MAT 133 — Cálculo II

Prof. Paolo Piccione 16 de Outubro de 2012

Prova $1 - \boxed{\mathbf{A}}$

	2012210
Nome:	 _
Número USP:	_
Assinatura:	 _

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na folha de respostas que está no final da prova. É permitido deixar questões em branco.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.1).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página)
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- R denota o conjunto dos números reais
- $\sin x$ é a função "seno de x"; $\ln x$ é a função "logaritmo natural de x".
- [a, b] denota o intervalo aberto de extremos $a \in b$.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!! Questão 1. Calcule a derivada segunda da função $f(x) = \ln(1+x^2)$.

(a)
$$f''(x) = \frac{2 - 4x^2}{(1 + x^2)^2}$$
;

(b)
$$f''(x) = \frac{1 - x^2}{(1 + x^2)^2}$$
;

(c)
$$f''(x) = \frac{-2 + 2x^2}{(1+x^2)^2}$$
;

(d)
$$f''(x) = \frac{2 - 2x^2}{(1 + x^2)^2};$$

(e)
$$f''(x) = \frac{4 - 2x^2}{(1 + x^2)^2}$$
.

Questão 2. Dada a função $f(x) = 8x^4 - 9x^2 + 5$, determine em quais intervalos o gráfico da f tem concavidade para cima.

(a)
$$]-\infty, 0[;$$

(b)
$$\left] \frac{3}{4\sqrt{3}}, +\infty \right[;$$

(c)
$$\left] -\frac{3}{4\sqrt{3}}, \frac{3}{4\sqrt{3}} \right[;$$

(d)
$$]-\infty, -\frac{3}{4\sqrt{3}}[;$$

(e)
$$\left] -\infty, -\frac{3}{4\sqrt{3}} \right[e \left] \frac{3}{4\sqrt{3}}, +\infty \right[.$$

Questão 3. Determine a equação da reta tangente ao gráfico da função $f(x) = \sin x \cos x$ no ponto de abscissa $x = \frac{\pi}{4}$.

(a)
$$2y - \pi x = 0$$
;

(b)
$$y = \frac{1}{2}$$
;

(c)
$$y = \frac{\pi}{4}x$$
;

(d)
$$y - 1 = x - \frac{\pi}{4}$$
;

(e)
$$y = \frac{1}{2}(x - \frac{\pi}{4})$$
.

Questão 4. Quais são os pontos críticos da função $f(x) = 2x^3 - 15x^2 + 36x + 6$?

- (a) f não possui pontos críticos;
- (b) x = 0 e x = 6;
- (c) x = 3 e x = 6;
- (d) x = 3;
- (e) x = 2 e x = 3.

3

Questão 5. Qual das seguintes afirmações sobre o gráfico da função $f(x) = \ln(1 + \frac{1}{2}\sin(x^2))$ é verdadeira?

- (a) O gráfico da f tem concavidade para cima;
- (b) O gráfico da f intercepta o eixo x em dois pontos;
- (c) O gráfico da f é simétrico em relação à origem;
- (d) O gráfico da f tem concavidade para baixo;
- (e) O gráfico da f é simétrico em relação ao eixo y.

Questão 6. Calcule a derivada de $f(x) = e^x \ln x$.

(a)
$$f'(x) = e^{\ln x} + \frac{e^x}{x}$$
;

(b)
$$f'(x) = \frac{1}{x}e^x + \ln x$$
;

(c)
$$f'(x) = e^x \ln x + \frac{e^x}{x}$$
;

(d)
$$f'(x) = \frac{\ln x}{e^x} + xe^x$$
;

(e)
$$f'(x) = \frac{e^x}{r}$$
.

Questão 7. Qual das seguintes funções é impar?

(a)
$$f(x) = \cos(x^3)$$
;

(b)
$$f(x) = \ln(1+x^3)$$
;

(c)
$$f(x) = \tan(x^3)$$
;

(d)
$$f(x) = e^{\sin x}$$
;

(e)
$$f(x) = \sin(x^2)$$
.

Questão 8. Seja $f:[a,b] \to \mathbb{R}$ uma função que admite derivada segunda em todo ponto, e seja $x_0 \in]a,b[$ tal que $f'(x_0) = 0$ e $f''(x_0) > 0$. Qual das seguintes afirmações é verdadeira?

- (a) x_0 é um ponto de inflexão da f;
- (b) x_0 é um ponto de máximo local da f;
- (c) x_0 é um ponto de mínimo local da f;
- (d) $f'''(x_0) = 0$;
- (e) x_0 não é nem máximo local nem mínimo local da f.

Questão 9. Qual é o enunciado correto do Teorema do Valor Médio (TVM)?

- (a) Se $f:[a,b]\to\mathbb{R}$ é uma função derivável, então existe $c\in]a,b[$ tal que f(b)-f(a)=f'(c)(b-a);
- (b) Se $f:[a,b] \to \mathbb{R}$ é uma função derivável, e f'(c)=0, então c é um ponto de máximo ou de mínimo para f;
- (c) Se $f:[a,b]\to\mathbb{R}$ é uma função derivável, então existe $c\in]a,b[$ tal que f'(c)=0;
- (d) Se $f:[a,b]\to\mathbb{R}$ é uma função contínua, então existe $c\in]a,b[$ tal que $\lim_{x\to c}f(x)=f(b)-f(a);$
- (e) Se $f:[a,b]\to\mathbb{R}$ é uma função contínua, então existe $c\in]a,b[$ tal que f'(c)=f(b)+f(a).

Questão 10. Determine o domínio da função $f(x) = \ln(1+x^3)$.

- (a) $]-1,+\infty[;$
- (b) \mathbb{R} ;
- (c) $]1, +\infty[;$
- (d) $[1, +\infty[;$
- (e) $]0, +\infty[$.

Questão 11. Seja $f:[a,b] \to \mathbb{R}$ uma função que admite derivada segunda, e seja $c \in]a,b[$. Se f''(x) < 0 em [a,c[e f''(x) > 0 em]c,b], quais das seguintes afirmações é verdadeira?

- (a) x = c é um máximo local da f;
- (b) x = c é um ponto de inflexão da f;
- (c) x = c é um ponto crítico da f;
- (d) $f'(c) \neq 0$;
- (e) x = c é um mínimo local da f.

Questão 12. Qual das seguintes afirmações é verdadeira, pelo Teorema do Valor Intermediário?

- (a) Se $f:[0,1]\to\mathbb{R}$ é contínua, f(0)=2 e f(1)=0, então existe $c\in]0,1[$ tal que $f(c)=-\frac{1}{3};$
- (b) Se $f:[0,1]\to\mathbb{R}$ é contínua, f(0)=2 e f(1)=0, então existe $c\in]0,1[$ tal que $f(c)=+\infty;$
- (c) Se $f:[0,1]\to\mathbb{R}$ é contínua, f(0)=0 e $f(1)=\frac{\pi}{4}$, então existe $c\in]0,1[$ tal que $f(c)=\frac{1}{3}$;
- (d) Se $f:[0,1]\to\mathbb{R}$ é limitada, e f(0)=f(1), então existe $c\in]0,1[$ tal que f'(c)=0;
- (e) Se $f:[0,1]\to\mathbb{R}$ é contínua, f(0)=2 e f(1)=0, então existe $c\in]0,1[$ tal que $f(c)=\frac{1}{3}.$

Questão 13. Dada a função $f(x) = 8x^4 - 9x^2 + 5$, determine em quais intervalos é decrescente.

- (a) $]0, \frac{3}{4}[;$
- (b) $]-\infty,0[e]\frac{3}{4},+\infty[;$
- (c) $]-\frac{3}{4},0[;$
- (d) $]-\infty, -\frac{3}{4}[e]0, \frac{3}{4}[;$
- (e) $]-\frac{3}{4},\frac{3}{4}[.$

Questão 14. Calcule a derivada de $f(x) = e^x \sin x$.

- (a) $f'(x) = e^x + \cos x$;
- (b) $f'(x) = e^x(\sin x + \cos x);$
- (c) $f'(x) = e^x \cos x$;
- (d) $f'(x) = -e^x \cos x$;
- (e) $f'(x) = e^x \sin x + \cos x.$

Questão 15. Determine os pontos críticos da função $f(x) = e^{(x-1)^2}$.

- (a) x = 1;
- (b) x = 0;
- (c) x = 1 e x = -1;
- (d) x = 0 e x = 1;
- (e) x = -1.

Questão 16. Uma lata cilíndrica de metal é feita para receber 0.8 litro de óleo (o qual ocupa volume de $800~\rm{cm^3}$). Encontre o raio r da base da lata para que o custo do metal utilizado para produzir a lata seja mínimo.

(a)
$$r = \sqrt[3]{\frac{800}{\pi}};$$

(b)
$$r = \sqrt[3]{\frac{400}{\pi}};$$

(c)
$$r = \sqrt{\frac{800}{2\pi}};$$

(d)
$$r = \sqrt[3]{\frac{400}{\pi}};$$

(e)
$$r = \sqrt[3]{\frac{200}{\pi}}$$
.

Questão 17. Usando o Teorema de L'Hôpital, calcule o limite $L = \lim_{x \to 1} \frac{x^{12}-1}{x^3-1}$.

(a)
$$L = 4$$
;

(b)
$$L = +\infty$$
;

(c)
$$L = 1$$
;

(d)
$$L = 0$$
;

(e)
$$L = \frac{1}{4}$$
.

Questão 18. Calcule o limite $L = \lim_{x \to +\infty} x^2 e^{-x}$.

(a)
$$L = 1$$
;

(b)
$$L = -\infty$$
;

(c)
$$L = +\infty$$
;

(d)
$$L = 0$$
;

(e)
$$L = e$$
.

Questão 19. Qual das seguintes funções é periódica?

(a)
$$f(x) = \cos(1/x)$$
;

(b)
$$f(x) = \sin(x^2)$$
;

(c)
$$f(x) = e^{\sqrt{2 + \sin x}}$$
;

(d)
$$f(x) = e^{x+\sin x}$$
;

(e)
$$f(x) = \sin(e^x)$$
.

MAT 133 Prova 1–A 16.10.2012 7

Questão 20. Qual é o enunciado correto do Teorema de Weierstrass?

- (a) Se $f:[a,b]\to\mathbb{R}$ é contínua, então f possui máximo e mínimo em [a,b];
- (b) Se $f:[a,b] \to \mathbb{R}$ possui máximo e mínimo em [a,b], então f é derivável;
- (c) Se $f: [a, b] \to \mathbb{R}$ é contínua, então f possui máximo e mínimo em [a, b];
- (d) Se $f:[a,b] \to \mathbb{R}$ é limitada, então f possui máximo e mínimo em [a,b];
- (e) Se $f:[a,b]\to\mathbb{R}$ possui máximo e mínimo em [a,b], então f é contínua.

MAT 133 — Cálculo II Turma 2012210 Prof. Paolo Piccione Prova 1 — **A** 16 de Outubro de 2012

Nome:	 	
Número USP:		
Assinatura:		

Folha de Respostas

1	a	b	c	d	е
2	a	b	c	d	е
3	a	b	c	d	е
4	a	b	c	d	е
5	a	b	c	d	е
6	a	b	c	d	е
7	a	b	c	d	е
8	a	b	c	d	е
9	a	b	c	d	е
10	a	b	c	d	е
11	a	b	c	d	e
12	a	b	c	d	е
13	a	b	c	d	e
14	a	b	c	d	е
15	a	b	c	d	e
16	a	b	c	d	e
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota