MAT 112 — Vetores e Geometria

Prof. Paolo Piccione 08 de Maio de 2013

Prova $1 - \boxed{\mathbf{G}}$

	2013124
Nome:	
Número USP:	
Assinatura:	

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na folha de respostas que está no final da prova. É permitido deixar questões em branco.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.1).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página)
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- \bullet $\mathbb R$ é o conjunto dos números reais. $\mathbb Z$ é o conjunto dos inteiros.
- $\bullet~\mathbb{V}^2$ e \mathbb{V}^3 denotam respeitivamente o conjunto de vetores do plano e do espaço.
- Para $v, w \in \mathbb{V}^3$, $v \cdot w$ denota o produto escalar e $v \wedge w$ denota o produto vetorial de v e w.
- Dados vetores $v,w\in\mathbb{V}^3$, $\mathrm{Proj}_v(w)$ denota a projeção ortogonal de w na direção de v.
- Uma base orientada positivamente é o mesmo que uma base destrógira.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!! **Questão 1.** Seja B uma base ortonormal. Determine x de modo que os vetores $u = (x, 1, 2x)_B$ e $v = (2, 1, 3)_B$ sejam ortogonais.

- (a) x = 0;
- (b) $x = -\frac{1}{4}$;
- (c) $x = \frac{1}{4}$;
- (d) $x = -\frac{1}{8}$;
- (e) $x = \frac{1}{8}$.

Questão 2. Seja B uma base ortonormal. Calcule a área do paralelogramo gerado pelos vetores $v = (1, 1, 1)_B$ e $w = (3, 2, 1)_B$

- (a) $\sqrt{6}$;
- (b) $\sqrt{3}$;
- (c) 6;
- (d) 3;
- (e) $3\sin\theta$.

Questão 3. Determinar a origem A do segmento que representa o vetor u = (4, 3, -1), sendo sua extremidade o ponto B = (0, 4, 2).

- (a) A = (-4, -1, 3);
- (b) A = (4, 1, 3);
- (c) A = (-4, 1, 3);
- (d) A = (4, -1, 3);
- (e) A = (4, -1, -3).

Questão 4. Qual das seguintes afirmações é verdadeira?

- (a) Se v e w são vetores paralelos, então $v \cdot w \neq 0$;
- (b) Se v e w são vetores não nulos ortogonais, então $v \wedge w \neq 0$;
- (c) Se ve wsão vetores ortogonais, então $v \wedge w \neq 0;$
- (d) Se vewsão vetores não nulos ortogonais, então $v\cdot w \neq 0;$
- (e) Se v e w são vetores não nulos paralelos, então $v \cdot w = 0$.

3

Questão 5. Seja B uma base ortonormal de \mathbb{V}^3 , considere os vetores $w=(a,b,c)_B$ e $v=(1,2,-1)_B$. Determine o vetor t que é um múliplo positivo de $\operatorname{Proj}_v(w)$ e com norma igual a 2.

(a)
$$t = \sqrt{\frac{2}{3}}(a, b, c)_B;$$

(b)
$$t = \sqrt{\frac{2}{3}} (1, 2, -1)_B;$$

(c)
$$t = \frac{2}{\sqrt{a^2+4b^2+c^2}}(a,2b,-c)_B;$$

(d)
$$t = \frac{2}{\sqrt{a^2+b^2+c^2}}(a,2b,-c)_B;$$

(e)
$$t = \frac{1}{\sqrt{a^2+b^2+c^2}}(a,2b,-c)_B$$
.

Questão 6. Dado um hexágono regular ABCDEF no plano, com centro O, calcule:

$$\overrightarrow{BA} + \overrightarrow{CA} + \overrightarrow{DA} + \overrightarrow{EA} + \overrightarrow{FA}$$
.

- (a) $6\overrightarrow{AF}$;
- (b) $6\overrightarrow{AO}$;
- (c) $-6\overrightarrow{AO}$;
- (d) $-\overrightarrow{AO}$;
- (e) 0.

Questão 7. Num sistema de coordenadas (\mathcal{B}, O) , calcule a área do triângulo de vértices A = (1, 2, 1), B = (2, 0, 2) e C = (-1, 1, 0).

- (a) $\sqrt{35}$;
- (b) 7;
- (c) $\frac{14}{3}$;
- (d) $\frac{1}{2}\sqrt{35}$;
- (e) $\frac{35}{2}$.

Questão 8. Qual das seguintes identidades é verdadeira para toda tripla de vetores $v_1, v_2, v_3 \in \mathbb{V}^3$?

- (a) $(v_1 \wedge v_2) \cdot v_3 = (v_2 \wedge v_1) \cdot v_3;$
- (b) $(v_1 \wedge v_2) \cdot v_3 = -(v_3 \wedge v_2) \cdot v_1;$
- (c) $(v_1 \wedge v_2) \cdot v_3 = (v_1 \wedge v_3) \cdot v_2;$
- (d) $(v_1 \wedge v_2) \cdot v_3 = -(v_3 \wedge v_1) \cdot v_2;$
- (e) $(v_1 \wedge v_2) \cdot v_3 = (v_3 \wedge v_2) \cdot v_1$.

4

Questão 9. Num sistema de coordenadas (B, O), determine as equações paramétricas da reta que passa pelo ponto (1, -1, 1) e paralela ao produto vetorial $v \wedge w$, onde $v = (1, 1, 1)_B$ e $w = (2, 1, -1)_B$.

- (a) $x = 1 + 2\lambda$, $y = 1 + 3\lambda$, $z = 1 \lambda$, $\lambda \in \mathbb{R}$;
- (b) $x = 1 2\lambda, y = -1 + 3\lambda, z = 1 \lambda, \lambda \in \mathbb{R};$
- (c) $x = 1 2\lambda, y = 1 + 3\lambda, z = -1 \lambda, \lambda \in \mathbb{R};$
- (d) $x = 2 \lambda, y = -1 3\lambda, z = 1 + \lambda, \lambda \in \mathbb{R};$
- (e) $x = 1 \lambda, y = -1 3\lambda, z = 1 + \lambda, \lambda \in \mathbb{R}$.

Questão 10. Seja B uma base ortonormal orientada positivamente, e considere a nova base $C = (v_1, v_2, v_3)$ formada pelos vetores $v_1 = (1, 0, 1)_B$, $v_2 = (1, 1, 0)_B$ e $v_3 = (0, 0, 1)_B$. Seja (w_1, w_2, w_3) a base ortonormal obtida de C pelo métods de Gram-Schmidt. Calcule o vetor w_2 .

- (a) $w_2 = \frac{1}{\sqrt{6}}(-1, 2, -1);$
- (b) $w_2 = \frac{1}{\sqrt{6}}(1, 2, -1);$
- (c) $w_2 = \frac{1}{\sqrt{6}}(-1,2,1);$
- (d) $w_2 = \frac{1}{\sqrt{6}}(1,2,1);$
- (e) $w_2 = \frac{1}{\sqrt{6}}(1, -2, -1).$

Questão 11. Seja B uma base ortonormal, e $v = (1, 2, 1)_B$, $w = (-1, 1, 0)_B$. Calcule o cosseno do ângulo entre v e w.

- (a) $-\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}}$;
- (b) $\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}}$;
- (c) $\frac{1}{\sqrt{3}} \frac{1}{\sqrt{4}}$;
- (d) $\frac{1}{\sqrt{12}}$;
- (e) $-\frac{1}{\sqrt{12}}$.

Questão 12. Seja $B = (v_1, v_2, v_3)$ uma base de \mathbb{V}^3 , tal que as seguintes identidades valem:

 $v_1 \cdot v_2 = 0, \ v_1 \cdot v_3 = 1, \ v_2 \cdot v_3 = -1, \ \|v_1\|^2 = 2, \ \|v_2\|^2 = 1, \|v_3\|^2 = 3.$

Calcule o produto escalar $v \cdot w$, onde $v = (1, -1, 0)_B$ e $w = (-1, 2, 3)_B$.

- (a) 2;
- (b) -3;
- (c) 3;
- (d) 0;
- (e) -2.

Questão 13. Seja $B = (v_1, v_2, v_3)$ uma base ortonormal de \mathbb{V}^3 . Calcule o volume do paralelepípedo determinado pelos vetores $v_1 + 2v_2$, $v_2 + 2v_3$ e $v_3 + 2v_1$.

- (a) 4;
- (b) -1;
- (c) 8;
- (d) 9;
- (e) 1.

Questão 14. Em qual situação ||v+w|| = ||v|| + ||w||?

- (a) Quando um dos dois vetores é um múltiplo positivo do outro;
- (b) Quando um dos dois vetores é um múltiplo do outro;
- (c) Sempre;
- (d) Quando $v, w \in v \wedge w$ formam uma base de \mathbb{V}^3 ;
- (e) Quando v e w são ortogonais.

Questão 15. Num sistema de coordenadas (B, O), determine a equação vetorial da reta que passa por (2, 0, -1) e pelo ponto médio do segmento de extremos (2, 3, 1) e (4, 1, -1).

- (a) (2,0,1)) + $\lambda(1,2,1)$, $\lambda \in \mathbb{R}$;
- (b) $(1,2,1) + \lambda(3,2,0), \lambda \in \mathbb{R}$;
- (c) $(3,2,0) + \lambda(2,0,1), \lambda \in \mathbb{R}$;
- (d) $(3,2,1) + \lambda (1,3,1), \lambda \in \mathbb{R};$
- (e) $(3,2,0) + \lambda(1,2,1), \lambda \in \mathbb{R}$.

6

Questão 16. Seja (B, O) um sistema de coordenadas do espaço. Determine a equação vetorial da reta r que passa no ponto de coordenadas (2, 1, -1) e paralela ao vetor $v = (-1, 1, 2)_B$.

- (a) $(x, y, z) = (2, 1, -1) + \lambda \cdot (-1, 1, 2), \lambda \in \mathbb{R};$
- (b) $x + y + z = (2, 1, -1) + \lambda \cdot (-1, 1, 2);$
- (c) $x = \vec{i}, y = \vec{j}, z = \vec{k};$
- (d) $(\vec{i}, \vec{j}, \vec{k}) = (-1, 2, 2) + \lambda \cdot (2, 1, -1);$
- (e) $(x, y, z) = (-1, 2, 2) + \lambda \cdot (2, 1, -1), \lambda \in \mathbb{R}.$

Questão 17. Analise as afirmações (i), (ii) e (iii) abaixo, coloque (V) para verdadeiro ou (F) para falso e em seguida marque a respectiva sequência correta:

- (i) Seja v um vetor em \mathbb{V}^3 , e seja $u \in \mathbb{V}^3$ um vetor unitário. O vetor $w = v (v \cdot u)u$ é ortogonal a u.
- (ii) Se u e v são linearmente independentes então $w_1 = u + v$ e $w_2 = u v$ são linearmente independentes.
- (iii) Se B é uma base ortonormal, $u = \left(\frac{1}{\sqrt{6}}, \frac{\sqrt{2}}{\sqrt{3}}, \frac{\sqrt{3}}{3\sqrt{2}}\right)_B$ tem norma 1.
- (a) F, V, V;
- (b) F, F, F;
- (c) V, V, V;
- (d) F, F, V;
- (e) V, V, F.

Questão 18. Seja B uma base ortonormal. Calcule a projeção ortogonal de $w = (3, 2, 1)_B$ na direção do vetor $v = (1, 2, 3)_B$.

- (a) $\frac{7}{5}(1,2,3)_B$;
- (b) $\frac{7}{5}(3,2,1)_B$;
- (c) $\frac{5}{7}(1,2,3)_B$;
- (d) $\frac{14}{\sqrt{10}}$;
- (e) $\frac{5}{7}(3,2,1)_B$.

08.05.2013

7

Questão 19. Considere a seguinte relação $R \subset \mathbb{Z} \times \mathbb{Z}$ em \mathbb{Z} :

$$R = \big\{ (n,m) \in \mathbb{Z} \times \mathbb{Z} : n+m \text{ \'e m\'ultiplo de 7} \big\}.$$

 $Qual\ das\ seguintes\ afirmações\ \'e\ verdadeira?$

- (a) R é uma relação simétrica;
- (b) R é uma relação reflexiva;
- (c) R é uma relação transitiva;
- (d) R é o conjunto vazio;
- (e) R é uma relação de equivalência.

Questão 20. Sejam v e w dois vetores ortogonais, com ||v|| = 2 e ||w|| = 3. Calcule $||(v \wedge w) \wedge v||$.

- (a) 2;
- (b) 12;
- (c) 3;
- (d) 6;
- (e) 0.

MAT 112 — Vetores e Geometria Turma 2013124 Prof. Paolo Piccione Prova 1 — **G**

08 de Maio de 2013

Nome:	 	
Número USP:		
Assinatura:		

Folha de Respostas

1	a	b	c	d	е
2	a	b	c	d	е
3	a	b	c	d	e
4	a	b	c	d	e
5	a	b	c	d	e
6	a	b	c	d	e
7	a	b	c	d	e
8	a	b	c	d	е
9	a	b	c	d	е
10	a	b	c	d	e
11	a	b	c	d	e
12	a	b	c	d	е
13	a	b	c	d	е
14	a	b	c	d	e
15	a	b	c	d	e
16	a	b	c	d	е
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	e

Deixe em branco.

Corretas	Erradas	Nota