MAT 3210 — Cálculo Diferencial e Integral II Prof. Paolo Piccione 25 de Novembro de 2011

Prova SUB — A

Nome:		
Número USP: _		
Assinatura:	 	

Instruções

- A duração da prova é de **uma hora e quarenta minutos**.
- Assinale as alternativas corretas na **folha de respostas** que está no final da prova. É permitido deixar questões em branco.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.1).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página)
- REGRA DA SUB. A prova é aberta a todos; o aluno tem direito de entregar ou não a folha de respostas. Se a entregar, necessariamente a nota da SUB será considerada para o cálculo da nota final. Nesse caso, a nota final será calculada como a média aritmética entre a nota da SUB e a maior das notas entre a P1 e a P2.
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- \mathbb{R} denota o conjunto dos números reais, e \mathbb{R}^2 é o conjunto de pares ordenados de números reais: $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}.$
- \bullet sin x é a função "seno de x"; ln x é a função "logaritmo natural de x".
- Uma direção é um vetor de comprimento 1.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!! **Questão 1.** Qual das seguintes afirmações sobre máximos e mínimos vinculados é verdadeira?

- (a) Dadas funções diferenciáveis f(x,y) e g(x,y), se (x_0,y_0) é um extremo da f com vínculo g(x,y)=0, então $\nabla f(x_0,y_0)$ é proporcional a $\nabla g(x_0,y_0)$;
- (b) Dadas funções diferenciáveis f(x,y) e g(x,y), se (x_0,y_0) é um extremo da f com vínculo g(x,y)=0, então $\nabla f(x_0,y_0)$ é nulo.;
- (c) Dadas funções diferenciáveis f(x,y) e g(x,y), se (x_0,y_0) é um extremo da f com vínculo g(x,y)=0, então $\nabla f(x_0,y_0)$ é ortogonal a $\nabla g(x_0,y_0)$;
- (d) Dadas funções diferenciáveis f(x,y) e g(x,y), se (x_0,y_0) é um extremo da f com vínculo g(x,y)=0, então $\nabla f(x_0,y_0)$ e $\nabla g(x_0,y_0)$ são nulos.;
- (e) Dadas funções diferenciáveis f(x,y) e g(x,y), se (x_0,y_0) é um extremo da f com vínculo g(x,y)=0, então o Hessiano da f em (x_0,y_0) é proporcional ao Hessiano da g em (x_0,y_0) .

Questão 2. Determine os pontos críticos da função

$$f(x,y) = 2x^4 + 2y^4 - 4x^2 - 4y^2 + 1.$$

- (a) (0,0);
- (b) (0,0), (1,1), (-1,1), (0,1), (0,-1), (1,0), (-1,0), (1,-1) e (-1,-1);
- (c) f não possui pontos críticos;
- $(d)\ (0,0),\, (1,1),\, (-1,1),\, (1,-1) \ e \ (-1,-1);$
- (e) (0,0), (1,1), e (-1,-1).

Questão 3. Quais são as coordenadas polares (ρ, θ) do ponto P cujas coordenadas cartesianas são (1, -1)?

- (a) $\rho = \sqrt{2}, \ \theta = \frac{3}{4}\pi;$
- (b) $\rho = -\sqrt{2}, \ \theta = \frac{1}{4}\pi;$
- (c) $\rho = 2, \ \theta = \frac{7}{4}\pi;$
- (d) $\rho = \sqrt{2}, \ \theta = \frac{7}{4}\pi;$
- (e) $\rho = -2, \ \theta = \frac{1}{4}\pi.$

3

Questão 4. Calcule a derivada parcial $\frac{\partial f}{\partial x}(0,0)$ da função:

$$f(x,y) = \begin{cases} x + \frac{xy}{x^2 + y^2}, & se\ (x,y) \neq (0,0) \\ 0, & se\ (x,y) = (0,0). \end{cases}$$

(a)
$$\frac{\partial f}{\partial x}(0,0) = 1 + \frac{x+y}{(x^2+y^2)^2};$$

(b) f não admite derivadas parciais em (0,0);

(c)
$$\frac{\partial f}{\partial x}(0,0) = -1;$$

(d)
$$\frac{\partial f}{\partial x}(0,0) = 0;$$

(e)
$$\frac{\partial f}{\partial x}(0,0) = 1$$
.

Questão 5. Determine o máximo M e o mínimo m da função $f(x,y)=2y^2-x^2$ no conjunto $A=\left\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 4\right\}$.

(a)
$$M = 4\sqrt{2}, m = -2\sqrt{2};$$

(b)
$$M = 4\sqrt{2}, m = -4\sqrt{2};$$

(c)
$$M = 8, m = -2\sqrt{2};$$

(d)
$$M = 8, m = -4;$$

(e)
$$M = 2\sqrt{2}, m = -4.$$

Questão 6. Qual é o domínio $A \subset \mathbb{R}^2$ da função $f(x,y) = \sqrt{xy+1}$?

(a)
$$A = \{(x, y) \in \mathbb{R}^2 : xy > -1\};$$

(b)
$$A = \{(x, y) \in \mathbb{R}^2 : xy < 1\};$$

(c)
$$A = \mathbb{R}^2$$
;

(d)
$$A = \{(x, y) \in \mathbb{R}^2 : xy \ge -1\};$$

(e)
$$A = \{(x, y) \in \mathbb{R}^2 : xy \le 1\}.$$

Questão 7. Calcule a derivada $\frac{\partial^3 f}{\partial x \partial y \partial z}$ da função $f(x, y, z) = e^{xyz}$.

(a)
$$\frac{\partial^3 f}{\partial x \partial y \partial z} = e^{xyz}(x+y+z);$$

(b)
$$\frac{\partial^3 f}{\partial x \partial y \partial z} = e^{xyz} (1 + 2xyz + x^2y^2z^2);$$

(c)
$$\frac{\partial^3 f}{\partial x \partial y \partial z} = e^{xyz} (1 + 3xyz + x^2y^2z^2);$$

(d)
$$\frac{\partial^3 f}{\partial x \partial y \partial z} = e^{xyz} (1 + xyz + x^2y^2z^2);$$

(e)
$$\frac{\partial^3 f}{\partial x \partial y \partial z} = e^{xyz} (1 + 3xyz).$$

Questão 8. Determine o ponto do plano 2x - y + z = 4 mais próximo da origem.

- (a) $(\frac{2}{3}, \frac{4}{3}, -\frac{2}{3});$
- (b) (1,-1,1);
- (c) $(\frac{4}{3}, -\frac{2}{3}, \frac{2}{3});$
- (d) $(\frac{2}{3}, -\frac{8}{3}, 0);$
- (e) (2,0,0).

Questão 9. Calcule a integral indefinida $\int \sin x \cos^2 x \, dx$.

- (a) $\frac{1}{6}\sin^2 x \cos^3 x + C$;
- (b) $\frac{1}{3}\sin^3 x + C$;
- (c) $-\frac{1}{6}\sin^2 x \cos^3 x + C$;
- (d) $\frac{1}{2}\sin^2 x \cos^3 x + C$;
- (e) $-\frac{1}{3}\cos^3 x + C$.

Questão 10. Seja $F(x) = \int_1^x e^{t^2} dt$. Calcule a derivada F'(x).

- (a) F é contínua, mas não é derivável;
- (b) $F'(x) = \int_1^x t e^{t^2} dt$;
- (c) $F'(x) = e^{x^2}$;
- (d) $F'(x) = 2xe^{x^2}$;
- (e) F'(x) = f(x) f(1).

Questão 11. Seja f uma função diferenciável, $f(x_0, y_0) = 1$, $\gamma(t)$ uma curva diferenciável, com $\gamma(t_0) = (x_0, y_0)$, $\gamma'(t_0) = (1, -2)$, $\frac{\partial f}{\partial x}(x_0, y_0) = -2$, $\frac{\partial f}{\partial y}(x_0, y_0) = 1$, $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = 3$. Seja $g(t) = (f \circ \gamma)(t)$. Calcule $g'(t_0)$.

- (a) $g'(t_0) = -4;$
- (b) $g'(t_0) = -6;$
- (c) $g'(t_0) = 6;$
- (d) $g'(t_0) = 4$;
- (e) $g'(t_0) = 0$.

Questão 12. Sejam f e g duas funções de uma variável, ambas deriváveis; definimos $F(x,y) = f(x) \cdot g(y)$. Qual é a derivada parcial $\frac{\partial F}{\partial u}$?

(a)
$$\frac{\partial F}{\partial x} = f'(x) \cdot g(y) + f(x) \cdot g'(y);$$

(b)
$$\frac{\partial F}{\partial x} = f'(x) \cdot g(y);$$

(c)
$$\frac{\partial F}{\partial x} = f(x) \cdot g'(y);$$

(d)
$$\frac{\partial F}{\partial x} = f'(x) \cdot g'(y);$$

(e)
$$\frac{\partial F}{\partial x} = f'(x) + g(y)$$
.

Questão 13. Sabendo que f é uma função diferenciável em (x_0, y_0) , que $2 \frac{\partial f}{\partial x}(x_0, y_0) = 4$ e $\frac{\partial f}{\partial y}(x_0, y_0) = -1$, calcule a derivada directional $\frac{\partial f}{\partial \vec{u}}(x_0, y_0)$, onde \vec{u} é a direção $\vec{u} = (1/\sqrt{2}, -1/\sqrt{2})$.

(a)
$$\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = 0;$$

(b)
$$\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = -\frac{3}{\sqrt{2}};$$

(c)
$$\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = -\frac{1}{\sqrt{2}};$$

(d)
$$\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = \frac{3}{\sqrt{2}};$$

(e)
$$\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = \frac{1}{\sqrt{2}}$$
.

Questão 14. Dada a função $f(x,y) = -2x^2 + xy + y^2 + 3x - 3y$, o que podemos dizer sobre o ponto (1,1)?

- (a) é um ponto de sela para f;
- (b) é um máximo local para f;
- (c) é um ponto de mínimo global da $f;\,$
- (d) não é um ponto crítico da f;
- (e) é um mínimo local da f.

6

Questão 15. Qual é o enunciado correto do Teorema Fundamental do Cálculo Integral?

- (a) Se f é uma função contínua, então $F(x)=\int_p^x f(t)\,\mathrm{d}t$ é uma função derivável, e F'(x)=f(x) para todo x;
- (b) Se f é uma função derivável, então $\int_a^b f(x) \, \mathrm{d}x = 0;$
- (c) Se f é derivável, então $\int_{p}^{x} f(t) dt = f'(x)$ para todo x;
- (d) Se $F(x) = \int_p^x f(t) dt$ é contínua, então f é derivável, e f'(x) = F(x) para todo x;
- (e) $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Questão 16. Determine em qual direção \vec{u} a função $f(x,y) = xy^2$ tem derivada direcional $\frac{\partial f}{\partial \vec{u}}(1,1)$ de valor **máximo**.

- (a) $\vec{u} = \left(-\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right);$
- (b) $\vec{u} = \left(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right);$
- (c) $\vec{u} = (\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}});$
- (d) $\vec{u} = (\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}});$
- (e) $\vec{u} = (\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}).$

Questão 17. Calcule o limite:

$$L = \lim_{(x,y)\to(0,0)} \frac{2x^2y + 3xy^2}{x^2 + y^2}.$$

- (a) L = 0;
- (b) L = 1;
- (c) $L = +\infty$;
- (d) O limite não existe;
- (e) L = (0,0).

Questão 18. Seja f uma função diferenciável numa vizinhança de (x_0, y_0) , cujo Hessiano $H^f(x_0, y_0)$ é $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Qual das seguintes afirmações é verdadeira?

- (a) (x_0, y_0) é um ponto de máximo local;
- (b) (x_0, y_0) é um ponto de mínimo local;
- (c) Se (x_0, y_0) for um ponto crítico da f então (x_0, y_0) é um mínimo.;
- (d) (x_0, y_0) é um ponto de sela;
- (e) Se (x_0, y_0) for um ponto crítico da f então (x_0, y_0) é um máximo...

7

Questão 19. Qual das seguintes afirmações é verdadeira?

- (a) Se $f:\mathbb{R}^2 \to \mathbb{R}$ é diferenciável em $p \in \mathbb{R}^2$, então f admite derivadas parciais em p;
- (b) Se $f:\mathbb{R}^2 \to \mathbb{R}$ é contínua em p, então f não é diferenciável em p;
- (c) Se $f: \mathbb{R}^2 \to \mathbb{R}$ admite derivadas parciais em $p \in \mathbb{R}^2$, então f é diferenciável em p;
- (d) Se $f: \mathbb{R}^2 \to \mathbb{R}$ é contínua em p, então f é diferenciável em p;
- (e) Se $f: \mathbb{R}^2 \to \mathbb{R}$ admite derivadas parciais em $p \in \mathbb{R}^2$, então f não é diferenciável em p.

Questão 20. Calcule o volume V do sólido de revolução gerado pela rotação em torno do eixo x do gráfico da função $f(x) = 2x^2$, com $-1 \le x \le 1$

- (a) $V = \frac{3}{5}$;
- (b) $V = \frac{8}{5}\pi;$
- (c) $V = \frac{4}{5}\pi;$
- (d) $V = \frac{5}{3}$;
- (e) $V = \frac{8}{3}\pi$.

MAT 3210 — Cálculo Diferencial e Integral II Prof. Paolo Piccione Prova SUB — $\boxed{\mathbf{A}}$

25 de Novembro de $\overline{2011}$

Nome:	 	
Número USP:		
Assinatura:		

Folha de Respostas

1	a	b	c	d	е
2	a	b	c	d	е
3	a	b	c	d	е
4	a	b	c	d	е
5	a	b	c	d	е
6	a	b	c	d	е
7	a	b	c	d	е
8	a	b	c	d	е
9	a	b	c	d	е
10	a	b	c	d	е
11	a	b	c	d	е
12	a	b	c	d	е
13	a	b	c	d	е
14	a	b	c	d	е
15	a	b	c	d	е
16	a	b	c	d	е
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota