MAT 3210 — Cálculo Diferencial e Integral II Prof. Paolo Piccione 14 de Outubro de 2011

Prova 1 — $\boxed{\mathbf{A}}$

Nome:	 	
Número USP:		
Assinatura:		

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na folha de respostas que está no final da prova. \acute{E} permitido deixar questões em branco.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.1).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página)
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- \mathbb{R} denota o conjunto dos números reais, e \mathbb{R}^2 é o conjunto de pares ordenados de números reais: $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}.$
- \bullet sin x é a função "seno de x"; $\ln x$ é a função "logaritmo natural de x".
- Para $p \in \mathbb{R}^2$ e r > 0, B(p,r) denota a bola aberta de centro p e raio r em \mathbb{R}^2 .

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!! Questão 1. Calcule o limite $L = \lim_{(x,u)\to(0,0)} \frac{xy}{x^2 + y^2}$.

(a) $L = +\infty$;

- (b) L = 0;
- (c) $L = \frac{1}{2}$;
- (d) L = 1;
- (e) O limite não existe.

Questão 2. Qual das seguintes afirmações é verdadeira?

(a) Se $f: \mathbb{R}^2 \to \mathbb{R}$ admite derivadas parciais em $p \in \mathbb{R}^2$, então f é diferenciável em p;

(b) Se $f: \mathbb{R}^2 \to \mathbb{R}$ é contínua em p, então f é diferenciável em p;

(c) Se $f: \mathbb{R}^2 \to \mathbb{R}$ é contínua em p, então f não é diferenciável em p;

(d) Se $f: \mathbb{R}^2 \to \mathbb{R}$ admite derivadas parciais em $p \in \mathbb{R}^2$, então f não é diferenciável em p;

(e) Se $f: \mathbb{R}^2 \to \mathbb{R}$ é diferenciável em $p \in \mathbb{R}^2$, então f admite derivadas parciais em p.

Questão 3. Um automóvel, partindo da posição S(0)=1 tem sua velocidade dada por $V(t)=e^{-t}\sin 2t+1$. Determine a posição deste automóvel em t=1.

(a) $S(1) = \frac{7}{5} + \frac{1}{5e}(\cos 2 + 2\sin 2);$

(b) $S(1) = \frac{7}{5} + 5e(2\cos 2 + \sin 2);$

(c) $S(1) = \frac{2}{5} + 5e(2\cos 2 + \sin 2);$

(d) $S(1) = \frac{2}{5} + \frac{1}{5e}(2\cos 2 + \sin 2);$

(e) $S(1) = \frac{7}{5} + \frac{1}{5e}(2\cos 2 + \sin 2)$.

Questão 4. Calcule o limite:

$$L = \lim_{(x,y)\to(0,0)} \frac{x^2y + yx^2}{x^2 + y^2}.$$

(a) L = (0,0);

- (b) L = 0;
- (c) L = 1;
- (d) $L = +\infty$;
- (e) O limite não existe.

3

Questão 5. Calcule a seguinte integral definida:

$$A = \int_0^{\ln(2)} x \, e^x \, \mathrm{d}x.$$

- (a) $A = \ln(2) 1$;
- (b) A = 1;
- (c) $A = 2\ln(2)$;
- (d) $A = \ln 2$;
- (e) $A = \ln(4) 1$.

Questão 6. Se $C \subset \mathbb{R}^n$, quando é que C é fechado?

- (a) Quando existe $p \in C$ que é interno a C;
- (b) Quando nenhum ponto de C é interno a C;
- (c) Quando todo ponto do complementar de C é interno ao complementar de C;
- (d) Quando C não é aberto;
- (e) Quando todo ponto de C é interno a C.

Questão 7. Calcule a integral indefinida $\int \sin x \cos^2 x \, dx$.

- (a) $-\frac{1}{3}\cos^3 x + C$;
- (b) $\frac{1}{3}\sin^3 x + C$;
- (c) $-\frac{1}{6}\sin^2 x \cos^3 x + C$;
- (d) $\frac{1}{2}\sin^2 x \cos^3 x + C$;
- (e) $\frac{1}{6}\sin^2 x \cos^3 x + C$.

Questão 8. Qual é o enunciado correto do Teorema Fundamental do Cálculo Integral?

- (a) Se f é derivável, então $\int_{p}^{x} f(t) dt = f'(x)$ para todo x;
- (b) Se f é uma função contínua, então $F(x) = \int_p^x f(t) dt$ é uma função derivável, e F'(x) = f(x) para todo x;
- (c) Se f é uma função derivável, então $\int_a^b f(x) dx = 0$;
- (d) Se $F(x) = \int_p^x f(t) dt$ é contínua, então f é derivável, e f'(x) = F(x) para todo x;
- (e) $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Questão 9. Se $A \subset \mathbb{R}^2$ e $p \in A$, quando é que p é um ponto interno de A?

- (a) Quando existe r > 0 tal que $B(p, r) \subset A$;
- (b) Quando para todo r > 0 a bola B(p, r) está contida em A;
- (c) Quando existe r > 0 tal que $B(p,r) \cap A \neq \emptyset$;
- (d) Quando p não pertence ao complementar de A;
- (e) Quando p não é um ponto externo de A.

Questão 10. Qual das seguintes afirmações é falsa?

- (a) Se $A \subset \mathbb{R}^2$ é aberto, então o complementar de A é fechado;
- (b) Se f é contínua em p, então f(q) é arbitrariamente próximo a f(p) para q suficientemente próximo a p;
- (c) Se f é diferenciável em $p \in \mathbb{R}^2$, então f é contínua em p;
- (d) Se f admite derivadas parciais em $p \in \mathbb{R}^2$ e $\nabla f(p) = 0$, então $\frac{\partial f}{\partial x}(p) = \frac{\partial f}{\partial y}(p) = 0$;
- (e) Se $f: \mathbb{R}^2 \to \mathbb{R}$ admite derivadas parciais em $p \in \mathbb{R}^2$, então $\nabla f(p) = 0$.

Questão 11. Calcule a seguinte integral definida:

$$A = \int_0^\pi x \sin(x^2 + 1) \, \mathrm{d}x.$$

- (a) A = 0:
- (b) $A = \frac{1}{2} \left[\cos(1) \cos(1 + \pi^2) \right];$
- (c) $A = \frac{1}{2}$;
- (d) $A = \frac{1}{2} \left[\sin(1) \sin(1 + \pi^2) \right];$
- (e) $A = \cos(1) \cos(1 + \pi^2)$.

Questão 12. Seja $F(x) = \int_0^x e^{t^2} dt$. Calcule a derivada F'(x).

- (a) $F'(x) = 2xe^{x^2}$;
- (b) $F'(x) = e^{x^2}$;
- (c) F é contínua, mas não é derivável;
- (d) F'(x) = f(x) f(0);
- (e) $F'(x) = \int_0^x te^{t^2} dt$.

Questão 13. Qual é o domínio $A \subset \mathbb{R}^2$ da função $f(x,y) = \ln(xy+1)$?

- (a) $A = \{(x, y) \in \mathbb{R}^2 : xy \ge -1\};$
- (b) $A = \{(x, y) \in \mathbb{R}^2 : xy \le 1\};$
- (c) $A = \mathbb{R}^2$;
- (d) $A = \{(x, y) \in \mathbb{R}^2 : xy > -1\};$
- (e) $A = \{(x, y) \in \mathbb{R}^2 : xy < 1\}.$

Questão 14. Calcule a derivada parcial $\frac{\partial f}{\partial y}$ da função

$$f(x,y) = e^{xy}\cos(x^2 + y^2).$$

- (a) $\frac{\partial f}{\partial y} = e^{xy}\cos(x^2 + y^2) e^{xy}\sin(x^2 + y^2);$
- (b) $\frac{\partial f}{\partial y} = xe^{xy} 2y\sin(x^2 + y^2);$
- (c) $\frac{\partial f}{\partial y} = ye^{xy}\cos(x^2 + y^2) 2ye^{xy}\sin(x^2 + y^2);$
- (d) $\frac{\partial f}{\partial y} = -2xye^{xy}\sin(x^2 + y^2);$
- (e) $\frac{\partial f}{\partial y} = xe^{xy}\cos(x^2 + y^2) 2ye^{xy}\sin(x^2 + y^2)$.

Questão 15. Qual das seguintes afirmações é verdadeira?

- (1) Se $F: \mathbb{R} \to \mathbb{R}$ é uma primitiva de $f: \mathbb{R} \to \mathbb{R}$, então x F(x) é uma primitiva de F(x) + x f(x).
- (2) $\int f(x) \cdot g(x) dx = \left(\int f(x) dx \right) \cdot \left(\int g(x) dx \right).$
- (3) Se F(x) é uma primitva da f(x), x > 0, então $F(\ln(x))$ é uma primitiva de $f(\ln(x))$
- (4) Se F é uma primitiva de f, antão para toda constante $c \in \mathbb{R}$, F + c é uma primitiva de f.
- (5) Se F é uma primitiva de f, antão para toda constante $c \in \mathbb{R}$, F é uma primitiva também de f + c.
- (a) As afirmações verdadeiras são a (1) e a (5). As demais são falsas;
- (b) As afirmações verdadeiras são a (2), a (3) e a (5). As demais são falsas;
- (c) As afirmações verdadeiras são a (1) e a (4). As demais são falsas;
- (d) As afirmações verdadeiras são a (1), a (4) e a (5). As demais são falsas;
- (e) As afirmações verdadeiras são a (4) e a (5). As demais são falsas.

Questão 16. Determine o conjunto de pontos em que a função f é diferenciável:

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & se \quad (x,y) \neq (0,0) \\ 0 & se \quad (x,y) = (0,0) \end{cases}$$

- (a) $\mathbb{R}^2 \setminus \{(0,0)\};$
- (b) $\mathbb{R}^2 \setminus \{(0,0), (1,0), (0,1)\};$
- (c) f é contínua, mas não é diferenciável;
- (d) $\mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 : xy = 0\};$
- (e) \mathbb{R}^2 .

Questão 17. Calcule o volume V do sólido de revolução gerado pela rotação em torno do eixo x do gráfico da função $f(x) = x^2$, com $-1 \le x \le 1$

- (a) $V = \frac{2}{5}$;
- (b) $V = \frac{1}{5}\pi$;
- (c) $V = \frac{2}{3}$;
- (d) $V = \frac{2}{3}\pi$;
- (e) $V = \frac{2}{5}\pi$.

Questão 18. Quais são as coordenadas polares (ρ, θ) do ponto P cujas coordenadas cartesianas são (-1,1)?

- (a) $\rho = -\sqrt{2}, \ \theta = \frac{1}{4}\pi;$
- (b) $\rho = -2, \ \theta = \frac{1}{4}\pi;$
- (c) $\rho = 2, \ \theta = \frac{3}{4}\pi;$
- (d) $\rho = \sqrt{2}, \ \theta = \frac{3}{4}\pi;$
- (e) $\rho = 2, \ \theta = \frac{1}{4}\pi$.

Questão 19. Calcule a derivada parcial $\frac{\partial f}{\partial x}(0,0)$ da função:

$$f(x,y) = \begin{cases} x + \frac{xy}{x^2 + y^2}, & se\ (x,y) \neq (0,0) \\ 0, & se\ (x,y) = (0,0). \end{cases}$$

- (a) f não admite derivadas parciais em (0,0);
- (b) $\frac{\partial f}{\partial x}(0,0) = 1;$
- (c) $\frac{\partial f}{\partial x}(0,0) = 0;$
- (d) $\frac{\partial f}{\partial x}(0,0) = -1;$
- (e) $\frac{\partial f}{\partial x}(0,0) = 1 + \frac{x+y}{(x^2+y^2)^2}$.

Questão 20. Sejam f e g duas funções de uma variável, ambas deriváveis; definimos $F(x,y)=f(x)\cdot g(y)$. Qual é a derivada parcial $\frac{\partial F}{\partial x}$?

- (a) $\frac{\partial F}{\partial x} = f'(x) \cdot g'(y);$
- (b) $\frac{\partial F}{\partial x} = f'(x) + g(y);$
- (c) $\frac{\partial F}{\partial x} = f'(x) \cdot g(y);$
- (d) $\frac{\partial F}{\partial x} = f(x) \cdot g'(y);$
- (e) $\frac{\partial F}{\partial x} = f'(x) \cdot g(y) + f(x) \cdot g'(y)$.

MAT 3210 — Cálculo Diferencial e Integral II Prof. Paolo Piccione Prova 1 — $\boxed{\mathbf{A}}$

14 de Outubro de 2011

Nome:	
Número USP:	
Assinatura:	

Folha de Respostas

1	a	b	c	d	е
2	a	b	c	d	е
3	a	b	c	d	е
4	a	b	c	d	е
5	a	b	c	d	е
6	a	b	c	d	е
7	a	b	c	d	е
8	a	b	c	d	е
9	a	b	c	d	е
10	a	b	c	d	е
11	a	b	c	d	е
12	a	b	c	d	e
13	a	b	c	d	е
14	a	b	c	d	е
15	a	b	c	d	е
16	a	b	c	d	е
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota