MAT 133 — Cálculo II

Prof. Paolo Piccione 12 de fevereiro de 2015

Prova REC — B

	2014210
Nome:	_
Número USP:	 _
Assinatura:	 _

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na folha de respostas que está no final da prova. \acute{E} permitido deixar questões em branco.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.1).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página)
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- R denota o conjunto dos números reais
- $\sin x$ é a função "seno de x"; $\ln x$ é a função "logaritmo natural de x".
- a, b denota o intervalo aberto de extremos $a \in b$.
- $\cosh x$ é a função cosseno hiperbólico, dada por $\frac{e^x + e^{-x}}{2}$.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!!

12.02.2015

Questão 1. Seja f uma função de duas variáveis, que admite derivadas segundas contínua em \mathbb{R}^2 . Seja (x_0, y_0) um ponto crítico de f, e seja $A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$ a matriz Hessiana da f em (x_0, y_0) . Se $\alpha \gamma - \beta^2 < 0$ e $\alpha + \gamma > 0$, o que podemos concluir sobre (x_0, y_0) ?

- (a) é um mínimo local para f;
- (b) o teste da matriz Hessiana falha em (x_0, y_0) ;
- (c) é um ponto de acumulação da f;
- (d) é um ponto de sela para f;
- (e) é um máximo local para f.

Questão 2. Qual das seguintes afirmações é verdadeira?

- (a) Se f é uma função diferenciável, então seus pontos críticos são máximos ou mínimos locais;
- (b) Um máximo local para uma função diferenciável f, que seja um ponto interior do domínio de f, é necessariamente um ponto crítico de f;
- (c) Se f se anula em (x_0, y_0) , e (x_0, y_0) é um ponto crítico da f, então (x_0, y_0) é um mínimo local da f;
- (d) Se o Hessiano de f em (x_0, y_0) tem dois autovalores negativos, então (x_0, y_0) é um ponto de mínimo da f;
- (e) Se f é diferenciável em (x_0,y_0) , então as derivadas parciais da f em (x_0,y_0) se anulam.

Questão 3. O ponto (2,2) é crítico para a função

$$f(x,y) = \frac{1}{2}xy + \frac{4}{x} + \frac{4}{y}.$$

Que tipo de ponto crítico é?

- (a) um máximo local;
- (b) não é um ponto crítico;
- (c) o teste do Hessiano falha;
- (d) um mínimo local;
- (e) um ponto de sela.

Questão 4. Calcule o gradiente da função $f(x,y) = e^y \sin x$ no ponto (0,0).

- (a) $\nabla f(0,0) = (-1,0);$
- (b) $\nabla f(0,0) = (1,1);$
- (c) $\nabla f(0,0) = (0,-1);$
- (d) $\nabla f(0,0) = (-1,1);$
- (e) $\nabla f(0,0) = (1,0)$.

Questão 5. Calcule o volume V do sólido gerado pela rotação em torno do eixo x da região R dada por:

$$R = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le \pi, \ 0 \le y \le 2\sin x\}.$$

- (a) $V = \frac{\sqrt{\pi}}{2}$;
- (b) $V = \pi^2$;
- (c) $V = \frac{\pi}{2}$;
- (d) $V = 2\pi^2$;
- (e) V = 0.

Questão 6. Determine os pontos críticos da função

$$f(x,y) = 3y^2x + x^3 - 3x.$$

- (a) (1,1) e (-1,1);
- (b) f não possui pontos críticos;
- (c) (-1,0) e (1,0);
- (d) (0,0), (1,-1) e (-1,1);
- (e) (0,1), (1,0), (-1,0) e (0,-1).

Questão 7. Calcule o limite $L = \lim_{x \to +\infty} x^2 e^{-2x}$.

- (a) L = 0;
- (b) $L = +\infty$;
- (c) L = e;
- (d) L = 1;
- (e) $L = -\infty$.

12.02.2015

Questão 8. Dada a função $f(x,y)=\frac{y}{x+y}$, calcule a derivada parcial segunda $\frac{\partial^2 f}{\partial x \partial y}$.

- (a) $\frac{(x-y)^2}{(x+y)^4}$;
- (b) $\frac{x+y}{(x+y)^3};$
- (c) $\frac{y-x}{(x+y)^3};$
- (d) $\frac{x-y}{(x+y)^4};$
- (e) $\frac{(x-y)^2}{(x+y)^3}$.

Questão 9. Dada a função $f(x,y)=x^2e^{xy}$, calcule a derivada parcial $\frac{\partial f}{\partial y}(2,2)$.

- (a) $3e^4$;
- (b) $5e^4$;
- (c) $8e^4$;
- (d) $2e^4$;
- (e) e^4 .

Questão 10. Dada a função de três variáveis

$$f(x, y, z) = x^3 y^2 + xe^z \cos y + \arctan(x^2 y^3),$$

calcule a derivada terceira $\frac{\partial^3 f}{\partial x \partial y \partial z}$,

- (a) $-e^z \sin y$;
- (b) $e^z \cos y$;
- (c) $-xe^z \cos y$;
- (d) $xe^z \sin y$;
- (e) $x \cos y$.

12.02.2015

5

Questão 11. Partindo do ponto (1,1), em qual direção a função

$$f(x,y) = \frac{1}{2}x^2y^3$$

decresce mais rapidamente?

- (a) $\left(-\frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}}\right);$
- (b) $\left(-\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right);$
- (c) $\left(-\frac{2}{\sqrt{13}}, -\frac{3}{\sqrt{13}}\right)$;
- (d) $\left(\frac{2}{\sqrt{13}}, -\frac{3}{\sqrt{13}}\right)$;
- (e) $\left(-\frac{3}{\sqrt{13}}, -\frac{2}{\sqrt{13}}\right)$.

Questão 12. Dada a função $f(x) = -8x^4 + 9x^2 - 5$, determine em quais intervalos é crescente.

- (a) $]-\infty, 0[e] \frac{3}{4}, +\infty[;$
- (b) $]-\infty, -\frac{3}{4}[e]0, \frac{3}{4}[;$
- (c) $]0, \frac{3}{4}[;$
- (d) $]-\frac{3}{4},0[;$
- (e) $]-\frac{3}{4},\frac{3}{4}[.$

Questão 13. Determine os pontos críticos da função

$$f(x,y) = x^3 - y^3 - 3x^2 + 3y.$$

- (a) (0,-1) e (2,1);
- (b) (0,1), (0,-1), (2,1) e (2,-1);
- (c) (0,0), (1,-1), (2,1) e (2,-1);
- (d) (1,0), (-1,0), (2,1) e (2,-1);
- (e) (0,1) e (2,-1).

Questão 14. Calcule a área da superfície gerada pela rotação, em torno do eixo x, do gráfico da função f(x) = x + 1, $1 \le x \le 4$.

- (a) $21\sqrt{3}\pi$;
- (b) $20\sqrt{2}\pi$;
- (c) $23\sqrt{2}\pi$;
- (d) $21\sqrt{2}\pi$;
- (e) $20\sqrt{3}\,\pi$.

Questão 15. Calcule a derivada direcional da $f(x,y) = \cos(2x+3y)$ no ponto $(\frac{\pi}{4}, \frac{\pi}{3})$ e na direção $\vec{v} = (\frac{1}{\sqrt{3}}, -\sqrt{\frac{2}{3}})$.

- (a) $-\sqrt{6} + \frac{2}{\sqrt{3}}$;
- (b) $\sqrt{6} + \frac{2}{\sqrt{3}}$;
- (c) $\sqrt{3} \frac{2}{\sqrt{3}}$;
- (d) $\sqrt{6} \frac{2}{\sqrt{3}}$;
- (e) $-\sqrt{6} \frac{2}{\sqrt{3}}$.

Questão 16. Qual é o ponto do plano 2x + y + z = 1 mais próximo da origem?

- (a) $\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right)$;
- (b) $(\frac{1}{2}, 0, \frac{1}{2});$
- (c) $\left(\frac{1}{3}, \frac{1}{6}, \frac{1}{3}\right)$;
- (d) $(\frac{1}{3}, \frac{1}{3}, 0);$
- (e) $(\frac{1}{3}, \frac{1}{6}, \frac{1}{6})$.

Questão 17. Considere o conjunto $A \subset \mathbb{R}^2$ definido por:

$$A = \{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 1\}.$$

Quais das seguintes afirmações é verdadeira?

- (a) A é fechado e limitado;
- (b) A é aberto e ilimitado;
- (c) A é aberto e limitado;
- (d) A é compacto;
- (e) A é fechado e ilimitado.

Questão 18. Calcule a integral definida $\int_0^{\pi/2} \sin^2 x \cos x \, dx$.

- (a) $\frac{1}{4}$;
- (b) $\frac{1}{5}$;
- (c) $\frac{1}{3}$;
- (d) 0;
- (e) $\frac{1}{2}$.

7

Questão 19. Considere as seguintes afirmações:

- (A1) A união de dois subconjuntos abertos de \mathbb{R}^3 é aberta.
- (A2) A interseção de dois subconjuntos fechados de \mathbb{R}^3 é fechada.
- (A3) A interseção entre um compacto e um aberto de \mathbb{R}^3 é compacta.

Quais delas são verdadeiras?

- (a) (A1) e (A2) são verdadeiras. (A3) é falsa;
- (b) (A1) e (A3) são verdadeiras. (A2) é falsa;
- (c) São todas verdadeiras;
- (d) (A3) e (A2) são verdadeiras. (A1) é falsa;
- (e) São todas falsas.

Questão 20. O ponto $\left(-\frac{1}{2\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ é crítico para a função $f(x,y) = -y^4 + 4xy - 4x^2.$

Que tipo de ponto crítico é?

- (a) o teste do Hessiano falha;
- (b) um máximo local;
- (c) um ponto de sela;
- (d) não é um ponto crítico;
- (e) um mínimo local.

MAT 133 — Cálculo II Turma 2014210 Prof. Paolo Piccione Prova REC — **B** 12 de fevereiro de 2015

Nome:	
Número USP:	
Assinatura:	

Folha de Respostas

1	a	b	c	d	е
2	a	b	c	d	е
3	a	b	c	d	е
4	a	b	c	d	е
5	a	b	c	d	е
6	a	b	c	d	е
7	a	b	c	d	е
8	a	b	c	d	е
9	a	b	c	d	е
10	a	b	c	d	e
11	a	b	c	d	е
12	a	b	c	d	e
13	a	b	c	d	e
14	a	b	c	d	e
15	a	b	c	d	e
16	a	b	c	d	e
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota