MAT 111

Cálculo Diferencial e Integral I

Prof. Paolo Piccione

Prova 2 14 de Junho de 2012

Nome:	
Número USP	:
Assinatura:	

Instruções

- A duração da prova é de duas horas.
- Assinale as alternativas corretas na **folha de respostas** que está no final da prova. *é permitido deixar questões em branco*.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.10).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página).
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- R denota o conjunto dos números reais.
- ln é o logaritmo natural de x.
- $\tan x$ é a tangente de x.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!!

Α

Questão 1. Determine a derivada da função $f(x) = -\ln(\cos x)$:

- (a) $\frac{1}{x} \cdot \sin x$;
- (b) $\tan x$;
- (c) $\cos(\ln x)$;
- (d) $-\frac{\sin x}{\cos x}$; (e) $-\frac{1}{\cos x}$.

Questão 2. Quais são os dois números reais positivos cuja soma seja 4 e a soma do cubo do menor com o quadrado do maior seja mínima?

- (a) $\frac{1}{2}$ e $\frac{7}{2}$;
- (b) 1 e 3;
- (c) 4 e 0;
- (d) $\frac{4}{3}$ e $\frac{8}{3}$;
- (e) $\frac{1}{5}$ e $\frac{19}{5}$.

Questão 3. Considere a função $f(x) = x^3 - x^2 - x + 1$. Determine os pontos de inflexão da f:

- (a) $-\frac{1}{3}$;
- (b) $\frac{1}{3}$;
- (c) $\frac{1}{2}$;
- (d) 0;
- (e) $\frac{2}{3}$.

Questão 4. Quanto vale o limite $\lim_{x\to 0^+} \frac{\ln x}{x}$?

- (a) o limite não existe;
- (b) 0;
- (c) $+\infty$;
- (d) 1;
- (e) $-\infty$.

Questão 5. Seja $f(x) = x^3 - 3x^2 + 3$. Estude f com relação a máximos e mínimos.

- (a) 0 e 2 são mínimos locais;
- (b) 1 e 0 são máximos locais;
- (c) 0 é um máximo local e 2 é um mínimo local;
- (d) 0 é um máximo local e 2 um mínimo global;
- (e) 0 e 2 são máximos locais.

Questão 6. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função que admite derivadas primeira e segunda, e seja $x_0 \in \mathbb{R}$ um ponto onde $f(x_0) = 4$, $f'(x_0) = 0$, $f''(x_0) = 2$. Qual das seguintes afirmações é verdadeira?

- (a) x_0 é um mínimo local da f;
- (b) x_0 é um máximo local da f;
- (c) x_0 úm ponto de inflexão para f;
- (d) $f(x) = 4 + (x x_0)^2$;
- (e) x_0 não é um ponto crítico da f.

Questão 7. No intervalo] -1,0[, qual é o comportamento da função $f\left(x\right)=\frac{x^4+1}{x^2}$?

- (a) constante;
- (b) crescente;
- (c) decrescente;
- (d) tem concavidade para baixo;
- (e) a função não está definida em todo o intervalo.

Questão 8. Considere a função $f(x) = e^x$. Usando o Teorema do Valor Médio podemos concluir que para dois valores de a e b, tais que $a, b \in [-10, 0]$ vale:

- (a) $e^a e^b < e^c (a b)$;
- (b) $|e^a e^b| < e^{-5} |a b|$;
- (c) $|e^a e^b| > |a b|$;
- (d) $|e^a e^b| = |a b|;$
- (e) $|e^a e^b| < |a b|$.

Questão 9. Qual é a equação da reta tangente ao gráfico da função $f(x) = \tan x$ no ponto de coordenadas $\left(\frac{\pi}{4}, 1\right)$?

- (a) $y = x + 2 \frac{\pi}{2}$;
- (b) $y \frac{\pi}{4} = x 1;$
- (c) $y = 2x + 1 \frac{\pi}{2}$;
- (d) o gráfico da f não admite reta tangente em $(\frac{\pi}{4}, 1)$;
- (e) $\pi y 2x = 1$.

Questão 10. Considere a função $f(x) = x^3 - x^2 - x + 1$. Determine **todos** os intervalos de crescimento da f.

- (a) $1 e^{-\frac{1}{3}}$;
- (b) $]-\frac{1}{3},1[;$
- (c)] $-\infty, -\frac{1}{3}[e]1, +\infty[;$
- (d) a função é sempre crescente;
- (e) $]-\infty, \frac{1}{3}[.$

Questão 11. Determine a derivada da função $f(x) = x(\ln x - 1)$:

- (a) $\ln x$;
- (b) $\ln x 1$;
- (c) $\ln x + 2$;
- (d) $x \ln x$;
- (e) $\ln x 2$.

Questão 12. Seja f(x) uma função contínua e derivável pelo menos duas vezes. Sabe-se que f(a) > 0 e f(b) < 0, disso pode-se concluir que:

- (a) a função f é decrescente em todo intervalo a, b;
- (b) há ao menos uma raíz de f no intervalo [a, b[;
- (c) não se pode concluir nada;
- (d) a função f é par;
- (e) a concavidade da função f é para cima no intervalo a, b.

Questão 13. Determine a derivada da função $f\left(x\right)=\sin\left(e^{\frac{x^{2}}{2}}\right)$:

(a)
$$\frac{x^2}{2}e^{\frac{x^2}{2}}\cos\left(e^{\frac{x^2}{2}}\right);$$

(b)
$$xe^{\frac{x^2}{2}}\cos(x)$$
;

(c)
$$\frac{x}{2}e^{\frac{x^2}{2}}\cos\left(e^{\frac{x^2}{2}}\right);$$

(d)
$$e^x \cos(x)$$
;

(e)
$$xe^{\frac{x^2}{2}}\cos\left(e^{\frac{x^2}{2}}\right)$$
.

Questão 14. Determine o(s) intervalo(s) onde a concavidade da função $f\left(x\right)=e^{\frac{x^2}{2}}$ é para cima:

(a)
$$]0, +\infty[;$$

(b)
$$]-\infty,1[em]1,+\infty[;$$

(c)
$$]-\infty,-1[e em]1,+\infty[;$$

(d) R, pois a função exponencial é crescente;

(e)
$$]-1,1[$$
 .

Questão 15. Determine os pontos de inflexão da função $f(x) = e^{\frac{x^2}{2}}$:

- (a) 0;
- (b) $\frac{1}{2}$;
- (c) não há, pois $e^{\frac{x^2}{2}} > 0$, para qualquer x;
- (d) 1 e 0;
- (e) ± 1 .

Questão 16. Seja f(x) uma função ímpar, contínua em todo o eixo real e pelo menos duas vezes diferenciável. Se a concavidade de f é para cima no intervalo $]0, +\infty[$, então qual será sua concavidade no intervalo $]-\infty, 0[$?

- (a) para cima, pois f(x) = -f(-x);
- (b) não dá para saber com essas informações;
- (c) para cima, pois f é contínua;
- (d) para baixo, pois f(x) = -f(-x);
- (e) para baixo, pois f é contínua.

Questão 17. Qual é o número real positivo tal que a diferença entre ele e seu quadrado seja máxima?

- (a) $\frac{1}{2}$;
- (b) 0;
- (c) 2;
- (d) 1;
- (e) $-\frac{1}{2}$.

Questão 18. Qual é a derivada segunda da função $f(x) = \frac{\ln x}{x}$?

(a)
$$f''(x) = \frac{3\ln x - 2}{x^3}$$
;

(b)
$$f''(x) = \frac{1 - \ln x}{x^2}$$
;

(c) f não admite derivada segunda;

(d)
$$f''(x) = \frac{2\ln x - 3}{x^4}$$
;

(e)
$$f''(x) = \frac{2\ln x - 3}{x^3}$$
.

Questão 19. Uma função f(x) é dita ser par se e somente se possuir qual das propriedades abaixo?

(a)
$$f(x) + f(-x) = 0$$
;

- (b) $\frac{f(x)}{2}$ é um número inteiro para qualquer valor de x;
- (c) f(x) = f(-x);
- (d) f(x) = -f(-x);
- (e) $[f(x)]^2 = [f(-x)]^2$.

Questão 20. Qual das seguintes afirmações é verdadeira?

- (a) Se $f: \mathbb{R} \to \mathbb{R}$ é uma função contínua, então f admite máximo e mínimo em [a,b];
- (b) Se $f:[a,b]\to\mathbb{R}$ é uma função limitada, então f admite máximo e mínimo em [a,b];
- (c) Se $f:]a,b[\to \mathbb{R}$ é uma função contínua, então f admite máximo e mínimo em]a,b[;
- (d) Se $f:[a,b] \to \mathbb{R}$ é uma função contínua, então f é derivável em [a,b];
- (e) Se $f:[a,b]\to\mathbb{R}$ é uma função contínua, então f admite máximo e mínimo em [a,b].

MAT 111

Cálculo Diferencial e Integral I Prof. Paolo Piccione

Prova 2

14 de Junho de 2012

Nome:	 	
Número USP:	 	
Assinatura:		

Folha de Respostas $\boxed{\mathbf{A}}$

1	a	b	c	d	е
2	a	b	\mathbf{c}	d	е
3	a	b	\mathbf{c}	d	e
4	a	b	\mathbf{c}	d	e
5	a	b	\mathbf{c}	d	е
6	a	b	\mathbf{c}	d	е
7	a	b	c	d	e
8	a	b	c	d	е
9	a	b	c	d	e
10	a	b	c	d	е
11	a	b	c	d	е
12	a	b	c	d	е
13	a	b	c	d	е
14	a	b	c	d	е
15	a	b	c	d	е
16	a	b	\mathbf{c}	d	e
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota