MAT 111

Cálculo Diferencial e Integral I

Prof. Paolo Piccione

Prova 2 25 de junho de 2015

Nome:	
Número USP:	
Assinatura:	

Instruções

- A duração da prova é de duas horas.
- Assinale as alternativas corretas na **folha de respostas** que está no final da prova. *é permitido deixar questões em branco*.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.10).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página).
- Esta prova tem peso $\frac{3}{2}$ no cálculo da média final.
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- R denota o conjunto dos números reais.
- $\sin x$ é a função seno de x, $\ln x$ é o logaritmo natural de x; $\log_a x$ é o logaritmo em base a de x, $a \in [0,1[\ \ \ \]]1,+\infty[$.
- Para intervalos abertos useremos a notação: a, b.
- $A \bigcup B$ denota a união dos conjuntos $A \in B$.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!!

В

Questão 1. Seja $f(x) = x^3 - 3x^2 + 3$. Estude f com relação a máximos e mínimos.

- (a) 0 é um máximo local e 2 é um mínimo local;
- (b) 0 e 2 são mínimos locais;
- (c) 1 e 0 são máximos locais;
- (d) 0 é um máximo local e 2 um mínimo global;
- (e) 0 e 2 são máximos locais.

Questão 2. Se $f:[a,b] \to \mathbb{R}$ é uma função tal que f'(x) < 0 e f''(x) > 0 para todo $x \in [a,b]$. Qual das seguintes afirmações sobre a f é verdadeira?

- (a) f é decrescente e com concavidade para baixo em [a, b];
- (b) f é decrescente e com concavidade para cima em [a, b];
- (c) f é crescente e com concavidade para baixo em [a, b];
- (d) $f(x) = e^{-x}$;
- (e) f é crescente e com concavidade para cima em [a, b].

Questão 3. Calcule uma primitiva F(x) da função $f(x) = x \sin x$.

- (a) $F(x) = \sin x + x \cos x$;
- (b) $F(x) = x \sin x \cos x$;
- (c) $F(x) = \sin x x \cos x$;
- (d) $F(x) = x \sin x + x \cos x$;
- (e) $F(x) = -\sin x x\cos x$.

Questão 4. Calcule a área da região

$$R = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1, \ 0 \le y \le x^5 \}.$$

- (a) 0;
- (b) 4;
- (c) $\frac{2}{5}$;
- (d) 5;
- (e) $\frac{1}{5}$.

Questão 5. Calcule a derivada da função $F(x) = \int_1^{2x} \cos^2 t \, dt$.

- (a) $F'(x) = \cos^2(2x)$;
- (b) $F'(x) = 2\sin^2 x$;
- (c) $F'(x) = \int_1^{2x} 2\cos t \sin t \, dt;$
- (d) $F'(x) = 2\cos^2(2x)$;
- (e) $F'(x) = 2\cos^2 x$.

Questão 6. Quanto vale o limite $\lim_{x\to 0^+} \frac{\ln x}{x}$?

- (a) 0;
- (b) $+\infty$;
- (c) 1;
- (d) o limite não existe;
- (e) $-\infty$.

Questão 7. Determine o(s) intervalo(s) onde a concavidade da função $f(x) = e^{-\frac{1}{2}x^2}$ é para cima:

- (a) $]-\infty,1[e em]1,+\infty[;$
- (b)] $-\infty, -1[$ e em]1, $+\infty[;$
- (c) $]0, +\infty[;$
- (d) R, pois a função exponencial é crescente;
- (e)]-1,1[.

Questão 8. Usando o Teorema de De L'Hôpital, calcular o limite

$$L = \lim_{x \to 0} \frac{e^x - 1 - x}{\sin^2 x}.$$

- (a) L = 1;
- (b) $L = \frac{1}{2}$;
- (c) L = 0;
- (d) $L = -\infty$;
- (e) L = -1.

Questão 9. Calcule a área da região R dada por:

$$R = \left\{ (x, y) \in \mathbb{R}^2 : \frac{\pi}{2} \le x \le \pi, -\sin x \le y \le 0 \right\}.$$

- (a) -2;
- (b) $\cos 1$;
- (c) $-\cos 1$;
- (d) 2;
- (e) 1.

Questão 10. Determine o domínio da função $f(x) = \ln(1-x)\sqrt{1+x}$.

- (a) $]-\infty, -1[\bigcup [1, +\infty[;$
- (b) [-1,1];
- (c) $]-\infty, 1[;$
- (d) $]1, +\infty[;$
- (e) [-1, 1[.

Questão 11. Calcule a integral $\int_0^1 xe^x dx$.

- (a) $1 e^2$;
- (b) 0;
- (c) 1;
- (d) $2e^2$;
- (e) $e^2 + 1$.

Questão 12. Quais das afirmações abaixo são verdadeiras?

- (i) Todo ponto crítico de uma função derivável é um extremo local.
- (ii) $Se \ x_0 \in]a,b[$ é um máximo local para a função derivável

$$f: [a, b] \longrightarrow \mathbb{R},$$

então $f'(x_0) = 0$.

- (iii) Se $f: \mathbb{R} \to \mathbb{R}$ é contínua, e $\lim_{x \to \pm \infty} f(x) = +\infty$, então f admite mínimo.
- (a) Somente (i) é verdadeira;
- (b) Nenhuma;
- (c) As afirmações (i) e (iii);
- (d) As afirmações (ii) e (iii);
- (e) Todas.

Questão 13. Considere a função $f(x) = -x^3 - x^2 + x + 1$. Determine os pontos de inflexão da f:

- (a) $\frac{1}{2}$;
- (b) 0;
- (c) $\frac{1}{3}$;
- (d) $-\frac{1}{3}$;
- (e) $\frac{2}{3}$.

Questão 14. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função que admite derivadas primeira e segunda, e seja $x_0 \in \mathbb{R}$ um ponto onde $f(x_0) = 0$, $f'(x_0) = 3$, $f''(x_0) = 3$. Qual das seguintes afirmações é verdadeira?

- (a) x_0 úm ponto de inflexão para f;
- (b) x_0 não é um ponto crítico da f;
- (c) x_0 é um máximo local da f;
- (d) $f(x) = 4 + (x x_0)^2$;
- (e) x_0 é um mínimo local da f.

Questão 15. No intervalo] -1,0[, qual é o comportamento da função $f(x)=\frac{x^4+1}{x^2}$?

- (a) tem concavidade para baixo;
- (b) a função não está definida em todo o intervalo;
- (c) crescente;
- (d) constante;
- (e) decrescente.

Questão 16. Determine os pontos de inflexão da função $f(x) = e^{-\frac{1}{2}x^2}$:

- (a) $\frac{1}{2}$;
- (b) 1 e 0;
- (c) não há, pois $e^{-\frac{1}{2}x^2} > 0$, para qualquer x;
- (d) 0;
- (e) ± 1 .

Questão 17. Qual dos seguintes é o enunciado correto do Teorema Fundamental do Cálculo Integral?

- (a) Se $f:[a,b]\to\mathbb{R}$ é contínua, então $f'(x)=\int_a^x f(t)\,\mathrm{d}t;$
- (b) Se $f:[a,b]\to\mathbb{R}$ é derivável, então $\int_a^b f(t)\,\mathrm{d}t$ é a área da região abaixo do gráfico da f;
- (c) Se $f:[a,b]\to\mathbb{R}$ é contínua, então $F(x)=\int_a^x f(t)\,\mathrm{d}t$ é a primitiva de f em [a,b] que satisfaz F(a)=0;
- (d) Se $f:[a,b]\to\mathbb{R}$ é contínua, então f é uma primtiva da função F definida por $F(x)=\int_a^x f(t)\,\mathrm{d}t;$
- (e) Se $f:[a,b]\to\mathbb{R}$ é contínua, então $F(x)=\int_a^x f(t)\,\mathrm{d}t$ é a primitiva de f em [a,b] que satisfaz F(b)=0.

Questão 18. Determine uma primitiva F(x) da função $f(x) = x^2 - x + 1$.

- (a) $F(x) = x^3 \frac{1}{2}x^2 + x + 2$;
- (b) $F(x) = \frac{1}{3}x^3 \frac{1}{2}x^2 + x 2;$
- (c) $F(x) = \frac{2}{3}x^3 \frac{1}{2}x^2 + x 1;$
- (d) F(x) = 2x 1;
- (e) $F(x) = \frac{1}{3}x^3 x^2 + x$.

Questão 19. Qual é a equação da reta tangente ao gráfico da função $f(x) = \tan x$ no ponto de coordenadas $(\frac{\pi}{4}, 1)$?

- (a) $y = 2x + 1 \frac{\pi}{2}$;
- (b) $\pi y 2x = 1$;
- (c) $y = x + 2 \frac{\pi}{2}$;
- (d) $y \frac{\pi}{4} = x 1;$
- (e) o gráfico da f não admite reta tangente em $(\frac{\pi}{4}, 1)$.

Questão 20. Qual é a derivada segunda da função $f(x) = \frac{\ln x}{x}$?

- (a) f não admite derivada segunda;
- (b) $f''(x) = \frac{3\ln x 2}{x^3}$;
- (c) $f''(x) = \frac{2\ln x 3}{x^4}$;
- (d) $f''(x) = \frac{1 \ln x}{x^2}$;
- (e) $f''(x) = \frac{2\ln x 3}{x^3}$.

MAT 111

Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2

25 de junho de 2015

Nome:	 	
Número USP:	 	
Assinatura:		

Folha de Respostas $\boxed{\mathbf{B}}$

1	a	b	c	d	e
2	a	b	c	d	e
3	a	b	c	d	e
4	a	b	c	d	e
5	a	b	c	d	e
6	a	b	c	d	e
7	a	b	c	d	e
8	a	b	c	d	e
9	a	b	c	d	e
10	a	b	\mathbf{c}	d	e
11	a	b	\mathbf{c}	d	e
12	a	b	c	d	e
13	a	b	\mathbf{c}	d	e
14	a	b	c	d	e
15	a	b	c	d	e
16	a	b	c	d	e
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	e

Deixe em branco.

Corretas	Erradas	Nota