MAT 133 — Cálculo II

Prof. Paolo Piccione 2 de dezembro de 2014

Prova 2 — $\boxed{\mathbf{D}}$

	2014210
Nome:	_
Número USP:	 _
Assinatura:	 _

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na folha de respostas que está no final da prova. É permitido deixar questões em branco.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.1).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página)
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- R denota o conjunto dos números reais
- $\sin x$ é a função "seno de x"; $\ln x$ é a função "logaritmo natural de x".
- $\arctan x$ é a função arcotangente de x.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!!

2

Questão 1. Qual é o ponto do plano x + 2y + z = 1 mais próximo da origem?

- (a) $(\frac{1}{3}, \frac{1}{6}, \frac{1}{3});$
- (b) $(\frac{1}{2}, 0, \frac{1}{2});$
- (c) $(\frac{1}{6}, \frac{1}{3}, \frac{1}{6});$
- (d) $(\frac{1}{3}, \frac{2}{3}, \frac{1}{3});$
- (e) $(\frac{1}{3}, \frac{1}{3}, 0)$.

Questão 2. Considere o conjunto $A \subset \mathbb{R}^2$ definido por:

$$A = \big\{(x,y) \in \mathbb{R}^2 : -1 \le xy \le 1\big\}.$$

Quais das seguintes afirmações é verdadeira?

- (a) A é fechado e limitado;
- (b) A é aberto e limitado;
- (c) A é aberto e ilimitado;
- (d) A é fechado e ilimitado;
- (e) A é compacto.

Questão 3. Qual é o mínimo da função f(x,y)=x+y no conjunto $K=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$?

- (a) 0;
- (b) $-\frac{1}{2}$;
- (c) $-\sqrt{2}$;
- (d) -1;
- (e) $\frac{1}{\sqrt{2}}$.

Questão 4. A partir do ponto (1,1), em qual direção a função $f(x,y) = x^2y^3$ cresce mais rapidamente?

- (a) $\left(-\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right);$
- (b) $\left(\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right);$
- (c) $\left(\frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}}\right)$;
- (d) $\left(\frac{2}{\sqrt{13}}, -\frac{3}{\sqrt{13}}\right)$;
- (e) $\left(-\frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}}\right)$.

3

Questão 5. Seja f uma função de duas variáveis, que admite derivadas segundas contínua em \mathbb{R}^2 . Seja (x_0, y_0) um ponto crítico de f, e seja A =a matriz Hessiana da f em (x_0, y_0) . Se $\alpha \gamma - \beta^2 < 0$ e $\alpha > 0$, o que podemos concluir sobre (x_0, y_0) ?

02.12.2014

- (a) é um máximo local para f;
- (b) é um ponto de acumulação da f;
- (c) o teste da matriz Hessiana falha em (x_0, y_0) ;
- (d) é um mínimo local para f;
- (e) é um ponto de sela para f.

Questão 6. Determine a equação da reta tangente à curva de nível

$$e^{2x-y} + 2x + 2y = 4$$

no ponto $(\frac{1}{2},1)$.

- (a) 4x + 3y 2 = 0;
- (b) 4x + y 3 = 0;
- (c) x + 2y 4 = 0;
- (d) x 4y + 3 = 0;
- (e) 3x 4y + 3 = 0.

Questão 7. Determine os pontos críticos da função

$$f(x,y) = x^3 + y^3 - 3x^2 - 3y.$$

- (a) (0,1), (0,-1), (2,1) e (2,-1);
- (b) (0,1) e (2,-1);
- (c) (1,0), (-1,0), (2,1) e (2,-1);
- (d) (0,0), (1,-1), (2,1) e (2,-1);
- (e) (0,-1) e (2,1).

Questão 8. Determine os pontos críticos da função

$$f(x,y) = 3xy^2 + x^3 - 3x.$$

- (a) f não possui pontos críticos;
- (b) (1,1) e (-1,1);
- (c) (0,0), (1,-1) e (-1,1);
- (d) (0,1) e (0,-1);
- (e) (-1,0), (1,0), (0,-1) e (0,1).

02.12.2014

4

Questão 9. Considere as seguintes afirmações:

- (A1) A união de dois subconjuntos abertos de \mathbb{R}^3 é aberta.
- (A2) A interseção de dois subconjuntos fechados de \mathbb{R}^3 é fechada.
- (A3) A interseção entre um compacto e um fechado de \mathbb{R}^3 é compacta.

Quais delas são verdadeiras?

- (a) (A1) e (A3) são verdadeiras. (A2) é falsa;
- (b) (A1) e (A2) são verdadeiras. (A3) é falsa;
- (c) São todas verdadeiras;
- (d) São todas falsas;
- (e) (A3) e (A2) são verdadeiras. (A1) é falsa.

Questão 10. Dada a função $f(x,y)=ye^{xy}$, calcule a derivada parcial $\frac{\partial f}{\partial y}(2,2)$.

- (a) $2e^4$;
- (b) $5e^4$;
- (c) $3e^4$;
- (d) e^4 ;
- (e) $4e^4$.

Questão 11. Dada a função de três variáveis

$$f(x, y, z) = x^2y + xe^z \cos y + \arctan(xy^3),$$

calcule a derivada terceira $\frac{\partial^3 f}{\partial x \partial y \partial z}$,

- (a) $-xe^z \cos y$;
- (b) $xe^z \sin y$;
- (c) $x \cos y$;
- (d) $e^z \cos y$;
- (e) $-e^z \sin y$.

5

Questão 12. Deseja-se construir uma caixa, sem tampa, com a forma de um paralelepípedo-retângulo e com 1 mt^3 de volume. O material a ser utilizado nas laterais custa o triplo do que será utilizado no fundo. Determine as dimensões da caixa (altura \times largura \times profundidade) que minimiza o custo do material.

- (a) $3^{-\frac{2}{3}} \times 3^{\frac{1}{3}} \times 3^{\frac{1}{3}}$;
- (b) $6^{\frac{2}{3}} \times 3^{-\frac{1}{3}} \times 3^{-\frac{1}{3}}$;
- (c) $6^{-\frac{2}{3}} \times 6^{\frac{1}{3}} \times 6^{\frac{1}{3}}$;
- (d) $3^{\frac{2}{3}} \times 3^{-\frac{1}{3}} \times 3^{-\frac{1}{3}}$;
- (e) $6^{\frac{2}{3}} \times 6^{-\frac{1}{3}} \times 6^{-\frac{1}{3}}$.

Questão 13. O ponto (0,0) é crítico para a função $f(x,y) = y^4 - 4xy + 4x^2$. Que tipo de ponto crítico é?

- (a) um máximo local;
- (b) não é um ponto crítico;
- (c) o teste do Hessiano falha;
- (d) um mínimo local;
- (e) um ponto de sela.

Questão 14. Calcule a derivada direcional $\frac{\partial f}{\partial \vec{u}}(P)$ da função $f(x,y) = \arctan\left(\frac{x}{y}\right)$ no ponto P=(3,3) e na direção $\vec{u}=\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$.

- (a) 3;
- (b) $\frac{\pi}{2}$;
- (c) 0;
- (d) $-\frac{\pi}{4}$;
- (e) $\frac{\pi}{4}$.

Questão 15. Dada a função $f(x,y) = \frac{x}{x+y}$, calcule a derivada parcial segunda $\frac{\partial^2 f}{\partial x \partial y}$.

- (a) $\frac{(x-y)^2}{(x+y)^4}$;
- (b) $\frac{(x-y)^2}{(x+y)^3}$;
- (c) $\frac{x-y}{(x+y)^4};$
- (d) $\frac{x+y}{(x+y)^3};$
- (e) $\frac{x-y}{(x+y)^3}$.

Questão 16. Seja g(t) uma função diferenciável (de uma variável), e defina $f(x,y) = g(x^2+y)$. Seja g'(t) a derivada da g. Calcule o gradiente $\nabla f(x,y)$.

- (a) $\nabla f(x,y) = g(x^2 + 2y) \cdot (2x,y);$
- (b) $\nabla f(x,y) = \nabla g(x^2 + 2y) \cdot (2x,2);$
- (c) $\nabla f(x,y) = (2x+2)g'(x^2+2y);$
- (d) $\nabla f(x,y) = g'(x^2 + 2y);$
- (e) $\nabla f(x,y) = g'(x^2 + 2y) \cdot (2x,2)$.

Questão 17. Qual das seguintes afirmações é verdadeira?

- (a) Se o Hessiano de f em (x_0, y_0) tem dois autovalores positivos, então (x_0, y_0) é um ponto de mínimo da f;
- (b) Se f é diferenciável em (x_0, y_0) , então as derivadas parciais da f em (x_0, y_0) se anulam;
- (c) Um máximo local para uma função diferenciável f, que seja um ponto interior do domínio de f, é necessariamente um ponto crítico de f;
- (d) Se f é uma função diferenciável, então seus pontos críticos são máximos ou mínimos locais;
- (e) Se f se anula em (x_0, y_0) , e (x_0, y_0) é um ponto crítico da f, então (x_0, y_0) é um máximo local da f.

Questão 18. Calcule a derivada directional da $f(x,y) = \cos(2x + 3y)$ no ponto $(\frac{\pi}{4}, \frac{\pi}{3})$ e na direção $\vec{v} = (-\frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}})$.

- (a) $\sqrt{3} \frac{2}{\sqrt{3}}$;
- (b) $-\sqrt{6} + \frac{2}{\sqrt{3}}$;
- (c) $\sqrt{6} + \frac{2}{\sqrt{3}}$;
- (d) $-\sqrt{6} \frac{2}{\sqrt{3}}$;
- (e) $\sqrt{6} \frac{2}{\sqrt{3}}$.

Questão 19. Calcule o gradiente da função $f(x,y) = e^x \cos y$ no ponto (0,0).

- (a) $\nabla f(0,0) = (1,0);$
- (b) $\nabla f(0,0) = (0,-1)$;
- (c) $\nabla f(0,0) = (-1,0);$
- (d) $\nabla f(0,0) = (1,1);$
- (e) $\nabla f(0,0) = (-1,1)$.

Questão 20. O ponto $\left(\frac{1}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ é crítico para a função

$$f(x,y) = y^4 - 4xy + 4x^2.$$

Que tipo de ponto crítico é?

- (a) um máximo local;
- (b) o teste do Hessiano falha;
- (c) um mínimo local;
- (d) não é um ponto crítico;
- (e) um ponto de sela.

MAT 133 — Cálculo II Turma 2014210 Prof. Paolo Piccione Prova 2 — D 2 de dezembro de 2014

Nome:	
Número USP:	
Assinatura:	

Folha de Respostas

1	a	b	c	d	е
2	a	b	c	d	е
3	a	b	c	d	е
4	a	b	c	d	е
5	a	b	c	d	е
6	a	b	c	d	е
7	a	b	c	d	е
8	a	b	c	d	е
9	a	b	c	d	е
10	a	b	c	d	e
11	a	b	c	d	е
12	a	b	c	d	e
13	a	b	c	d	e
14	a	b	c	d	e
15	a	b	c	d	e
16	a	b	c	d	e
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota