Prof. Paolo Piccione, 15.05.2006

- (1) (3 pontos) Estude a continuidade e a diferenciabilidade em (0,0) das funções f abaixo:
 - (a) $f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ (b) $f(x,y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$
- (2) (2 pontos) Calcule ou mostre que não existe o limite: $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{x-y}$.
- (3) (2 pontos) Determine todas as soluções da EDP:

$$\frac{\partial f}{\partial x} - 2\frac{\partial f}{\partial y} = 0.$$

(4) (2 pontos) Mostre que numa vizinhança do ponto (0,0), o conjunto das soluções da equação:

$$x^2y + \cos y - x - y = 1$$

é o gráfico de uma função derivável y = y(x). Expresse y'(x) em termos de x e y; calcule y(0) e y'(0).

(5) (2 pontos) A imagem da curva $\gamma(t)=\left(3t,t^2,z(t)\right)$ está contida no gráfico da função diferenciável f(x,y). Sabe-se que f(3,1)=3, $\frac{\partial f}{\partial x}(3,1)=1$ e $\frac{\partial f}{\partial y}(3,1)=-1$. Determine a equação da reta tangente a γ no ponto $\gamma(1)$.

Prof. Paolo Piccione, 15.05.2006

 \mathbf{B} ${f B}$

(1) (3 pontos) Estude a continuidade e a diferenciabilidade em (0,0) das funções f abaixo:

(a)
$$f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

(b) $f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$

(b)
$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

- (2) (2 pontos) Calcule ou mostre que não existe o limite: $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{x+y}$.
- (3) (2 pontos) Determine todas as soluções da EDP:

$$2\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 0.$$

(4) (2 pontos) Mostre que numa vizinhança do ponto (0,0), o conjunto das soluções da equação:

$$2x^2y + \cos y - x - y = 1$$

é o gráfico de uma função derivável y = y(x). Expresse y'(x) em termos de x e y; calcule y(0) e y'(0).

(5) (2 pontos) A imagem da curva $\gamma(t)=\left(4t,t^2,z(t)\right)$ está contida no gráfico da função diferenciável f(x,y). Sabe-se que f(4,1)=3, $\frac{\partial f}{\partial x}(4,1)=1$ e $\frac{\partial f}{\partial y}(4,1)=-1$. Determine a equação da reta tangente a γ no ponto $\gamma(1)$.

Prof. Paolo Piccione, 15.05.2006

(1) (3 pontos) Estude a continuidade e a diferenciabilidade em (0,0) das funções f abaixo:

(a)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

(b) $f(x,y) = \begin{cases} \frac{x^3y}{x^2+y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$

(b)
$$f(x,y) = \begin{cases} \frac{x^3y}{x^2+y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

- (2) (2 pontos) Calcule ou mostre que não existe o limite: $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{x+2y}$.
- (3) (2 pontos) Determine todas as soluções da EDP:

$$2\frac{\partial f}{\partial x} - 3\frac{\partial f}{\partial y} = 0.$$

(4) (2 pontos) Mostre que numa vizinhança do ponto (0,0), o conjunto das soluções da equação:

$$3x^2y + \cos y - x - y = 1$$

é o gráfico de uma função derivável y = y(x). Expresse y'(x) em termos de x e y; calcule y(0) e y'(0).

(5) (2 pontos) A imagem da curva $\gamma(t)=\left(t,t^2,z(t)\right)$ está contida no gráfico da função diferenciável f(x,y). Sabe-se que f(1,1)=3, $\frac{\partial f}{\partial x}(1,1)=1$ e $\frac{\partial f}{\partial y}(1,1)=-1$. Determine a equação da reta tangente a γ no ponto $\gamma(1)$.

Prof. Paolo Piccione, 15.05.2006

- (1) (3 pontos) Estude a continuidade e a diferenciabilidade em (0,0) das funções f abaixo:
 - (a) $f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ (b) $f(x,y) = \begin{cases} \frac{x^3y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$
- (2) (2 pontos) Calcule ou mostre que não existe o limite: $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{2x+y}$.
- (3) (2 pontos) Determine todas as soluções da EDP:

$$2\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = 0.$$

(4) (2 pontos) Mostre que numa vizinhança do ponto (0,0), o conjunto das soluções da equação:

$$-x^2y + \cos y - x - y = 1$$

é o gráfico de uma função derivável y = y(x). Expresse y'(x) em termos de x e y; calcule y(0) e y'(0).

(5) (2 pontos) A imagem da curva $\gamma(t) = (-t, t^2, z(t))$ está contida no gráfico da função diferenciável f(x,y). Sabe-se que f(-1,1) = 3, $\frac{\partial f}{\partial x}(-1,1) = 1$ e $\frac{\partial f}{\partial y}(-1,1) = -1$. Determine a equação da reta tangente a γ no ponto $\gamma(1)$.