MAT 3210 — Cálculo Diferencial e Integral II Prof. Paolo Piccione

23 de Novembro de 2011

Prova 2 — $\boxed{\mathbf{D}}$

Nome:		
Número USP	:	
Assinatura: _		

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na folha de respostas que está no final da prova. É permitido deixar questões em branco.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.1).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página)
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- \mathbb{R} denota o conjunto dos números reais, e \mathbb{R}^2 é o conjunto de pares ordenados de números reais: $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}.$
- $\sin x$ é a função "seno de x"; $\ln x$ é a função "logaritmo natural de x".
- Uma direção é um vetor de comprimento 1.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!! Questão 1. Calcule a derivada $\frac{\partial^3 f}{\partial x \partial y \partial z}$ da função $f(x, y, z) = e^{xyz}$.

(a)
$$\frac{\partial^3 f}{\partial x \partial y \partial z} = e^{xyz}(1 + 3xyz);$$

(b)
$$\frac{\partial^3 f}{\partial x \partial y \partial z} = e^{xyz}(x+y+z);$$

(c)
$$\frac{\partial^3 f}{\partial x \partial y \partial z} = e^{xyz} (1 + 3xyz + x^2y^2z^2);$$

(d)
$$\frac{\partial^3 f}{\partial x \partial y \partial z} = e^{xyz} (1 + 2xyz + x^2y^2z^2);$$

(e)
$$\frac{\partial^3 f}{\partial x \partial y \partial z} = e^{xyz} (1 + xyz + x^2 y^2 z^2).$$

Questão 2. Quais são os pontos críticos da função $f(x,y) = x^3 + y^3 - xy$?

(a)
$$(0,0)$$
, $(\frac{1}{3},\frac{1}{3})$ e $(-\frac{1}{3},-\frac{1}{3})$;

(b)
$$(0,0)$$
;

(c)
$$(\frac{1}{3}, \frac{1}{3})$$
;

(d)
$$(\frac{1}{3}, \frac{1}{3})$$
 e $(-\frac{1}{3}, -\frac{1}{3})$;

(e)
$$(0,0)$$
 e $(\frac{1}{3},\frac{1}{3})$.

Questão 3. Determine a reta tangente à curva de equação $x^2 + 2y^2 = 3$ no ponto (1,1).

(a)
$$x + y - 2 = 0$$
;

(b)
$$2x + 2y - 4 = 0$$
;

(c)
$$-x + 2y - 1 = 0$$
;

(d)
$$2x + y - 3 = 0$$
;

(e)
$$x + 2y - 3 = 0$$
.

Questão 4. Determine o máximo M e o mínimo m da função f(x,y) = 3x - y em $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$

(a)
$$M = \sqrt{10}, m = -2\sqrt{5};$$

(b)
$$M = \sqrt{10}, m = -\sqrt{10}$$
;

(c)
$$M = \sqrt{5}, m = -\sqrt{5};$$

(d)
$$M = 10, m = -10;$$

(e)
$$M = 2\sqrt{5}$$
, $m = -2\sqrt{5}$.

23.11.2011

Questão 5. Determine o ponto do plano 2x + y - z = 4 mais próximo da origem.

- (a) $(\frac{2}{3}, \frac{8}{3}, 0)$;
- (b) (1,1,-1);
- (c) (2,0,0);
- (d) $(\frac{4}{3}, \frac{2}{3}, -\frac{2}{3});$
- (e) $(\frac{2}{3}, \frac{4}{3}, -\frac{2}{3})$.

Questão 6. Qual das seguintes afirmações sobre máximos e mínimos vinculados é verdadeira?

- (a) Dadas funções diferenciáveis f(x,y) e g(x,y), se (x_0,y_0) é um extremo da f com vínculo g(x,y)=0, então o Hessiano da f em (x_0,y_0) é proporcional ao Hessiano da g em (x_0,y_0) ;
- (b) Dadas funções diferenciáveis f(x,y) e g(x,y), se (x_0,y_0) é um extremo da f com vínculo g(x,y) = 0, então $\nabla f(x_0,y_0)$ é nulo.;
- (c) Dadas funções diferenciáveis f(x,y) e g(x,y), se (x_0,y_0) é um extremo da f com vínculo g(x,y)=0, então $\nabla f(x_0,y_0)$ e $\nabla g(x_0,y_0)$ são nulos.;
- (d) Dadas funções diferenciáveis f(x,y) e g(x,y), se (x_0,y_0) é um extremo da f com vínculo g(x,y)=0, então $\nabla f(x_0,y_0)$ é proporcional a $\nabla g(x_0,y_0)$;
- (e) Dadas funções diferenciáveis f(x,y) e g(x,y), se (x_0,y_0) é um extremo da f com vínculo g(x,y) = 0, então $\nabla f(x_0,y_0)$ é ortogonal a $\nabla g(x_0,y_0)$.

Questão 7. Seja $\gamma(t)$ uma curva de nível da função f(x,y). Seja $g(x,y)=e^{f(x,y)}$ e $h(t)=(g\circ\gamma)(t)$. Calcule h'(t).

- (a) h'(t) = 1;
- (b) $h'(t) = \nabla f(\gamma(t)) \cdot e^{f(\gamma(t))};$
- (c) $h'(t) = e^{\nabla f(\gamma(t)) \cdot \gamma'(t)};$
- (d) h'(t) = 0;
- (e) h não é derivável.

Questão 8. Calcule a derivada $\frac{\partial^2 f}{\partial x \partial y}$ para a função $f(x,y) = x^2 e^{xy}$.

(a)
$$\frac{\partial^2 f}{\partial x \partial y} = (3x^2 + 3x^3y)e^{xy}$$
;

(b)
$$\frac{\partial^2 f}{\partial x \partial y} = (3x^2 + x^2y)e^{xy};$$

(c)
$$\frac{\partial^2 f}{\partial x \partial y} = (x^2 + 3x^3y)e^{xy}$$
;

(d)
$$\frac{\partial^2 f}{\partial x \partial y} = (x^2 + x^3 y)e^{xy};$$

(e)
$$\frac{\partial^2 f}{\partial x \partial y} = (3x^2 + x^3 y)e^{xy}$$
.

Questão 9. Determine um vetor ortogonal à curva $xe^y - ye^x = e^2 - 2e$ no ponto (1,2).

(a)
$$(e^2 - 2e, e^2 - e)$$
;

(b)
$$(e^2 - e, e^2 - 2e)$$
;

(c)
$$(e^2 - e, 2e - e^2)$$
;

(d)
$$(2e + e^2, e - e^2)$$
;

(e)
$$(e, e^2)$$
.

Questão 10. Qual das seguintes afirmações é verdadeira?

- (a) Se (x_0, y_0) for um ponto crítico da f, então (x_0, y_0) é um ponto de máximo ou de mínimo local da f;
- (b) Se $\frac{\partial f}{\partial x}(x_0, y_0) \cdot \frac{\partial f}{\partial y}(x_0, y_0) < 0$, então (x_0, y_0) é um ponto de sela para f;
- (c) Se f admitir derivadas segundas contínuas numa vizinhança de (x_0, y_0) , então a matriz Hessiana da f em (x_0, y_0) é simétrica;
- (d) Se o determinante da matriz Hessiana da f em (x_0, y_0) é negativo, então (x_0, y_0) é um ponto de sela para f;
- (e) Se $\frac{\partial f}{\partial x}(x_0, y_0) \cdot \frac{\partial f}{\partial y}(x_0, y_0) > 0$, então (x_0, y_0) é um ponto de máximo ou de mínimo local da f.

Questão 11. Determine em qual direção \vec{u} a função $f(x,y)=xy^2$ tem derivada direcional $\frac{\partial f}{\partial \vec{u}}(1,-1)$ de valor **mínimo**.

(a)
$$\vec{u} = (\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}});$$

(b)
$$\vec{u} = \left(-\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right);$$

(c)
$$\vec{u} = \left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right);$$

(d)
$$\vec{u} = \left(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right);$$

(e)
$$\vec{u} = (\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}).$$

Questão 12. Dada a função $f(x,y) = 2x^2 - xy - y^2 - 3x + 3y$, o que podemos dizer sobre o ponto (1,1)?

- (a) é um máximo local para f;
- (b) não é um ponto crítico da f;
- (c) é um ponto de mínimo global da f;
- (d) é um ponto de sela para f;
- (e) é um mínimo local da f.

Questão 13. Qual é o volume máximo de um paralelepípedo cuja superfície lateral é 12 mt²?

- (a) 8 mt^3 ;
- (b) $2\sqrt{2} \text{ mt}^3$;
- (c) 4 mt^3 ;
- (d) 36 mt^3 ;
- (e) $4\sqrt{2} \text{ mt}^3$.

Questão 14. Determine os pontos críticos da função

$$f(x,y) = x^4 + y^4 - 2x^2 - 2y^2.$$

- (a) (0,0), (1,1), e (-1,-1);
- (b) f não possui pontos críticos;
- (c) (0,0) e (1,1);
- (d) (0,0), (1,1), (-1,1), (0,1), (0,-1), (1,0), (-1,0), (1,-1) e (-1,-1);
- (e) (0,0).

Questão 15. Determine o máximo M e o mínimo m da função $f(x,y) = y^2 - x^2$ no conjunto $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}.$

- (a) $M = 4, m = -2\sqrt{2};$
- (b) $M = 2\sqrt{2}, m = -2\sqrt{2};$
- (c) $M = \sqrt{2}, m = -4;$
- (d) M = 4, m = -4;
- (e) $M = 4\sqrt{2}, m = -4\sqrt{2}$.

23.11.2011

Questão 16. Seja $f(x,y) = x^2 + y^2 - 4x - 2y + 5$. Qual das seguintes afirmações é verdadeira?

- (a) O ponto (2,1) é um ponto de sela da f;
- (b) O ponto (2,1) é um máximo da f;
- (c) O ponto (1,2) é um mínimo da f;
- (d) O ponto (2,1) é um mínimo da f;
- (e) O ponto (1,2) é um máximo da f.

Questão 17. Dada a curva $\gamma(t) = (t^2, t^4)$, t > 0, determine a equação da reta tangente a γ no ponto (1, 1).

- (a) x 2y 1 = 0;
- (b) x + 2y 3 = 0;
- (c) x + y 2 = 0;
- (d) 2x + y 3 = 0;
- (e) 2x y 1 = 0.

Questão 18. Sabendo que f é uma função diferenciável em (x_0, y_0) , que $2 \frac{\partial f}{\partial x}(x_0, y_0) = 4$ e $\frac{\partial f}{\partial y}(x_0, y_0) = -1$, calcule a derivada directional $\frac{\partial f}{\partial \vec{u}}(x_0, y_0)$, onde \vec{u} é a direção $\vec{u} = (-1/\sqrt{2}, 1/\sqrt{2})$.

- (a) $\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = -\frac{3}{\sqrt{2}};$
- (b) $\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = -\frac{1}{\sqrt{2}};$
- (c) $\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = \frac{3}{\sqrt{2}};$
- (d) $\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = \frac{1}{\sqrt{2}};$
- (e) $\frac{\partial f}{\partial \vec{u}}(x_0, y_0) = 0.$

Questão 19. Seja f uma função diferenciável, $f(x_0, y_0) = 1$, $\gamma(t)$ uma curva diferenciável, com $\gamma(t_0) = (x_0, y_0)$, $\gamma'(t_0) = (-1, 2)$, $\frac{\partial f}{\partial x}(x_0, y_0) = -2$, $\frac{\partial f}{\partial y}(x_0, y_0) = 1$, $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = 3$. Seja $g(t) = (f \circ \gamma)(t)$. Calcule $g'(t_0)$.

- (a) $g'(t_0) = 0$;
- (b) $g'(t_0) = -6;$
- (c) $g'(t_0) = 4;$
- (d) $g'(t_0) = -4;$
- (e) $g'(t_0) = 6$.

Questão 20. Seja f uma função diferenciável numa vizinhança de (x_0, y_0) , cujo Hessiano $H^f(x_0, y_0)$ é $\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$. Qual das seguintes afirmações é verdadeira?

- (a) Se (x_0, y_0) for um ponto crítico da f então (x_0, y_0) é um máximo.;
- (b) (x_0, y_0) é um ponto de máximo local;
- (c) Se (x_0, y_0) for um ponto crítico da f então (x_0, y_0) não é um mínimo.;
- (d) (x_0, y_0) é um ponto de sela;
- (e) (x_0, y_0) é um ponto de mínimo local.

MAT 3210 — Cálculo Diferencial e Integral II Prof. Paolo Piccione Prova 2 — $\boxed{\mathbf{D}}$

23 de Novembro de 2011

Nome:	
Número USP:	
Assinatura:	

Folha de Respostas

1	a	b	c	d	е
2	a	b	c	d	е
3	a	b	c	d	е
4	a	b	c	d	е
5	a	b	c	d	е
6	a	b	c	d	е
7	a	b	c	d	е
8	a	b	c	d	е
9	a	b	c	d	е
10	a	b	c	d	е
11	a	b	c	d	е
12	a	b	c	d	е
13	a	b	c	d	е
14	a	b	c	d	е
15	a	b	c	d	е
16	a	b	c	d	е
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota