MAT 112 — Turma 2019134

Vetores e Geometria

Prof. Paolo Piccione

Prova 1

7 de maio de 2019

Nome:	 	
Número USP:		
Assinatura:		

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na **folha de respostas** que está no final da prova. É permitido deixar questões em branco.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.10).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página).
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- Dada uma matriz A, a transposta de A será denotada A^{t} (Questão 9).
- Fixado um inteiro positivo k e dado $n \in \mathbb{Z}$, o símbulo $[n]_k$ denota a classe de congruência módulo k de n.
- No texto, $E = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ denota sempre uma base ortonormal e orientada positivamente de V³.
- Dados vetores \vec{v} e \vec{w} , o produto vetorial de \vec{v} e \vec{w} é denotado por $|\vec{v} \times \vec{w}|$, e o produto escalar de \vec{v} e \vec{w} é $|\vec{v} \cdot \vec{w}|$. O comprimento (norma) do vetor \vec{v} é denotado por $||\vec{v}||$.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!!

 \mathbf{E}

Questão 1. Calcule a área do paralelogramo determinado pelos vetores $\vec{v} = (2,1,1)_E \ e \ \vec{w} = (0,1,2)_E$.

- (a) $\sqrt{17}$;
- (b) $\sqrt{21}$;
- (c) $3\sqrt{2}$;
- (d) $2\sqrt{2}$;
- (e) 1.

Questão 2. Dada a matriz $A = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$, calcule sua matriz inversa A^{-1} .

(a)
$$A^{-1} = \begin{pmatrix} -1 & 1 \\ 3 & 2 \end{pmatrix};$$

(b)
$$A^{-1} = \begin{pmatrix} -\frac{2}{5} & \frac{3}{5} \\ \frac{3}{5} & -\frac{2}{5} \end{pmatrix};$$

(c)
$$A^{-1} = \begin{pmatrix} -\frac{3}{5} & \frac{2}{5} \\ \frac{3}{5} & -\frac{2}{5} \end{pmatrix};$$

(d) A não admite inversa;

(e)
$$A^{-1} = \begin{pmatrix} \frac{2}{5} & \frac{3}{5} \\ -\frac{3}{5} & -\frac{2}{5} \end{pmatrix}$$
.

Questão 3. Considere a base $B = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ de \mathbb{V}^3 , onde $\vec{v}_1 = (0, -1, 1)_E$, $\vec{v}_2 = (-2, -1, 0)_E$, e $\vec{v}_3 = (1, -1, 1)_E$. Calcule as componentes $(a, b, c)_B$ na base B do vetor $\vec{v} = (-4, 2, -2)_E$.

- (a) $(4,2,2)_B$;
- (b) $(4, -2, 2)_B$;
- (c) $(2,0,-4)_B$;
- (d) $(-4,0,6)_B$;
- (e) $(2,1,-1)_B$.

Questão 4. Dada a matriz $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{pmatrix}$, seja $B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$

sua matriz inversa. Calcule b_{32} .

- (a) A não admite inversa;
- (b) 1;
- (c) $-\frac{1}{2}$;
- (d) $\frac{3}{2}$;
- (e) 0.

Questão 5. Sejam \vec{v} e \vec{w} dois vetores de \mathbb{V}^3 não nulos e ortogonais. Quais das listadas abaixo é uma base ortonormal de \mathbb{V}^3 ?

(a)
$$\left(\frac{1}{\|\vec{v}\|}\vec{v}, \frac{1}{\|\vec{w}\|}\vec{w}, \frac{1}{\vec{v}\cdot\vec{w}}\vec{v}\times\vec{w}\right);$$

- (b) $(\vec{v}, \vec{w}, \vec{v} \times \vec{w});$
- (c) $(\vec{v}, \vec{w}, (\vec{v} \cdot \vec{w})\vec{v} \times \vec{w});$
- (d) $\left(\frac{1}{\|\vec{v}\|}\vec{v}, \frac{1}{\|\vec{w}\|}\vec{w}, \vec{v} \times \vec{w}\right);$
- (e) $\left(\frac{1}{\|\vec{v}\|}\vec{v}, \frac{1}{\|\vec{w}\|}\vec{w}, \frac{1}{\|\vec{v}\|\|\vec{w}\|}\vec{v} \times \vec{w}\right)$.

Questão 6. Qual é a classe de congruência módulo 9 do inteiro -16?

- (a) $[7]_9$;
- (b) $[1]_9$;
- (c) $[2]_9$;
- (d) $[4]_9$;
- (e) $[3]_9$.

Questão 7. Determine α , β e γ de forma tal que os vetores $(1, \alpha, 1)_E$, $(2\beta, 0, 1)_E$ e $(1, 1, -\gamma)_E$ formem uma base ortogonal de \mathbb{V}^3 .

(a)
$$\alpha = -2, \beta = -\frac{1}{2}, \gamma = -1;$$

- (b) $\alpha = -2, \beta = 1, \gamma = 1;$
- (c) $\alpha = 2, \beta = 1, \gamma = -1;$
- (d) $\alpha = -1, \beta = 1, \gamma = -1;$
- (e) $\alpha = 2, \beta = -1, \gamma = 1.$

Questão 8. Dada a base ortonormal e orientada postivamente $E = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$, calcule $((\vec{e}_1 \times \vec{e}_3) \times \vec{e}_1) \times \vec{e}_2) \times \vec{e}_1$.

- (a) $-\vec{e}_3$;
- (b) $\vec{0}$;
- (c) \vec{e}_1 ;
- (d) $-\vec{e}_1$;
- (e) \vec{e}_2 .

Questão 9. Sejam E_1 e E_2 duas bases ortonormais de \mathbb{V}^3 , com orientação oposta, e A a matriz de mudança de base de E_1 para E_2 . Qual das seguintes identidades é satisfeita por A?

- (a) $A^{t} = -A^{-1}$;
- (b) $A A^{t} = A^{-1}$;
- (c) $\det(A) = 1$;
- (d) $A^{t} = A;$
- (e) $A^{t} = A^{-1}$.

Questão 10. Calcule a projeção ortogonal do vetor $\vec{v} = (1, 2, -1)_E$ na direção do vetor $\vec{w} = (-2, 1, 1)_E$.

(a)
$$\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)_E$$
;

(b)
$$\left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)_E;$$

(c)
$$\left(\frac{1}{3}, -\frac{1}{6}, -\frac{1}{6}\right)_E$$
;

(d)
$$\left(\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)_E;$$

(e)
$$\left(-\frac{1}{3}, \frac{1}{6}, -\frac{1}{6}\right)_E$$
.

Questão 11. Sejam $\vec{u}, \vec{v}, \vec{w} \in \mathbb{V}^3$ três vetores. Qual das seguintes afirmações é verdadeira?

(a) $(\vec{u} \times \vec{v}) \times \vec{w}$ pertence ao espaço gerado por $\vec{u} \in \vec{w}$;

(b)
$$(\vec{u} \times \vec{v}) \times \vec{w} = \vec{u} \times (\vec{v} \times \vec{w});$$

(c)
$$(\vec{u} \times \vec{v}) \times \vec{w} = -\vec{u} \times (\vec{v} \times \vec{w});$$

(d) $(\vec{u} \times \vec{v}) \times \vec{w}$ pertence ao espaço gerado por $\vec{v} \in \vec{w}$;

(e) $(\vec{u} \times \vec{v}) \times \vec{w}$ pertence ao espaço gerado por \vec{u} e \vec{v} .

Questão 12. Sejam \vec{v} , \vec{w} vetores não nulos de \mathbb{V}^3 , com $\|\vec{v}\| = 2$, $\|\vec{w}\| = 3$, e o ângulo entre \vec{v} e \vec{w} é $\theta = \frac{\pi}{3}$ radianos. Calcule $\|(\vec{v} \times \vec{w}) \times \vec{w}\|$.

(a)
$$9\sqrt{3}$$
;

(b)
$$\frac{6}{\sqrt{2}}$$
;

(c)
$$6\sqrt{3}$$
;

(d)
$$\frac{9}{\sqrt{2}}$$
;

(e)
$$9\sqrt{2}$$
.

Questão 13. Calcule o produto misto $(\vec{v}_1 \times \vec{v}_2) \cdot \vec{v}_3$, onde $\vec{v}_1 = (2, 0, 1)_E$, $\vec{v}_2 = (4, 3, 0)_E$ e $\vec{v}_3 = (-2, 2, -1)_E$.

- (a) 8;
- (b) 0;
- (c) -3;
- (d) -8;
- (e) 5.

Questão 14. Analise as afirmações (i), (ii) e (iii) abaixo, coloque (V) para verdadeiro ou (F) para falso e em seguida marque a respectiva sequência correta:

- (i) Seja v um vetor em V³, e seja v ∈ V³ um vetor unitário (i.e., de comprimento 1).
 O vetor v = v + (v · v)v é ortogonal a v.
- (ii) Se \vec{u} e \vec{v} são linearmente independentes então $\vec{w}_1 = 2\vec{u} + \vec{v}$ e $\vec{w}_2 = 4\vec{u} + 2\vec{v}$ são linearmente independentes.
- (iii) Se E é uma base ortonormal, $\vec{u}=\left(\frac{1}{\sqrt{6}},\frac{\sqrt{2}}{\sqrt{3}},\frac{\sqrt{3}}{3\sqrt{2}}\right)_E$ tem norma 1.
- (a) V, V, V;
- (b) F, F, F;
- (c) V, V, F;
- (d) F, V, V;
- (e) F, F, V.

Questão 15. Sejam B_1 , B_2 e B_3 três bases de \mathbb{V}^3 , e M_1 , M_2 as matrizes de mudança de base: $B_1 \xrightarrow{M_1} B_2$, $B_2 \xrightarrow{M_2} B_3$. Assuma $\det(M_1) < 0$ e $\det(M_2) > 0$. Quais das seguintes afirmações é verdadeira?

- (a) M_1 é a inversa da M_2 ;
- (b) A matriz de mudança de base $B_3 \xrightarrow{M} B_1$ é dada por $M = M_2 \times M_1$;
- (c) B_1 e B_3 tem orientação oposta;
- (d) B_1 e B_2 tem a mesma orientação;
- (e) M_2 é a inversa da M_1 .

Questão 16. Calcule $\det \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{pmatrix}$.

- (a) 12;
- (b) -8;
- (c) 0;
- (d) 10;
- (e) -11.

Questão 17. Para quais valores da constante λ os vetores $\vec{v}_1 = (\lambda, 2, -\lambda)_E$, $\vec{v}_2 = (1, \lambda, 1)_E$ e $\vec{v}_3 = (\lambda, 1 - \lambda, 0)_E$ são linearmente dependentes?

- (a) $\lambda = 0, 1 \pm \sqrt{5};$
- (b) $\lambda = 0, \lambda = -2;$
- (c) $\lambda = \pm \sqrt{5}$;
- (d) $\lambda = 0, \pm 1;$
- (e) $\lambda = 0$, $\lambda = 2$.

Questão 18. Seja $B = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ uma base de \mathbb{V}^3 , tal que as seguintes identidades valem:

$$\vec{v}_1 \cdot \vec{v}_2 = 0, \ \vec{v}_1 \cdot \vec{v}_3 = 1, \ \vec{v}_2 \cdot \vec{v}_3 = -1, \ \|\vec{v}_1\|^2 = 2, \ \|\vec{v}_2\|^2 = 1, \|\vec{v}_3\|^2 = 3.$$

Calcule o produto escalar $\vec{v} \cdot \vec{w}$, onde $\vec{v} = (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2})_B$ e $\vec{w} = (-1, 2, 3)_B$.

- (a) 0;
- (b) -3;
- (c) 3;
- (d) 4;
- (e) -2.

Questão 19. Qual das seguintes identidades é verdadeira para toda tripla de vetores $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{V}^3$?

- (a) $(\vec{v}_1 \times \vec{v}_2) \cdot \vec{v}_3 = (\vec{v}_1 \times \vec{v}_3) \cdot \vec{v}_2$;
- (b) $(\vec{v}_1 \times \vec{v}_2) \cdot \vec{v}_3 = (\vec{v}_2 \times \vec{v}_1) \cdot \vec{v}_3;$
- (c) $(\vec{v}_1 \times \vec{v}_2) \cdot \vec{v}_3 = -(\vec{v}_3 \times \vec{v}_1) \cdot \vec{v}_2;$
- (d) $(\vec{v}_1 \times \vec{v}_2) \cdot \vec{v}_3 = (\vec{v}_3 \times \vec{v}_2) \cdot \vec{v}_1;$
- (e) $(\vec{v}_1 \times \vec{v}_2) \cdot \vec{v}_3 = -(\vec{v}_3 \times \vec{v}_2) \cdot \vec{v}_1$.

Questão 20. Calcule o produto misto $(\vec{u} \times \vec{v}) \cdot \vec{w}$ sabendo que $||\vec{u}|| = ||\vec{v}|| = 2$, $||\vec{w}|| = 3$, o ângulo entre \vec{u} e \vec{v} é de $\frac{\pi}{4}$ radianos, o ângulo entre \vec{w} e $\vec{u} \times \vec{v}$ é de $\frac{\pi}{3}$ radianos, e sabendo que $(\vec{u}, \vec{v}, \vec{w})$ é uma base de \mathbb{V}^3 orientada negativamente.

- (a) $\frac{6}{\sqrt{2}}$;
- (b) $-\frac{6}{\sqrt{2}}$;
- (c) $9\sqrt{3}$;
- (d) $-9\sqrt{3}$;
- (e) $-\frac{6}{\sqrt{3}}$.

MAT 112

Vetores e Geometria Prof. Paolo Piccione Prova 1

07 de maio de 2019

Nome:	 	
Número USP:	 	
Assinatura:		

Folha de Respostas $\boxed{\mathbf{E}}$ Turma: 2019134

1	a	b	c	d	e
2	a	b	c	d	e
3	a	b	c	d	e
4	a	b	c	d	e
5	a	b	c	d	e
6	a	b	c	d	e
7	a	b	c	d	e
8	a	b	c	d	e
9	a	b	c	d	e
10	a	b	c	d	e
11	a	b	c	d	e
12	a	b	c	d	e
13	a	b	c	d	e
14	a	b	c	d	e
15	a	b	c	d	e
16	a	b	c	d	е
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	e

Deixe em branco.

Corretas	Erradas	Nota