MAT 133 — Cálculo II

Prof. Paolo Piccione 17 de Outubro de 2014

Prova 1 — $\boxed{\mathbf{B}}$

	2014210
Nome:	-
Número USP:	
Assinatura:	

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na folha de respostas que está no final da prova. É permitido deixar questões em branco.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.1).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página)
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- R denota o conjunto dos números reais
- $\sin x$ é a função "seno de x"; $\ln x$ é a função "logaritmo natural de x".
- a, b denota o intervalo aberto de extremos $a \in b$.
- $\bullet \ \cosh x$ é a função cosseno hiperbólico, dada por $\frac{e^x+e^{-x}}{2}.$

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!!

Questão 1. Determine os pontos críticos da função

$$f(x) = 2x^3 - 15x^2 + 36x + 6.$$

- (a) f não possui pontos críticos;
- (b) x = 3 e x = 6;
- (c) x = 0 e x = 6;
- (d) x = 2 e x = 3;
- (e) x = 3.

Questão 2. Calcule o volume do sólido obtido pela rotação, em torno do eixo y, da região R:

$$R = \left\{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 1, \ 0 \le y \le \arctan x \right\}.$$

- (a) $\pi^2 \frac{\pi}{2}$;
- (b) $\frac{\pi}{2} \pi^2$;
- (c) $\pi^2 \pi$;
- (d) $\frac{\pi^2}{2} \pi;$
- (e) $\frac{\pi^2}{2} + \pi$.

Questão 3. Qual é o enunciado correto do Teorema Fundamental do Cálculo Integral?

- (a) Se $f:[a,b]\to\mathbb{R}$ é uma função contínua, então a função $F(x)=\int_a^x f(t)\,\mathrm{d}t$ é derivável, e F'(x)=f(x) para todo $x\in[a,b]$;
- (b) Se $f:[a,b]\to\mathbb{R}$ é uma função contínua, então f é uma primitiva da função $F(x)=\int_a^x f(t)\,\mathrm{d}t;$
- (c) Se $f:[a,b] \to \mathbb{R}$ é uma função contínua, então $\int_a^b f(t) \, \mathrm{d}t = F(b);$
- (d) Se $f:[a,b]\to\mathbb{R}$ é uma função derivável, então a função $F(x)=\int_a^x f(t)\,\mathrm{d}t$ é contínua, e f'(x)=F(x) para todo $x\in[a,b]$;
- (e) Se $f:[a,b]\to\mathbb{R}$ é uma função contínua, então $\int_a^b f(t)\,\mathrm{d}t$ é dado pela área da região abaixo do gráfico da f.

3

Questão 4. Calcule o volume V do sólido gerado pela rotação em torno do eixo x da região R dada por:

$$R = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, \ \sqrt{x} \le y \le 3\}.$$

- (a) $\frac{16}{5}\pi$;
- (b) $\frac{17}{3}\pi;$
- (c) $\frac{16}{3}\pi$;
- (d) $\frac{17}{2}\pi;$
- (e) $\frac{17}{4}\pi$.

Questão 5. Qual das seguintes afirmações é correta?

- (a) Se F é uma primitiva de f, então xF(x) é uma primitiva de xF(x);
- (b) Se F é uma primitiva de f, então xF(x) é uma primitiva de xF(x) + f(x);
- (c) Se F é uma primitiva de f, então xF(x) é uma primitiva de xf(x);
- (d) Se F é uma primitiva de f, então xF(x) é uma primitiva de $\frac{1}{2}x^2F(x)$;
- (e) Se F é uma primitiva de f, então xF(x) é uma primitiva de xf(x)+F(x).

Questão 6. Calcule a integral definida $\int_0^{\pi/2} \sin^3 x \cos x \, dx$.

- (a) $-\frac{1}{4}$;
- (b) $\frac{1}{4}$;
- (c) 0;
- (d) $\frac{1}{2}$;
- (e) $\frac{1}{3}$.

4

Questão 7. Calcule a integral indefinida $\int x^2 e^x dx$.

(a)
$$x^2e^x - 2xe^x + 2e^x + C$$
;

(b)
$$\frac{1}{3}x^3e^x + C$$
;

(c)
$$\frac{1}{3}x^3e^x + x^2e^x + C$$
;

(d)
$$x^2e^x + 2e^x + C$$
;

(e)
$$x^2e^x - 2xe^x + C$$
.

Questão 8. Determine os pontos críticos da função $f(x) = e^{(x-1)^2}$.

(a)
$$x = 1 e x = -1$$
;

(b)
$$x = 0$$
;

(c)
$$x = -1$$
;

(d)
$$x = 0 e x = 1$$
;

(e)
$$x = 1$$
.

Questão 9. Calcule o volume do sólido obtido pela rotação, em torno do eixo y, da região R:

$$R = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 4, \ 1 \le y \le \sqrt{x}\}.$$

(a)
$$\frac{21}{8}\pi;$$

(b)
$$\frac{7}{4}\pi;$$

(c)
$$\frac{9}{8}\pi$$
;

(d)
$$\frac{23}{5}\pi;$$

(e)
$$\frac{49}{5}\pi$$
.

Questão 10. Calcule o volume V do sólido gerado pela rotação em torno do eixo x da região R dada por:

$$R = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le \pi, \ 0 \le y \le \sin x\}.$$

(a)
$$V = 0$$
;

(b)
$$V = \frac{\pi^2}{2}$$
;

(c)
$$V = \frac{\sqrt{\pi}}{2}$$
;

(d)
$$V = \pi^{2}$$
;

(e)
$$V = \frac{\pi}{2}$$
.

Questão 11. Dada a função $f(x) = 8x^4 - 9x^2 + 5$, determine em quais intervalos o gráfico da f tem concavidade para cima.

(a)
$$\left] -\frac{3}{4\sqrt{3}}, \frac{3}{4\sqrt{3}} \right[;$$

(b)
$$\left] -\infty, -\frac{3}{4\sqrt{3}} \right[e \left] \frac{3}{4\sqrt{3}}, +\infty \right[;$$

(c)
$$\left]-\infty, -\frac{3}{4\sqrt{3}}\right[;$$

(d)
$$]-\infty, 0[;$$

(e)
$$\left| \frac{3}{4\sqrt{3}}, +\infty \right|$$
.

Questão 12. Calcule o limite $L = \lim_{x \to +\infty} x^2 e^{-x}$.

(a)
$$L = 1$$
;

(b)
$$L = e;$$

(c)
$$L = +\infty$$
;

(d)
$$L = -\infty$$
;

(e)
$$L = 0$$
.

Questão 13. Calcule a integral definida $\int_0^3 x \sqrt{1+x} \, dx$.

(a)
$$\frac{115}{16}$$
;

(b)
$$\frac{116}{15}$$
;

(c)
$$\frac{16}{15}$$
;

(d)
$$\frac{116}{115}$$
;

(e)
$$\frac{16}{115}$$
.

Questão 14. Usando o Teorema de L'Hôpital, calcule o limite $L = \lim_{x \to 1} \frac{x^{12} - 1}{x^3 - 1}$.

(a)
$$L = \frac{1}{4}$$
;

(b)
$$L = 0;$$

(c)
$$L = +\infty$$
;

(d)
$$L = 4;$$

(e)
$$L = 1$$
.

Questão 15. Indique qual é a fórmula correta para o cálculo do volume V do sólido gerado pela rotação, em torno do eixo x, da região R:

$$R = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, \ f(x) \le y \le g(x)\},\$$

onde f e g são funções contínuas em [a,b], com $f(x) \leq g(x)$ para todo $x \in [a,b]$.

- (a) $V = 2\pi \int_a^b x [f(x) g(x)] dx;$
- (b) $V = 2\pi \int_a^b x [f(x)^2 g(x)^2] dx;$
- (c) $V = 2\pi \int_a^b [f(x)^2 g(x)^2] dx;$
- (d) $V = \pi \int_a^b [f(x) g(x)]^2 dx;$
- (e) $V = \pi \int_a^b [f(x)^2 g(x)^2] dx$.

Questão 16. Determine o domínio da função $f(x) = \ln(1+x^5)$.

- (a) \mathbb{R} ;
- (b) $]-1, +\infty[;$
- (c) $]1, +\infty[;$
- (d) $]0, +\infty[;$
- (e) $[1, +\infty[$.

Questão 17. Calcule a área da superfície gerada pela rotação, em torno do eixo x, do gráfico da função f(x) = x + 1, $1 \le x \le 4$.

- (a) $20\sqrt{2}\pi$;
- (b) $20\sqrt{3}\pi$;
- (c) $21\sqrt{3}\pi$;
- (d) $21\sqrt{2}\pi$;
- (e) $23\sqrt{2}\,\pi$.

Questão 18. Dada a função $f(x) = 8x^4 - 9x^2 + 5$, determine em quais intervalos é decrescente.

- (a) $]-\frac{3}{4},\frac{3}{4}[;$
- (b) $]-\frac{3}{4},0[;$
- (c) $]0, \frac{3}{4}[;$
- (d) $]-\infty,0[e]\frac{3}{4},+\infty[;$
- (e) $]-\infty, -\frac{3}{4}[$ e $]0, \frac{3}{4}[$.

Questão 19. Calcule a área da superfície gerada pela rotação, em torno do eixo x, do gráfico da função $f(x) = \cosh x$, $0 \le x \le 1$.

(a)
$$\pi(e^2 - e^{-2} + 4)$$
;

(b)
$$\frac{\pi}{4}(e^2 - e^{-2} + 1);$$

(c)
$$\frac{\pi}{4}(e^2 + e^{-2} + 4);$$

(d)
$$\frac{\pi}{4}(e^2 - e^{-2} + 4);$$

(e)
$$\pi(e^2 - e^{-2} + 1)$$
.

Questão 20. Usando o Teorema de De L'Hôpital, determine qual das sequintes afirmações está correta.

(a) Se
$$\lim_{x \to x_0} \frac{f''(x)}{g''(x)} = 1$$
, $\lim_{x \to x_0} f'(x) = +\infty$, $\lim_{x \to x_0} g'(x) = -\infty$,

e
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$
,

então
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1;$$

(b) Se
$$\lim_{x \to x_0} \frac{f''(x)}{g''(x)} = 1$$
, $\lim_{x \to x_0} f'(x) = 2$, $\lim_{x \to x_0} g'(x) = -3$, e $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$,

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$

então
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1;$$

(c) Se
$$\lim_{x \to x_0} \frac{f''(x)}{g''(x)} = 1$$
, $\lim_{x \to x_0} f'(x) = +\infty$, $\lim_{x \to x_0} g'(x) = -\infty$,

então
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1;$$

(d) Se
$$\lim_{x \to x_0} \frac{f''(x)}{g''(x)} = 1$$
, $\lim_{x \to x_0} f'(x) = 2$, $\lim_{x \to x_0} g'(x) = 1$, e $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$,

e
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$$
,

então
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1;$$

(e) Se
$$\lim_{x \to x_0} \frac{f''(x)}{g''(x)} = 1$$
, $\lim_{x \to x_0} f'(x) = +\infty$, $\lim_{x \to x_0} g'(x) = -\infty$, $\lim_{x \to x_0} f(x) = 3$

e
$$\lim_{x \to x_0} g(x) = 0$$
, então $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$.

MAT 133 — Cálculo II Turma 2014210 Prof. Paolo Piccione Prova 1 — B 17 de Outubro de 2014

Nome:	 	
Número USP:		
Assinatura:		

Folha de Respostas

1	a	b	c	d	е
2	a	b	c	d	е
3	a	b	c	d	е
4	a	b	c	d	е
5	a	b	c	d	е
6	a	b	c	d	е
7	a	b	c	d	е
8	a	b	c	d	е
9	a	b	c	d	е
10	a	b	c	d	е
11	a	b	c	d	e
12	a	b	c	d	е
13	a	b	c	d	e
14	a	b	c	d	е
15	a	b	c	d	e
16	a	b	c	d	е
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota