MAT 2219

Cálculo III para Química

Prof. Paolo Piccione

Prova 2

27 de novembro de 2015

Nome:		
Número USP:		
Assinatura:		

Instruções

- A duração da prova é de **uma hora e quarenta minutos**.
- Assinale as alternativas corretas na folha de respostas que está no final da prova. \acute{E} permitido deixar questões em branco.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.10).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página).
- Boa Prova!

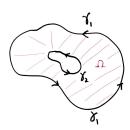
Terminologia e Notações Utilizadas na Prova

- $\sin x$ é a função seno de x, $\ln x$ é o logaritmo natural de x.
- Dado um campo vetorial \vec{V} , $\vec{\nabla} \cdot \vec{V}$ denota o divergente de \vec{V} , e $\vec{\nabla} \times \vec{V}$ o rotacional de \vec{V} . Para uma função f (suficientemente diferenciável), $\vec{\nabla} f$ é o gradiente de f, e Δf é o Laplaciano de f, definido como $\vec{\nabla} \cdot \vec{\nabla} f$, ou seja, o divergente do gradiente de f
- A integral de linha do campo \vec{V} ao longo da curva γ é denotado com $\int_{\gamma} \vec{V} \cdot d\vec{\gamma}$. A integral de superfície do campo \vec{V} ao longo da superfície Σ é denotado com $\int_{\Sigma} \vec{V} \cdot \vec{n} \, d\Sigma$.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!!

 \mathbf{A}

Questão 1. Considere o domínio $\Omega \subset \mathbb{R}^2$ limitado pelas curvas γ_1 e γ_2 , como na figura abaixo.



Considere as curvas γ_1 e γ_2 com as orientações dadas na figura (as duas no sentido anti-horário). Quais das integrais de linhas abaixo fornece como resultado a área da região Ω ?

- (a) $-\int_{\gamma_1} x \, dy + \int_{\gamma_2} y \, dx;$
- (b) $\int_{\gamma_1} x \, \mathrm{d}y \int_{\gamma_2} y \, \mathrm{d}x;$
- (c) $\int_{\gamma_1} y \, \mathrm{d}x + \int_{\gamma_2} y \, \mathrm{d}x;$
- (d) $\int_{\gamma_1} x \, dy + \int_{\gamma_2} y \, dx$;
- (e) $\int_{\gamma_1} x \, \mathrm{d}y + \int_{\gamma_2} x \, \mathrm{d}y$.

Questão 2. Considere o domiínio Ω como na figura da Questão 1. Se \vec{V} é um campo irrotacional em Ω , o que podemos afirmar sobre a integral de linha $\int_{\gamma_1} \vec{V} \cdot d\vec{\gamma}_1$?

- (a) é igual a $-\int_{\gamma_2} \vec{V} \cdot d\vec{\gamma}_2$;
- (b) é igual à integral $\int_{\gamma_2} \vec{V} \cdot d\vec{\gamma}_2$;
- (c) é igual a $\frac{1}{2} \int_{\gamma_2} \vec{V} \cdot d\vec{\gamma}_2$;
- (d) é igual a $2 \int_{\gamma_2} \vec{V} \cdot d\vec{\gamma}_2$;
- (e) é igual a 0.

MAT 2219 — Prova 2
$$\boxed{A}$$
 — 27.11.2015

Questão 3. Seja \vec{V} um campo vetorial num domínio $\Omega \subset \mathbb{R}^2$ cujas componentes são funções com derivadas primeiras contínuas em Ω . Quais das seguintes afirmações são verdadeiras?

- (A) Se \vec{V} é irrotacional, então \vec{V} é conservativo.
- (B) Se \vec{V} é conservativo, então \vec{V} é irrotacional.
- (C) $Se \int_{\gamma} \vec{V} \cdot d\vec{\gamma} = 0$ para toda curva fechada γ em Ω , então \vec{V} é conservativo.
- (a) é verdadeira apenas a (B);
- (b) são verdadeira apenas a (A) e a (C);
- (c) são verdadeira apenas a (A) e a (B);
- (d) é verdadeira apenas a (C);
- (e) são verdadeira apenas a (B) e a (C).

Questão 4. Sejam $P: \mathbb{R}^2 \to \mathbb{R}$ e $Q: \mathbb{R}^2 \to \mathbb{R}$ funções que admitem derivadas primeiras contínuas, e seja $D \subset \mathbb{R}^2$ um domínio compacto cuja fronteira é uma curva γ fechada, simples e regular por partes. Qual dos seguintes é o enunciado correto do Teorema de Green no plano?

(a) Se γ é orientada no sentido anti-horário, então

$$\int_{\gamma} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_{D} \left(\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y;$$

(b) Se γ é orientada no sentido anti-horário, então

$$\int_{\gamma} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y;$$

(c) Se γ é orientada no sentido horário, então

$$\int_{\gamma} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y;$$

(d) Se γ é orientada no sentido anti-horário, então

$$\int_{\gamma} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_{D} \left(\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y;$$

(e) Se γ é orientada no sentido horário, então

$$\int_{\gamma} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_{D} \left(\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y.$$

Questão 5. Seja V o campo vetorial no \mathbb{R}^3 dado pelo gradiente da função $f(x,y,z) = x^2 - y^2 + z^3$. Calcule a integral $\int_{\gamma} \vec{V} \cdot d\vec{\gamma}$, onde γ é a curva $\gamma(t) = (t,t^3,t^5)$, $t \in [-1,1]$.

- (a) -1;
- (b) 0;
- (c) -2;
- (d) 1;
- (e) 2.

Questão 6. Calcule um potencial $f: \mathbb{R}^2 \to \mathbb{R}$ para o campo conservativo $\vec{V} = (x^2 + y)\vec{\imath} + (y^2 + x)\vec{\jmath}$.

- (a) $f = x^3 + xy + y^3$;
- (b) $f = \frac{1}{3}x^3 + xy + \frac{1}{3}y^3$;
- (c) $f = \frac{1}{3}x^3 + 2xy + \frac{1}{3}y^3$;
- (d) $f = \frac{1}{3}x^3 + \frac{1}{3}y^3$;
- (e) \vec{V} não é conservativo.

Questão 7. Calcule o divergente $\vec{\nabla} \cdot \vec{V}$ do campo

$$\vec{V} = \frac{x}{x^2 + y^2 + z^2} \vec{i} + \frac{y}{x^2 + y^2 + z^2} \vec{j} + \frac{z}{x^2 + y^2 + z^2} \vec{k}.$$

(a)
$$-\frac{1}{x^2+y^2+z^2}$$
;

(b)
$$-\frac{1}{(x^2+y^2+z^2)^2}$$
;

(c)
$$\frac{1}{x^2 + y^2 + z^2}$$
;

(d)
$$\frac{1}{(x^2+y^2+z^2)^2}$$
;

(e) 0.

Questão 8. Usando o Teorema de Stokes, calcule $\int_{\gamma} \vec{V} \cdot d\vec{\gamma}$, onde $\vec{V} = z\vec{\imath}$, e γ é o círculo no plano xz de centro (0,0,0), raio 1, orientado no sentido anti-horário do plano xz.

- (a) 0;
- (b) $-\pi$;
- (c) -2π ;
- (d) 2π ;
- (e) π .

Questão 9. Use o Teorema da Divergência e/ou o Teorema de Stokes para estabelecer quais das seguintes afirmações são verdadeiras.

- (A) $\iiint_B \Delta f \, dx \, dy \, dz = 0$ para toda função f (que admite derivadas segundas contínuas) e todo domínio $B \subset \mathbb{R}^3$ compacto, com fronteira regular.
- (B) Se $\Sigma = \partial B$ é uma superfície regular, fronteira do domínio compacto $B \subset \mathbb{R}^3$, e \vec{V} é um campo em \mathbb{R}^3 que admite derivadas primeiras contínuas, então o fluxo $\int_{\Sigma} \vec{\nabla} \times \vec{V} \cdot \vec{n} \, \mathrm{d}\Sigma = 0$.
- (C) Se \vec{V} é um campo irrotacional num domínio $B \subset \mathbb{R}^3$, e existe uma curva simples e fechada γ em B tal que $\int_{\gamma} \vec{V} \cdot d\vec{\gamma} \neq 0$, então não existe nenhuma superfície Σ contida em B cujo bordo é γ .
- (a) Apenas (B) e (C) são verdadeiras;
- (b) Apenas a (A) é verdadeira;
- (c) Apenas a (B) é verdadeira;
- (d) Apenas a (A) e a (C) são verdadeiras;
- (e) As três afirmações são verdadeiras.

Questão 10. Qual é a superfície Σ representada pelas equações paramétricas abaixo?

$$\Sigma = \begin{cases} x = 2u + v - 1 \\ y = 3u - 4v + 2 \\ z = -u + 3v \end{cases} (u, v) \in \mathbb{R}^2.$$

- (a) Um plano passante por (-1, 2, 0), perpendicular aos vetores (2, 3, -1) e (1, -4, 3);
- (b) Uma esfera centrada em (-1, 2, 0) e de raio $\sqrt{10}$;
- (c) Um plano passante por (-1,3,0), paralelo aos vetores (2,1,-1) e (3,-4,2);
- (d) Um plano passante por (-1,2,0), paralelo aos vetores (2,3,-1) e (1,-4,3);
- (e) O gráfico do parabolóide z = (2u + v 1)(3u 4v + 2) e passante por (-1, 3, 0).

Questão 11. Calcule o Laplaciano Δf da função

$$f(x, y, z) = \ln(x^2 + y^2 + z^2).$$

- (a) Δf é igual ao divergente do campo \vec{V} da Questão 7;
- (b) Δf é igual a $\frac{1}{2}$ vezes o divergente do campo \vec{V} da Questão 7;
- (c) Δf é igual a -2 vezes o divergente do campo \vec{V} da Questão 7;
- (d) Δf é igual a 2 vezes o divergente do campo \vec{V} da Questão 7;
- (e) Δf é igual a $-\frac{1}{2}$ vezes o divergente do campo \vec{V} da Questão 7.

Questão 12. Quais dos conjuntos $A \subset \mathbb{R}^2$ abaixo é simplesmente conexo?

- (a) $A = \{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 2\};$
- (b) $A = \mathbb{R}^2 \setminus \{(0,0)\};$
- (c) $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > 1\};$
- (d) $A = \{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 2, \ x > 0\};$
- (e) $A = \{(x, y) \in \mathbb{R}^2 : 0 < x^2 + y^2 < 1\}.$

Questão 13. Seja γ curva no plano dada pelos lados do triângulo de vértices (-1,0), (2,0) e (1,1), percorrida no sentido horário. Calcule a integral $\int_{\gamma} \vec{V} \cdot d\vec{\gamma}$, onde \vec{V} é o campo $(y + \tan^3 x)\vec{\imath} - (x + \cos^5 y)\vec{\jmath}$. (Sugestão: use a fórmula de Green!)

- (a) -3;
- (b) $-\frac{3}{2}$;
- (c) $\frac{3}{2}$;
- (d) 0;
- (e) 3.

Questão 14. Identifique estes caracteres: $\boxed{\Sigma}$ e $\boxed{\gamma}$.

- (a) Σ é a letra grega "Delta", em maiúsculo, e γ é a letra grega "gama", em minúsculo;
- (b) Σ é o ideograma egípcio "Pharaó", e γ é o caráter chinês "chu";
- (c) Σ é a letra grega "sigma", em minúsculo, e γ é a letra grega "Gama", em maiúsculo;
- (d) Σ é a letra grega "Sigma", em maiúsculo, e γ é a letra grega "delta", em minúsculo;
- (e) Σ é a letra grega "Sigma", em maiúsculo, e γ é a letra grega "gama", em minúsculo.

Questão 15. Calcule a integral de superfície $\int_{\Sigma} \vec{\nabla} \times \vec{V} \cdot \vec{n} \, d\Sigma$, onde $\vec{V} = xy\vec{i} + yz\vec{j} + xy\vec{k}$, Σ é e superfície esférica centrada em (1, -1, 2), de raio 2, com a normal \vec{n} que aponta para fora.

(Sugestão: pode usar o Teorema da Divergência, como também o Teorema de Stokes.)

- (a) 8π ;
- (b) 0;
- (c) -8π ;
- (d) -4π ;
- (e) 4π .

Questão 16. Calcule o rotacional $\vec{\nabla} \times \vec{V}$ do campo $\vec{V} = \frac{y}{z}\vec{\imath} + \frac{x}{z}\vec{\jmath} + \frac{x}{y}\vec{k}$.

(a)
$$\frac{1}{x}\vec{i} + \frac{1}{y}\vec{j} + \frac{1}{z}\vec{k}$$
;

(b)
$$-\frac{y}{z^2}\vec{i} - \frac{x}{z^2}\vec{j} - \frac{x}{u^2}\vec{k};$$

(c)
$$x(1/z^2 - 1/y^2)\vec{i} - (1/y + y/z^2)\vec{j}$$
;

(d) 0

(e)
$$x(1/z^2 - 1/y^2)\vec{i} + (-1/y + y/z^2)\vec{j}$$
.

Questão 17. Considere o campo

$$\vec{V} = (x + \sin(y^2 + z^2))\vec{i} + (y + \sin(x^2 + z^2))\vec{j} - (z + \sin(x^2 + y^2))\vec{k},$$

e seja Σ a esfera de centro (0,1,2) e raio 2, com a normal \vec{n} que aponta para dentro da esfera. Calcular o fluxo $\int_{\Sigma} \vec{V} \cdot \vec{n} \, d\Sigma$. (Sugestão: use o Teorema da Divergência.)

- (a) $-\frac{32}{3}\pi$;
- (b) $\frac{32}{3}\pi$;
- (c) $\frac{17}{3}\pi$;
- (d) $-\frac{17}{3}\pi$;
- (e) 0.

Questão 18. Calcule a integral de linha $\int_{\gamma} \vec{V} \cdot d\vec{\gamma}$, onde $\vec{V} = (x-y)\vec{\imath} + xy\vec{\jmath}$, e γ é o segmento com ponto inicial (2,3) e ponto final (1,2)

- (a) $-\frac{15}{6}$;
- (b) $-\frac{17}{3}$;
- (c) $\frac{17}{6}$;
- (d) $\frac{15}{6}$;
- (e) $-\frac{17}{6}$.

Questão 19. Quais dos conjuntos $A \subset \mathbb{R}^2$ abaixo é conexo?

- (a) $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \neq 0\};$
- (b) $A = \{(x, y) \in \mathbb{R}^2 : x \neq 0\};$
- (c) $A = \{(x, y) \in \mathbb{R}^2 : xy \neq 0\};$
- (d) $A = \{(x, y) \in \mathbb{R}^2 : x + y \neq 0\};$
- (e) $A = \{(x, y) \in \mathbb{R}^2 : y \neq 0\}.$

Questão 20. Um objeto se move ao longo da hélice circular

$$\gamma(t) = \cos t \, \vec{\imath} + \sin t \, \vec{\jmath} + t \vec{k}$$

desde o ponto (1,0,0) até $(1,0,2\pi)$. Uma das forças que atuam sobre o objeto é dada por

$$\vec{F}(x, y, z) = x^2 \vec{i} + xy \vec{j} + z^2 \vec{k}.$$

Calcular o trabalho realizado por \vec{F} .

- (a) $\frac{8}{3}\pi^2$;
- (b) $\frac{4}{3}\pi^2$;
- (c) $\frac{8}{3}\pi^3$;
- (d) 0;
- (e) $\frac{4}{3}\pi^3$.

MAT 2219

Cálculo III para Química Prof. Paolo Piccione Prova 2

27 de novembro de 2015

Nome:	 	
Número USP:		
Assinatura:		

Folha de Respostas $\boxed{\mathbf{A}}$

1	a	b	c	d	e
2	a	b	c	d	e
3	a	b	c	d	e
4	a	b	c	d	e
5	a	b	c	d	e
6	a	b	c	d	e
7	a	b	c	d	е
8	a	b	c	d	е
9	a	b	c	d	е
10	a	b	c	d	е
11	a	b	c	d	е
12	a	b	c	d	е
13	a	b	c	d	е
14	a	b	c	d	e
15	a	b	c	d	е
16	a	b	c	d	e
17	a	b	c	d	e
18	a	b	c	d	e
19	a	b	c	d	e
20	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota