MAT 147 — Turma 2010221

Cálculo diferencial e integral II para Economia

Prof. Paolo Piccione

Prova 2 10 de Novembro de 2010

Nome:	 	
Número USP:		
Assinatura:		

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na **folha de respostas** que está no final da prova. É permitido deixar questões em branco.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.10).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página)
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- \mathbb{R} denota o conjunto dos números reais, e \mathbb{R}^2 é o conjunto de pares ordenados de números reais: $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}.$
- Um ponto crítico da função f(x,y) é um ponto (x_0,y_0) no domínio da f tal que $\frac{\partial f}{\partial x}(x_0,y_0)=\frac{\partial f}{\partial y}(x_0,y_0)=0$.
- A distância de um ponto $p=(a,b,c)\in\mathbb{R}^3$ a um plano Π que não contém p é o menor valor possível de $\|(a,b,c)-(x,y,z)\|$, com (x,y,z) pertencente ao plano Π .

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!!

A

Questão 1. Qual é o enunciado correto do Teorema de Weierstrass?

- (a) Se $A \subset \mathbb{R}^2$ é um aberto, e $f: A \to \mathbb{R}$ é uma função com todas as derivadas segundas contínuas em A, então $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ em A;
- (b) Se $E \subset \mathbb{R}^2$ é compacto, e $f: E \to \mathbb{R}$ é contínua, então f tem máximo e mínimo em E;
- (c) Se $E \subset \mathbb{R}^2$ é limitado, então E é fechado;
- (d) Se $E \subset \mathbb{R}^2$ é fechado, então E é limitado;
- (e) Se $E \subset \mathbb{R}^2$ é compacto e $f: E \to \mathbb{R}$ é uma função tal que $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ em E, então f admite máximo e mínimo em E.

Questão 2. Qual das seguintes afirmações é verdadeira?

- (a) Um conjunto $C \subset \mathbb{R}^2$ conexo é convexo;
- (b) Um conjunto $C \subset \mathbb{R}^2$ conexo é fechado;
- (c) Um conjunto $C \subset \mathbb{R}^2$ convexo é aberto;
- (d) Um conjunto $C \subset \mathbb{R}^2$ convexo é conexo;
- (e) Um conjunto $C \subset \mathbb{R}^2$ conexo é aberto.

Questão 3. Calcule a distância d do ponto P=(1,1,1) ao plano Π dado pela equação x+y+z=0.

- (a) d = 1;
- (b) d = 3;
- (c) $d = \sqrt{2}$;
- (d) $d = \sqrt{3}$;
- (e) d = 2.

Questão 4. Calcule o polinômio de Taylor $T_2(x,y)$ de ordem 2 da função $f(x,y) = e^{xy} \cos(xy)$ centrado em (0,0).

- (a) $T_2(x,y) = xy$;
- (b) $T_2(x,y) = 1 + xy$;
- (c) $T_2(x,y) = 1 + \frac{1}{2}x^2 + \frac{1}{2}y^2$;
- (d) $T_2(x,y) = 1 xy;$
- (e) $T_2(x,y) = 1$.

Questão 5. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ cuja expressão é $f(x,y) = \operatorname{sen}(x) + \cos(y)$. A respeito de seus pontos críticos, pode-se afirmar corretamente que:

- (a) nenhuma das alternativas;
- (b) todos os pontos críticos de f são máximos ou mínimos globais;
- (c) existem pontos críticos de f que não são máximos nem mínimos locais;
- (d) todos os pontos críticos de f são máximos ou mínimos locais;
- (e) nenhum ponto crítico de f é máximo local.

Questão 6. Determine $T_2(x,y)$ o polinômio de Taylor de ordem 2 da função $f(x,y) = xe^{xy} - x$ centrado em (0,0).

- (a) $T_2(x,y) = 1$;
- (b) $T_2(x,y) = 0$;
- (c) $T_2(x,y) = x^2y x^2$;
- (d) $T_2(x,y) = x + y \frac{1}{2}xy$;
- (e) $T_2(x,y) = \frac{1}{2}(x^2 + xy)$.

Questão 7. Seja $\phi : \mathbb{R} \to \mathbb{R}$ uma função que possui derivadas de todas as ordens. Defina $f : \mathbb{R}^2 \to \mathbb{R}$ por $f(x,y) = \phi(x) + y^2$. Se $\phi'(0) = 0$, qual das afirmações abaixo é (necessariamente) verdadeira?

- (a) (0,0) é ponto crítico de f, e é mínimo local se $\phi''(0) < 0$;
- (b) (0,0) é ponto crítico de f, e é máximo local se $\phi''(0) < 0$;
- (c) (0,0) é ponto crítico de f somente se $\phi''(0) = 0$;
- (d) (0,0) é ponto crítico de f, e é máximo local se $\phi''(0) > 0$;
- (e) (0,0) é ponto crítico de f, e é mínimo local se $\phi''(0) > 0$.

Questão 8. Seja $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $\phi(u,v) = (uv^2,\cos(uv))$. Se $f: \mathbb{R}^2 \to \mathbb{R}$ é uma função diferenciável, então a expressão correta para a derivada parcial $\frac{\partial g}{\partial u}$ da composta $g = f \circ \phi$ é:

- (a) $v^2 \frac{\partial f}{\partial x} u \operatorname{sen}(uv) \frac{\partial f}{\partial y}$;
- (b) $v \frac{\partial f}{\partial x} v \cos(uv) \frac{\partial f}{\partial y}$;
- (c) $v^2 \frac{\partial f}{\partial y} v \operatorname{sen}(uv) \frac{\partial f}{\partial x}$;
- (d) $v^2 \frac{\partial f}{\partial x} v \operatorname{sen}(uv) \frac{\partial f}{\partial y}$;
- (e) $2vu\frac{\partial f}{\partial x} u\operatorname{sen}(uv)\frac{\partial f}{\partial y}$.

Questão 9. Estude a natureza dos pontos críticos da função $f(x,y) = xy + y^4 + y^2 - 6y - 5x + 1$.

- (a) (5, -504) é um ponto de máximo local;
- (b) (-504, 5) é um ponto de mínimo local;
- (c) (-504, 5) é um ponto de sela;
- (d) (5, -504) é um ponto de sela;
- (e) (5, -504) é um ponto de mínimo local.

Questão 10. Determine uma função diferenciável f(x,y) cujas derivadas parciais sejam $\frac{\partial f}{\partial x} = x^2 + y^2$ e $\frac{\partial f}{\partial y} = x^2 - y^2$.

- (a) $f(x,y) = \frac{1}{3}x^3 + \frac{1}{3}y^3 + xy^3 yx^3$;
- (b) $f(x,y) = \frac{1}{3}x^3 + \frac{1}{3}y^3 xy^3 + yx^3$;
- (c) Uma tal f existe, mas não é nenhuma das funções dadas;
- (d) Uma tal função f não existe;
- (e) $f(x,y) = \frac{1}{3}x^3 + \frac{1}{3}y^3 xy^3 yx^3$.

Questão 11. Qual dos conjuntos abaixo não é convexo?

- (a) $E = \{(x, y) \in \mathbb{R}^2 : (x, y) \neq (0, 0)\};$
- (b) $E = \{(x, y) \in \mathbb{R}^2 : 0 \le x + y\};$
- (c) $E = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4, 0 \le x\};$
- (d) $E = \{(x, y) \in \mathbb{R}^2 : x = 1\};$
- (e) todos são convexos.

Questão 12. Sejam $x, y \in z$ números positivos, com produto xyz = 1. Qual das seguintes afirmações é verdadeira?

- (a) O valor máximo da soma x + y + z é 3;
- (b) A soma dos inversos $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ é menor ou igual a x + y + z;
- (c) A soma x + y + z não tem nem máximo nem mínimo;
- (d) O valor mínimo da soma x + y + z é 3;
- (e) A soma x + y + z é menor ou igual a 3.

Questão 13. Qual é o enunciado correto do Teorema de Schwarz?

- (a) Se $A \subset \mathbb{R}^2$ é um aberto, e $f: A \to \mathbb{R}$ é uma função tal que $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$, então f tem todas as derivadas segundas contínuas em A;
- (b) Se $E \subset \mathbb{R}^2$ é compacto e $f: E \to \mathbb{R}$ é uma função tal que $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ em E, então f admite máximo e mínimo em E;
- (c) Se $E \subset \mathbb{R}^2$ é compacto e $f: E \to \mathbb{R}$ é contínua, então f tem máximo e mínimo em E;
- (d) Se f é diferenciável num aberto A, então $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}$ em A;
- (e) Se $A \subset \mathbb{R}^2$ é um aberto, e $f: A \to \mathbb{R}$ é uma função com todas as derivadas segundas contínuas em A, então $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ em A.

Questão 14. Seja $\gamma: \mathbb{R} \to \mathbb{R}^2$ a curva dada por $\gamma(t) = (e^t, t^3)$. Se $f: \mathbb{R}^2 \to \mathbb{R}$ é uma função diferenciável tal que $\nabla f(1,0) = (2,1)$, então a derivada da composta $g(t) = f(\gamma(t))$ em t = 0 é:

- (a) -1;
- (b) 2;
- (c) 3;
- (d) 1;
- (e) 0.

Questão 15. Para qual das equações abaixo é possível garantir, através do Teorema da função implícita, que existe um conjunto aberto $U \subseteq \mathbb{R}^2$ contendo o ponto p dado e uma função diferenciável $\phi: I \subseteq \mathbb{R} \to U$ de maneira que as soluções da equação em U são exatamente o gráfico de ϕ ?

- (a) $x\cos(xy) = y$, p = (0,0);
- (b) $\cos(y^2) x\cos(y) = 0, p = (1,0);$
- (c) $e^x + y^2 + y\operatorname{sen}(x) = 1, p = (0, 0);$
- (d) nenhuma das alternativas;
- (e) $e^{x^2} e^{y^2} = y^2$, p = (0, 0).

Questão 16. Determine uma função h(x) com a propriedade que exista uma função diferenciável f(x,y) cujas derivadas parciais sejam $\frac{\partial f}{\partial x} = ye^{xy} + 2xy$ e $\frac{\partial f}{\partial y} = xe^{xy} + h(x)$.

- (a) $h(x) = x^2$;
- (b) $h(x) = x^2y$;
- (c) $h(x) = -x^2$;
- (d) não existe uma tal função h(x);
- (e) a função h existe, mas não é nenhuma das funções dadas.

Questão 17. Em qual conjunto $A \subset \mathbb{R}^2$ a função $f(x,y) = e^{xy}$ admite máximo e mínimo absoluto?

(a)
$$E = \{(x, y) \in \mathbb{R}^2 : 2 \le x^2 - y^2 \le 4\};$$

- (b) $E = \{(x, y) \in \mathbb{R}^2 : x^2 y^2 \le 4\};$
- (c) $E = \{(x, y) \in \mathbb{R}^2 : 2 \le x^2 + y^2\};$
- (d) $E = \{(x, y) \in \mathbb{R}^2 : 2 \le x^2 + y^2 \le 4\};$
- (e) $E = \{(x, y) \in \mathbb{R}^2 : 2 \le xy \le 4\}.$

Questão 18. Se $T: \mathbb{R}^2 \to \mathbb{R}^2$ é uma função diferenciável da forma T(u,v) = (x(u,v),y(u,v)) e $f: \mathbb{R}^2 \to \mathbb{R}$ é dada por f(x,y) = xy+1, então a expressão correta para a derivada parcial $\frac{\partial g}{\partial u}$ da composta $g = f \circ T$ é:

- (a) $\frac{\partial x}{\partial u} + \frac{\partial y}{\partial u} + 1$;
- (b) $x\frac{\partial x}{\partial u} + y\frac{\partial y}{\partial u}$;
- (c) $\frac{\partial x}{\partial u} + \frac{\partial y}{\partial u}$;
- (d) $y\frac{\partial x}{\partial u} + x\frac{\partial y}{\partial u}$;
- (e) $y \frac{\partial x}{\partial u} + x \frac{\partial y}{\partial u} + 1$.

Questão 19. Para a função $f(x,y) = x^2 + y^2 - 2x - 4y + 5$:

- (a) ambos (1,2) e (2,1) são pontos de sela;
- (b) (2,1) é um ponto de mínimo local;
- (c) (2,1) é um ponto de sela;
- (d) (1,2) é um ponto de sela;
- (e) (1,2) é um ponto de máximo local.

Questão 20. Qual dos conjuntos abaixo é conexo?

(a)
$$\{(x,y) \in \mathbb{R}^2 : |x| \le 1, y \ne 0\};$$

(b) nenhuma das alternativas;

(c)
$$\{(x,y) \in \mathbb{R}^2 : x > 0 \text{ ou } x < 0\};$$

(c)
$$\{(x,y) \in \mathbb{R}^2 : x > 0 \text{ ou } x < 0\};$$

(d) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} \cup \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \ge 3\};$
(e) $\{(x,y) \in \mathbb{R}^2 : xy \ne 0\} \cup \{(0,0)\}.$

(e)
$$\{(x,y) \in \mathbb{R}^2 : xy \neq 0\} \cup \{(0,0)\}.$$

MAT 147 — Turma 2010221 Cálculo diferencial e integral II para Economia Prof. Paolo Piccione

Prova 2

10 de Novembro de 2010

Nome:	 	
Número USP:		
Assinatura:		

Folha de Respostas $\boxed{\mathbf{A}}$

1	a	b	c	d	е
2	a	b	c	d	e
3	a	b	c	d	е
4	a	b	c	d	e
5	a	b	c	d	е
6	a	b	c	d	e
7	a	b	c	d	e
8	a	b	c	d	e
9	a	b	c	d	e
10	a	b	c	d	e
11	a	b	c	d	e
12	a	b	c	d	e
13	a	b	c	d	e
14	a	b	c	d	е
15	a	b	c	d	е
16	a	b	c	d	е
17	a	b	c	d	e
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota