : U S VCN.
assume o(U) C Dom(exp,, ). Forx € V, let~y : [0,1] — M be the
unique geodesic such that v,(0) € U and vx(1) = x; let ux : [0,1] = N
andoyx : TyM — T, 1)N be the “objects” induced by ~x and .

4
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A generalized Cartan—Ambrose—Hicks theorem

Problem: Given (M, VM) and (N, VN), xo € M, yy € N,

oo € Lin(T,M, T,,N), want to find a (local) affine map f: M — N with
f(Xo) =Y and df(Xo) = 00-

Candidate: construct f using geodesics induced by oy:

f(v(b)) = p(b). By the single leaf Frobenius theorem, this works iff the
Levi form of D vanishes along the section (x, f(x)).

Theorem

U c Tx,M open and star-shaped at the origin, exp,, : U S VCN.
assume o(U) C Dom(exp,, ). Forx € V, let~y : [0,1] — M be the
unique geodesic such that v,(0) € U and vx(1) = x; let ux : [0,1] = N
andox : TxM — T, 1)N be the “objects” induced by ~x and oq. If

Vx € V, oy relates TM with TN and RM with RN, i.e.:

UX(TM(':')) = TN(UX(‘)aUX(‘))a UX(RM('>')') = RN(UX(')aUX('))UX(')-

4
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A generalized Cartan—Ambrose—Hicks theorem

Problem: Given (M, VM) and (N, VN), xo € M, yy € N,

oo € Lin(T,M, T,,N), want to find a (local) affine map f: M — N with
f(Xo) =Y and df(Xo) = 00-

Candidate: construct f using geodesics induced by oy:

f(v(b)) = p(b). By the single leaf Frobenius theorem, this works iff the
Levi form of D vanishes along the section (x, f(x)).

Theorem

U c Tx,M open and star-shaped at the origin, exp,, : U S VCN.
assume o(U) C Dom(exp,, ). Forx € V, let~y : [0,1] — M be the
unique geodesic such that v,(0) € U and vx(1) = x; let ux : [0,1] = N
andox : TxM — T, 1)N be the “objects” induced by ~x and oq. If

Vx € V, oy relates TV with TN and RM with RN, i.e.:

UX(TM(':')) = TN(UX(')aUX('))a UX(RM('a')') = RN(UX(')7UX('))UX(')-
Thenmap f : V — N defined by f(x) = ux(1) is affine and df(x) = ox
for all x € V; in particular, f(xo) = yo and df(xp) = oyp.
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The global result

Theorem (Cartan—Ambrose—Hicks)

Assume that VN is geodesically complete and that M is connected and
simply-connected. Let xo € M, yo € N be given and let

oo : Txy,M — Ty N be a linear map. For each piecewise geodesic

v : [a, b] — M with v(a) = xo denote by .-, : [a, b] — N and by

oy TypyM — T, (v)N respectively the piecewise geodesic and the
linear map induced by the piecewise geodesic ~ and by oy.

Paolo Piccione (IME-USP) On the single-leaf Frobenius Theorem...

Recenti sviluppi ... 39/48



The global result

Theorem (Cartan—Ambrose—Hicks)

Assume that VN is geodesically complete and that M is connected and
simply-connected. Let xo € M, yo € N be given and let

oo : Txy,M — Ty N be a linear map. For each piecewise geodesic

v : [a, b] — M with (&) = xo denote by 1., : [a, b] — N and by

oy TypyM — T, (v)N respectively the piecewise geodesic and the
linear map induced by the piecewise geodesic v and by oo. Assume
that for every piecewise geodesic v the linear map o., relates ™ with
TN and RM with RN. Then there exists a smooth affine map f: M — N
such that for every piecewise geodesic v : [a, b] — M we have

fory = py andt(y(b)) = o, in particular, f(xo) = yo and f(xo) = oo.
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The global result

Theorem (Cartan—Ambrose—Hicks)

Assume that VN is geodesically complete and that M is connected and
simply-connected. Let xo € M, yo € N be given and let

oo : Txy,M — Ty N be a linear map. For each piecewise geodesic

v : [a, b] — M with (&) = xo denote by 1., : [a, b] — N and by

oy TypyM — T, (v)N respectively the piecewise geodesic and the
linear map induced by the piecewise geodesic v and by oo. Assume
that for every piecewise geodesic v the linear map o., relates ™ with
TN and RM with RN. Then there exists a smooth affine map f: M — N
such that for every piecewise geodesic v : [a, b] — M we have

fory = py andt(y(b)) = o, in particular, f(xo) = yo and f(xo) = oo.

Remark. In the statement of the Cartan—Ambrose—Hicks Theorem, if
one assumes in addition that o is an isomorphism, and that VM is
geodesically complete then it follows that the affine map f: M — Nis a
covering map.
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Totally geodesic immersions

Corollary

Let (M, gM), (N, g") be Riemannian manifolds with (N, gN) complete
and M connected and simply-connected. Let xo € M, yo € N be given
and letog : TyyM — Ty, N be a linear isometry onto a subspace of
T,,N. For each piecewise geodesic v : [a, b] — M with ~(a) = xo
denote by . : [a,b] — N and by o : T, (pyM — T, )N respectively
the piecewise geodesic and the linear map induced by the piecewise
geodesic v and by og. Assume that for every piecewise geodesic y the
linear map o, relates RM with RN. Then there exists a totally geodesic
isometric immersion f : M — N with f(xg) = yo and f(xo) = o0op.

v
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Higher order Cartan—Ambrose—Hicks theorem

Given a tensor field 7 on a manifold endowed with a connection V, we

denote by V(") its r-th covariant derivative, for r > 1; we set
vOr =7,
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Higher order Cartan—Ambrose—Hicks theorem

Given a tensor field 7 on a manifold endowed with a connection V, we
denote by V("7 its r-th covariant derivative, for r > 1; we set
vOr =

Theorem

Let M, N be real-analytic manifolds endowed with real-analytic
connections VM and VN. xo € M, yo € N, o € Lin(T,M, T;,N).
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Higher order Cartan—Ambrose—Hicks theorem

Given a tensor field 7 on a manifold endowed with a connection V, we
denote by V("7 its r-th covariant derivative, for r > 1; we set

vOr =
Theorem

Let M, N be real-analytic manifolds endowed with real-analytic
connections VM and VN. xo € M, yo € N, o € Lin(T M, T, N).
If for all r > 0 the linear map oq relates V() T with V(D TN and
VO RY with v RN
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Higher order Cartan—Ambrose—Hicks theorem

Given a tensor field 7 on a manifold endowed with a connection V, we
denote by V("7 its r-th covariant derivative, for r > 1; we set
vOr =7,

Theorem

Let M, N be real-analytic manifolds endowed with real-analytic
connections VM and VN. xo € M, yo € N, o € Lin(Ty,M, Ty, N).

If for all r > 0 the linear map oq relates V") T with V(DTN and
VI RY with V") RY then there exists a real-analytic affine map

f: U — N defined on an open neighborhood U of xy in M satisfying
f(Xo) =)0 anddf(xo) = 0p-
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Theorem

Let M, N be real-analytic manifolds endowed with real-analytic
connections VM and VN, respectively. Assume that V" is geodesically
complete and that M is (connected and) simply-connected. Then every
affine map f : U — N defined on a nonempty connected open subset
U of M extends to an affine map from M to N. In particular, if in
addition xo € M, yo € N, o9 € Lin(Tx,M, Ty, N) satisfy the hypotheses
of Theorem above, then there exists an affine map f : M — N with
f(Xo) = Yo anddf(xo) = 00-
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Affine symmetries

Definition

An affine symmetry around a point xo € M is an affinemap f: U — M
defined in an open neighborhood U of xu with f(xg) = xo and

df(Xo) = —Id.
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Affine symmetries

Definition

An affine symmetry around a point xo € M is an affinemap f: U — M
defined in an open neighborhood U of xu with f(xg) = xo and

df(Xo) = —Id.

Applying the higher order Cartan—Ambrose—Hicks theorem to
oo = —Id : T(yM — T,,M we get the following curious result:
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Affine symmetries

Definition
An affine symmetry around a point xo € M is an affinemap f: U — M

defined in an open neighborhood U of xu with f(xg) = xo and
df(Xo) = —Id.

Applying the higher order Cartan—Ambrose—Hicks theorem to
oo = —Id : T(yM — T,,M we get the following curious result:

Corollary

Let M be a real-analytic manifold endowed with a real-analytic
connection V. Let xo € M be fixed. Then there exists an affine
symmetry around xq if and only if:

veIT, =0, and V@*YUR, =0, forallr>0.

v
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Affine symmetries

Definition
An affine symmetry around a point xo € M is an affinemap f: U — M

defined in an open neighborhood U of xu with f(xg) = xo and
df(Xo) = —Id.

Applying the higher order Cartan—Ambrose—Hicks theorem to
oo = —Id : TyM — Ty,M we get the following curious result:

Corollary

Let M be a real-analytic manifold endowed with a real-analytic
connection V. Let xo € M be fixed. Then there exists an affine
symmetry around xq if and only if:

veIT, =0, and V@*YUR, =0, forallr>0.

If M is simply-connected and complete, one has the existence of a
globally defined affine symmetry f : M — M around Xg.
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Affine manifold with G-structure

M n-dimensional differentiable manifold, G ¢ GL(R") Lie subgroup
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Affine manifold with G-structure

M n-dimensional differentiable manifold, G ¢ GL(R") Lie subgroup
Assume that M is endowed with a connection V and a G-structure
P C Ref(TM).
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Affine manifold with G-structure

M n-dimensional differentiable manifold, G ¢ GL(R") Lie subgroup

Assume that M is endowed with a connection V and a G-structure
P C Ref(TM).

For x € M, let:

@ Gy be the Lie subgroup of GL( TxM) consisting of G-structure
preserving endomorphisms of TyM,

@ gx C gl(TxM) the Lie algebra of Gy
@ dx : TxM — gl(TxM)/gx the inner torsion of the G-structure P.
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Affine manifold with G-structure

M n-dimensional differentiable manifold, G ¢ GL(R") Lie subgroup
Assume that M is endowed with a connection V and a G-structure
P C Ref(TM).
For x € M, let:

@ Gy be the Lie subgroup of GL( TxM) consisting of G-structure
preserving endomorphisms of TyM,

@ gx C gl(TxM) the Lie algebra of Gy
@ dx : TxM — gl(TxM)/gx the inner torsion of the G-structure P.
The triple (M, V, P) will be called an affine manifold with G-structure.
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Infinitesimally homogenous affine manifolds

Given x,y € M and a G-structure preserving morphism
o TxM — T,M then the Lie group isomorphism
T, : GL(TxM) — GL(T,M) defined by:

Z, :GL(TyM) 5 T— oo Too~ ' € GL(T,M)

carries Gy onto Gy.
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Infinitesimally homogenous affine manifolds

Given x,y € M and a G-structure preserving morphism
o TxM — T,M then the Lie group isomorphism
T, : GL(TxM) — GL(T,M) defined by:
Z, :GL(TyM) 5 T— oo Too~ ' € GL(T,M)

carries Gy onto Gy, .lts differential at the identity

Ad, @ gl(TxM) — gl(T,M) carries gx onto g, and therefore it induces a
linear isomorphism Ad,, : gl( TxM)/gx — gl(T,M)/g,.

Definition

An affine manifold with G-structure M is said to be infinitesimally

homogeneous if for all x, y € M and all G-structure preserving
morphism o : TxM — T,M, the following conditions hold:

(] Ho—oé)(:éyoo';
® Ty(o(v),a(w)) =a(Tx(v,w)), forall v,w € T,M;
® Ry(o(v),a(w)) oo =00 Rx(v,w),forall v,w e T,M.

4
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Affine immersions

Theorem (Hypotheses)

M, M manifolds, = : E — M be a vector bundle over M. Set
E=TM& E and denote by . : TM — E the inclusion map. LetV and
V be connections on EandonTM respectively. Let G be a Lie group
and assume that E and TM are endowed with G-structures P and P,
respectively. Assume that (M, ¥, P) is infinitesimally homogeneous
and that forallx e M, y € M and every G-structure preserving
morphism o : Ex — T,M, the following conditions hold:

@ Ad, o Sx = Sy oa|Tm;
o T, (o(v),0(w)) = o(Tx(v,w)), forall v,w € T,M;
® Ry(0(v),o(w)) oo =0 o Ry(v,w), forall v,w € TyM.
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Affine immersions

Theorem (Hypotheses)

Then, for all xo € M, all Yo € M and every G-structure preserving
morphism o : EX0 — Ty, M there exists a smooth immersion f : U — M
defined on an open neighborhood U of xy in M and a G-structure
preserving and connection preserving vector bundle isomorphism

L: E|y — f*TM such that L|ry = df, f(xo) = yo and Ly, = oy.
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