MAT 133 — Cálculo II

Prof. Paolo Piccione 16 de Outubro de 2012

Prova 1 — **D**

	20)12210
Nome:		
Número USP:		
Assinatura:		

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na folha de respostas que está no final da prova. É permitido deixar questões em branco.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.1).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página)
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- R denota o conjunto dos números reais
- $\sin x$ é a função "seno de x"; $\ln x$ é a função "logaritmo natural de x".
- $\bullet \]a,b[$ denota o intervalo aberto de extremos a e b.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!!

2

Questão 1. Calcule a derivada de $f(x) = e^x \ln x$.

(a)
$$f'(x) = \frac{1}{x}e^x + \ln x;$$

(b)
$$f'(x) = \frac{\ln x}{e^x} + xe^x$$
;

(c)
$$f'(x) = \frac{e^x}{x}$$
;

(d)
$$f'(x) = e^{\ln x} + \frac{e^x}{x}$$
;

(e)
$$f'(x) = e^x \ln x + \frac{e^x}{x}$$
.

Questão 2. Dada a função $f(x) = 8x^4 - 9x^2 + 5$, determine em quais intervalos é decrescente.

(a)
$$]-\infty, 0[e] \frac{3}{4}, +\infty[;$$

(b)
$$]0, \frac{3}{4}[;$$

(c)
$$]-\infty, -\frac{3}{4}[e]0, \frac{3}{4}[;$$

(d)
$$]-\frac{3}{4},0[;$$

(e)
$$]-\frac{3}{4},\frac{3}{4}[.$$

Questão 3. Seja $f:[a,b] \to \mathbb{R}$ uma função que admite derivada segunda em todo ponto, e seja $x_0 \in]a,b[$ tal que $f'(x_0) = 0$ e $f''(x_0) > 0$. Qual das seguintes afirmações é verdadeira?

- (a) x_0 não é nem máximo local nem mínimo local da f;
- (b) x_0 é um ponto de inflexão da f;
- (c) x_0 é um ponto de mínimo local da f;
- (d) x_0 é um ponto de máximo local da f;
- (e) $f'''(x_0) = 0$.

Questão 4. Qual é o enunciado correto do Teorema de Weierstrass?

- (a) Se $f: [a, b] \to \mathbb{R}$ é contínua, então f possui máximo e mínimo em [a, b];
- (b) Se $f:[a,b] \to \mathbb{R}$ é contínua, então f possui máximo e mínimo em [a,b];
- (c) Se $f:[a,b] \to \mathbb{R}$ possui máximo e mínimo em [a,b], então f é contínua;
- (d) Se $f:[a,b] \to \mathbb{R}$ é limitada, então f possui máximo e mínimo em [a,b];
- (e) Se $f:[a,b]\to\mathbb{R}$ possui máximo e mínimo em [a,b], então f é derivável.

Questão 5. Calcule a derivada de $f(x) = e^x \sin x$.

- (a) $f'(x) = e^x \cos x$;
- (b) $f'(x) = e^x(\sin x + \cos x);$
- (c) $f'(x) = e^x \sin x + \cos x$;
- (d) $f'(x) = -e^x \cos x$;
- (e) $f'(x) = e^x + \cos x$.

Questão 6. Qual das seguintes funções é impar?

- (a) $f(x) = \sin(x^2)$;
- (b) $f(x) = e^{\sin x}$;
- (c) $f(x) = \ln(1+x^3)$;
- (d) $f(x) = \tan(x^3)$;
- (e) $f(x) = \cos(x^3)$.

Questão 7. Determine os pontos críticos da função $f(x) = e^{(x-1)^2}$.

- (a) x = 0;
- (b) x = 1;
- (c) x = 0 e x = 1;
- (d) x = 1 e x = -1;
- (e) x = -1.

Questão 8. Uma lata cilíndrica de metal é feita para receber 0,8 litro de óleo (o qual ocupa volume de 800 cm³). Encontre o raio r da base da lata para que o custo do metal utilizado para produzir a lata seja mínimo.

- (a) $r = \sqrt[3]{\frac{400}{\pi}};$
- (b) $r = \sqrt[3]{\frac{800}{\pi}};$
- (c) $r = \sqrt[3]{\frac{200}{\pi}}$;
- (d) $r = \sqrt{\frac{800}{2\pi}};$
- (e) $r = \sqrt[3]{\frac{400}{\pi}}$.

4

Questão 9. Determine o domínio da função $f(x) = \ln(1+x^3)$.

- (a) \mathbb{R} ;
- (b) $[1, +\infty[;$
- (c) $]-1,+\infty[;$
- (d) $]0, +\infty[;$
- (e) $]1, +\infty[.$

Questão 10. Qual é o enunciado correto do Teorema do Valor Médio (TVM)?

- (a) Se $f:[a,b]\to\mathbb{R}$ é uma função derivável, e f'(c)=0, então c é um ponto de máximo ou de mínimo para f;
- (b) Se $f:[a,b]\to\mathbb{R}$ é uma função contínua, então existe $c\in [a,b]$ tal que $\lim_{x \to a} f(x) = f(b) - f(a);$
- (c) Se $f:[a,b]\to\mathbb{R}$ é uma função derivável, então existe $c\in [a,b]$ tal que f'(c) = 0;
- (d) Se $f:[a,b]\to\mathbb{R}$ é uma função contínua, então existe $c\in [a,b]$ tal que f'(c) = f(b) + f(a);
- (e) Se $f:[a,b]\to\mathbb{R}$ é uma função derivável, então existe $c\in [a,b]$ tal que f(b) - f(a) = f'(c)(b - a).

Questão 11. Usando o Teorema de L'Hôpital, calcule o limite $L = \lim_{x \to 1} \frac{x^{12} - 1}{x^3 - 1}$.

- (a) L = 4;
- (b) $L = \frac{1}{4}$;
- (c) $L = +\infty$;
- (d) L = 1;
- (e) L = 0.

Questão 12. Determine a equação da reta tangente ao gráfico da função $f(x) = \sin x \cos x$ no ponto de abscissa $x = \frac{\pi}{4}$.

- (a) $y = \frac{1}{2}$;
- (b) $y = \frac{\pi}{4}x;$
- (c) $2y \pi x = 0$;
- (d) $y 1 = x \frac{\pi}{4}$;
- (e) $y = \frac{1}{2}(x \frac{\pi}{4})$.

Questão 13. Calcule o limite $L = \lim_{x \to +\infty} x^2 e^{-x}$.

- (a) L = e;
- (b) $L = +\infty$;
- (c) $L = -\infty$;
- (d) L = 0;
- (e) L = 1.

Questão 14. Dada a função $f(x) = 8x^4 - 9x^2 + 5$, determine em quais intervalos o gráfico da f tem concavidade para cima.

- (a) $\left] -\infty, -\frac{3}{4\sqrt{3}} \right[;$
- (b) $\left] -\frac{3}{4\sqrt{3}}, \frac{3}{4\sqrt{3}} \right[;$
- (c) $\left]-\infty, -\frac{3}{4\sqrt{3}}\right[e\left]\frac{3}{4\sqrt{3}}, +\infty\right[;$
- (d) $\left| \frac{3}{4\sqrt{3}}, +\infty \right|$;
- (e) $]-\infty, 0[.$

Questão 15. Seja $f:[a,b] \to \mathbb{R}$ uma função que admite derivada segunda, e seja $c \in]a,b[$. Se f''(x) < 0 em [a,c[e f''(x) > 0 em]c,b], quais das seguintes afirmações é verdadeira?

- (a) x = c é um ponto crítico da f;
- (b) x = c é um mínimo local da f;
- (c) $f'(c) \neq 0$;
- (d) x = c é um máximo local da f;
- (e) x = c é um ponto de inflexão da f.

Questão 16. Quais são os pontos críticos da função $f(x) = 2x^3 - 15x^2 + 36x + 6$?

- (a) x = 3 e x = 6;
- (b) x = 0 e x = 6;
- (c) x = 2 e x = 3;
- (d) x = 3;
- (e) f não possui pontos críticos.

Questão 17. Calcule a derivada segunda da função $f(x) = \ln(1+x^2)$.

(a)
$$f''(x) = \frac{4 - 2x^2}{(1 + x^2)^2};$$

(b)
$$f''(x) = \frac{2 - 2x^2}{(1 + x^2)^2}$$
;

(c)
$$f''(x) = \frac{-2 + 2x^2}{(1 + x^2)^2};$$

(d)
$$f''(x) = \frac{1 - x^2}{(1 + x^2)^2};$$

(e)
$$f''(x) = \frac{2 - 4x^2}{(1 + x^2)^2}$$
.

Questão 18. Qual das seguintes afirmações é verdadeira, pelo Teorema do Valor Intermediário?

- (a) Se $f:[0,1] \to \mathbb{R}$ é contínua, f(0)=2 e f(1)=0, então existe $c \in]0,1[$ tal que $f(c)=+\infty$;
- (b) Se $f:[0,1]\to\mathbb{R}$ é contínua, f(0)=2 e f(1)=0, então existe $c\in]0,1[$ tal que $f(c)=-\frac{1}{3};$
- (c) Se $f:[0,1] \to \mathbb{R}$ é contínua, f(0)=0 e $f(1)=\frac{\pi}{4}$, então existe $c \in]0,1[$ tal que $f(c)=\frac{1}{3}$;
- (d) Se $f:[0,1]\to\mathbb{R}$ é limitada, e f(0)=f(1), então existe $c\in]0,1[$ tal que f'(c)=0;
- (e) Se $f:[0,1]\to\mathbb{R}$ é contínua, f(0)=2 e f(1)=0, então existe $c\in]0,1[$ tal que $f(c)=\frac{1}{3}.$

Questão 19. Qual das seguintes funções é periódica?

- (a) $f(x) = e^{\sqrt{2+\sin x}}$;
- (b) $f(x) = \sin(x^2)$;
- (c) $f(x) = \sin(e^x)$;
- (d) $f(x) = e^{x+\sin x}$;
- (e) $f(x) = \cos(1/x)$.

Questão 20. Qual das seguintes afirmações sobre o gráfico da função $f(x) = \ln\left(1 + \frac{1}{2}\sin(x^2)\right)$ é verdadeira?

- (a) O gráfico da f tem concavidade para baixo;
- (b) O gráfico da f é simétrico em relação ao eixo y;
- (c) O gráfico da f intercepta o eixo x em dois pontos;
- (d) O gráfico da f tem concavidade para cima;
- (e) O gráfico da f é simétrico em relação à origem.

MAT 133 — Cálculo II Turma 2012210 Prof. Paolo Piccione Prova 1 — $\boxed{\mathbf{D}}$ 16 de Outubro de 2012

Nome:	 	
Número USP:		
Assinatura:		

Folha de Respostas

1	a	b	c	d	е
2	a	b	c	d	е
3	a	b	c	d	е
4	a	b	c	d	е
5	a	b	c	d	е
6	a	b	c	d	е
7	a	b	c	d	е
8	a	b	c	d	е
9	a	b	c	d	е
10	a	b	c	d	e
11	a	b	c	d	е
12	a	b	c	d	e
13	a	b	c	d	e
14	a	b	c	d	e
15	a	b	c	d	e
16	a	b	c	d	e
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota