MAT 111

Cálculo Diferencial e Integral I

Prof. Paolo Piccione

Prova SUB 2 de julho de 2015

Nome:		
Número USP:	 	
Assinatura:		

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na **folha de respostas** que está no final da prova. *é permitido deixar questões em branco*.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.10).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página).
- A nota nesta prova substituirá a menor entre as notas da P1 e da P2.
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- \bullet R denota o conjunto dos números reais; \mathbb{R}^2 é o conjuntos dos pares ordenados de números reais.
- $\sin x$ é a função seno de x, $\ln x$ é o logaritmo natural de x; $\log_a x$ é o logaritmo em base a de x, $a \in]0,1[\bigcup]1,+\infty[$; $\tan x$ é a tangente de x; $\sec x$ é a secante de x.
- Para intervalos abertos useremos a notação: a, b.
- $A \bigcup B$ denota a união dos conjuntos $A \in B$.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!!

 $\overline{\mathbf{C}}$

Questão 1. Determine o domínio da função $f(x) = \sqrt{1-x} \cdot \ln(1+x)$.

- (a) [-1, 1[;
- (b) $]-\infty, -1[\bigcup [1, +\infty[;$
- (c) $]1, +\infty[;$
- (d)]-1,1];
- (e) $]-\infty, 1[.$

Questão 2. Quais das afirmações abaixo são verdadeiras?

- (i) Todo ponto crítico de uma função derivável é um extremo local.
- (ii) Se $x_0 \in]a, b[$ é um máximo local para a função derivável

$$f: [a,b] \longrightarrow \mathbb{R},$$

então $f'(x_0) = 0$.

- (iii) Se $f: \mathbb{R} \to \mathbb{R}$ é contínua, e $\lim_{x \to \pm \infty} f(x) = -\infty$, então f admite máximo.
- (a) Todas;
- (b) As afirmações (ii) e (iii);
- (c) Nenhuma;
- (d) As afirmações (i) e (iii);
- (e) Somente (i) é verdadeira.

Questão 3. Calcule a soma $\sum_{k=1}^{N} 4k$.

- (a) 3N(N+1);
- (b) 4N(N+1);
- (c) $\frac{3}{2}N(N-1)$;
- (d) 2N(N+1);
- (e) $\frac{2}{3}N(N+1)$.

Questão 4. Qual é a equação da reta tangente ao gráfico da função $f(x) = 2 \tan x$ no ponto de coordenadas $(\frac{\pi}{4}, 2)$?

- (a) $y = x + 2 \pi$;
- (b) o gráfico da f não admite reta tangente em $(\frac{\pi}{4}, 2)$;
- (c) $\pi y 2x = 1$;
- (d) $y = 4x + 2 \pi$;
- (e) $y \pi = 4(x 2)$.

Questão 5. Determine o(s) intervalo(s) onde a concavidade da função $f(x) = e^{-\frac{1}{3}x^2}$ é para cima:

- (a) $]-\infty, -\sqrt{3}[e em]\sqrt{3}, +\infty[;$
- (b) $]-\sqrt{3},\sqrt{3}[;$
- (c) R, pois a função exponencial é crescente;
- (d) $\left] -\infty, -\frac{\sqrt{3}}{2} \right[e \text{ em } \left] \frac{\sqrt{3}}{2}, +\infty \right[;$
- (e) $\left| \frac{\sqrt{3}}{3}, +\infty \right|$.

Questão 6. Qual dos seguintes é o enunciado correto do Teorema Fundamental do Cálculo Integral?

- (a) Se $f:[a,b]\to\mathbb{R}$ é contínua, então f é uma primtiva da função F definida por $F(x)=\int_a^x f(t)\,\mathrm{d}t;$
- (b) Se $f:[a,b] \to \mathbb{R}$ é contínua, então $f'(x) = \int_a^x f(t) \, \mathrm{d}t;$
- (c) Se $f:[a,b] \to \mathbb{R}$ é contínua, então $F(x) = \int_a^x f(t) dt$ é a primitiva de f em [a,b] que satisfaz F(a) = 0;
- (d) Se $f:[a,b] \to \mathbb{R}$ é derivável, então $\int_a^b f(t) dt$ é a área da região abaixo do gráfico da f;
- (e) Se $f:[a,b]\to\mathbb{R}$ é contínua, então $F(x)=\int_a^x f(t)\,\mathrm{d}t$ é a primitiva de f em [a,b] que satisfaz F(b)=0.

Questão 7. Seja $f(x) = x^3 - 3x^2 - 2$. Estude f com relação a máximos e mínimos.

- (a) 0 e 2 são máximos locais;
- (b) 1 e 0 são máximos locais;
- (c) 0 é um máximo local e 2 é um mínimo local;
- (d) 0 e 2 são mínimos locais;
- (e) 0 é um máximo local e 2 um mínimo global.

Questão 8. Calcule a área da região R dada por:

$$R = \{(x, y) \in \mathbb{R}^2 : -\pi \le x \le 0, \sin x \le y \le 0\}.$$

- (a) $\cos 1$;
- (b) 1;
- (c) 2;
- (d) $-\cos 1$;
- (e) -2.

Questão 9. Calcule o limite $L = \lim_{x \to +\infty} \left(\frac{x}{x+1}\right)^{3x}$.

(a)
$$L = \frac{1}{e}$$
;

(b)
$$L = e^3$$
;

(c)
$$L = 1$$
;

(d)
$$L = \frac{1}{e^3}$$
;

(e)
$$L = +\infty$$
.

Questão 10. Usando o Teorema de De L'Hôpital, calcular o limite

$$L = \lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x}.$$

(a)
$$L = \frac{1}{2}$$
;

(b)
$$L = 1$$
;

(c)
$$L = -1$$
;

(d)
$$L = 0$$
;

(e)
$$L = -\infty$$
.

Questão 11. Calcule a derivada da função $F(x) = \int_1^{2x} \sec^2 t \, dt$.

(a)
$$F'(x) = 2 \sec^2 x$$
;

(b)
$$F'(x) = 2\sec^2(2x);$$

(c)
$$F'(x) = 2\cos^2 x$$
;

(d)
$$F'(x) = \sec^2(2x)$$
;

(e)
$$F'(x) = \int_1^{2x} 2\cos t \sin t \, dt$$
.

Questão 12. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função que admite derivadas primeira e segunda, e seja $x_0 \in \mathbb{R}$ um ponto onde $f(x_0) = 0$, $f'(x_0) = 0$, $f''(x_0) = 3$. Qual das seguintes afirmações é verdadeira?

(a)
$$f(x) = 4 + (x - x_0)^2$$
;

(b)
$$x_0$$
 não é um ponto crítico da f ;

(c)
$$x_0$$
 úm ponto de inflexão para f ;

(d)
$$x_0$$
 é um máximo local da f ;

(e)
$$x_0$$
 é um mínimo local da f .

Questão 13. Se $f:[a,b] \to \mathbb{R}$ é uma função tal que f'(x) > 0 e f''(x) > 0 para todo $x \in [a,b]$. Qual das seguintes afirmações sobre a f é verdadeira?

- (a) f é crescente e com concavidade para cima em [a, b];
- (b) f é crescente e com concavidade para baixo em [a, b];
- (c) $f(x) = e^{-x}$;
- (d) f é decrescente e com concavidade para cima em [a, b];
- (e) f é decrescente e com concavidade para baixo em [a, b].

Questão 14. Calcule o limite $L = \lim_{n \to \infty} n \sin(1/n)$.

- (a) L = 1;
- (b) $L = \infty \cdot \sin 0$;
- (c) $L = +\infty$;
- (d) $L = \frac{1}{2}$;
- (e) L = 0.

Questão 15. Calcule a área da região

$$R = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1, \ 0 \le y \le 2x^6\}.$$

- (a) 0;
- (b) $\frac{2}{7}$;
- (c) $\frac{2}{3}$;
- (d) $\frac{2}{5}$;
- (e) $\frac{4}{7}$.

Questão 16. Calcule a derivada da função inversa f^{-1} no punto y_0 , sabendo que $y_0 = f(x_0)$, $f^{-1}(y_0) = 5$, f'(3) = -2, f(3) = 5, f'(5) = 3.

- (a) $\frac{x_0}{y_0}$;
- (b) $-\frac{1}{2}$;
- (c) $\frac{1}{3}$;
- (d) $\frac{1}{y_0}$;
- (e) $\frac{1}{5}$.

Questão 17. Resolva a designaldade $|x-2| + |x+2| \ge 6$.

(a)
$$x \in]-3, -2[\bigcup]2, 4[;$$

(b)
$$x \in [-2, 2[;$$

(c)
$$x \in]-\infty, -3] \bigcup [3, +\infty[;$$

(d)
$$x \in]-4, -3] \bigcup [2, 4[;$$

(e)
$$x \in]-3,0[$$
.

Questão 18. Quais das funções F(x) abaixo é uma primitiva da função $f(x) = x \cos x$?

(a)
$$F(x) = x \sin x - \cos x$$
;

(b)
$$F(x) = \sin x + x \cos x$$
;

(c)
$$F(x) = x \sin x + \cos x$$
;

(d)
$$F(x) = -\sin x - x\cos x$$
;

(e)
$$F(x) = x \sin x + x \cos x$$
.

Questão 19. Calcule a integral $\int_0^2 xe^x dx$.

(a)
$$1 - e^2$$
;

(d)
$$2e^2$$
;

(e)
$$e^2 + 1$$
.

Questão 20. Determinar a equação da reta tangente ao gráfico da função $f(x) = e^{2x}$ no ponto de absissa x = 1.

(a)
$$y = e^2(2x - 1)$$
;

(b)
$$y = e^{2x}(x-1)$$
;

(c)
$$y = 2e^{2x}(x-1)$$
;

(d)
$$y-1=e^2(x-1)$$
;

(e)
$$y = e^2x + 1$$
.

MAT 111

Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova SUB

2 de julho de $2015\,$

Nome:	
Número USP:	
Assinatura:	

Folha de Respostas $\boxed{\mathbf{C}}$

1	a	b	c	d	е
2	a	b	c	d	е
3	a	b	c	d	е
4	a	b	c	d	е
5	a	b	c	d	е
6	a	b	c	d	e
7	a	b	c	d	e
8	a	b	c	d	e
9	a	b	c	d	e
10	a	b	\mathbf{c}	d	e
11	a	b	c	d	е
12	a	b	c	d	e
13	a	b	\mathbf{c}	d	e
14	a	b	c	d	е
15	a	b	c	d	е
16	a	b	c	d	е
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota