MAT 104 — Cálculo 1 Prof. Paolo Piccione Prova SUB — 05.07.2010

P:				
	o:):):):

Instruções

- A duração da prova é de **uma hora e quarenta minutos**.
- Assinale as alternativas corretas na **folha de respostas** que está no final da prova. É permitido deixar questões em branco.
- A prova consiste em 15 questões. Cada questão tem apenas uma resposta correta.
- O valor total da prova é de 10.5 pontos; cada questão correta vale 0.7 pontos e cada questão errada implica num desconto de 0.1 ponto.
- A prova SUB é *semi-aberta*, ou seja, caso o aluno entregue a prova para correção, a nota entrará necessariamente no cálculo da nota final, substituindo a menor entre a nota da P1 e da P2.
- Boa Prova!

Notações e Terminologia Utilizada na Prova

- R denota o conjunto dos números reais.
- A derivada de uma função f é denotada com f'. A derivada segunda é f''.
- Dadas funções f e g, a composta é indicada por $f \circ g$.
- log denota a função logaritmo em base e (logaritmo natural). Para $a>0,\ a\neq 1,\ \log_a x$ é o logaritmo em base a.
- Um extremo local de uma função f é um ponto de mínimo ou de máximo local da f.
- Um ponto de inflexão de uma função f é um ponto onde muda a concavidade do gráfico de f.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!!

В

Questão 1. Qual das seguintes retas é uma assíntota para a função

$$f(x) = \frac{2x^2 - 3x + 1}{x + 2}$$

quando $x \to +\infty$?

(a)
$$y = 2x + 4$$
;

(b)
$$y = 4x - 6$$
;

(c)
$$y = 2x - 14$$
;

(d)
$$y = 2x - 7$$
;

(e)
$$y = 2x - \frac{3}{2}$$
.

Questão 2. Calcule o limite $L = \lim_{x\to 0} \frac{3^x - 1}{\sin(2x)}$.

(a)
$$L = \log(\sqrt{3});$$

(b)
$$L = \frac{3^0 - 1}{\sin 0}$$
;

(c)
$$L = +\infty$$
;

(d)
$$L = \log 3$$
;

(e)
$$L = \frac{3}{2}$$
.

Questão 3. Determine e classifique os extremos locais da função

$$f(x) = (2-x)e^{x^2}.$$

(a)
$$x = \frac{2-\sqrt{2}}{2}$$
 é um mínimo local, $x = \frac{2+\sqrt{2}}{2}$ é um máximo local;

(b)
$$x = \frac{2-\sqrt{2}}{2}$$
 é um máximo local, $x = \frac{2+\sqrt{2}}{2}$ é um mínimo local;

(c)
$$x=0$$
 é um mínimo local e $x=2$ é um máximo local;

(d)
$$x = 0$$
 é um máximo local e $x = 2$ é um mínimo local;

Questão 4. Sejam $f:\mathbb{R}\to\mathbb{R}$ e $g:\mathbb{R}\to\mathbb{R}$ duas funções deriváveis, tais que:

$$f(0) = 1$$
, $g(2) = 2$, $f'(0) = 4$, $g'(0) = -1$, $f(2) = 3$, $f'(2) = -2$, $g(3) = -2$, $g'(3) = 4$.

Calcule $(g \circ f)'(2)$.

(a)
$$-4$$
;

(b)
$$-8$$
;

(c)
$$6$$
;

Questão 5. Calcule o limite $L = \lim_{n \to \infty} \frac{n!}{n^4}$.

- (a) L = 1;
- (b) L = 0;
- (c) $L = \frac{\infty!}{\infty^3}$;
- (d) $L = \frac{n^2}{(n-1)!}$;
- (e) $L = +\infty$.

Questão 6. Qual das seguintes afirmações é verdadeira?

- (a) se $\lim_{n\to\infty} a_n \cdot b_n = 1$, então $\lim_{n\to\infty} a_n \neq 0$ e $\lim_{n\to\infty} b_n \neq 0$;
- (b) se a_n é limitada, então existe o limite $\lim_{n\to\infty} a_n$;
- (c) se $\lim_{n\to\infty} a_n = +\infty$ e $\lim_{n\to\infty} b_n = 0$, então $\lim_{n\to\infty} a_n \cdot b_n = +\infty$;
- (d) se $\lim_{n\to\infty} a_n = +\infty$ e $\lim_{n\to\infty} b_n = 0$, então $\lim_{n\to\infty} a_n \cdot b_n = 0$;
- (e) se a_n é uma sequência limitada, e $\lim_{n\to\infty}b_n=0$, então $\lim_{n\to\infty}a_n\cdot b_n=0$.

Questão 7. Em qual dos intervalos dados a função $f(x) = 2\sqrt{x} + \frac{2}{\sqrt{x}}$ é crescente?

- (a) $]\frac{1}{2}, +\infty[;$
- (b) $]2, +\infty[;$
- (c) $]1, +\infty[;$
- (d)]0,1[;
- (e) $]0,\sqrt{2}[.$

Questão 8. Determine o conjunto das soluções da desigualdade

$$\log_{1/2}(x^2 - 3x + 5/2) < 1.$$

- (a) [1, 2];
- (b) $]-\infty, 2[;$
- (c) $]1, +\infty[;$
- (d) $]-\infty, 1[\bigcup]2, +\infty[;$
- (e) $]2, +\infty[.$

Questão 9. Calcule a derivada segunda da função $f(x) = \frac{e^x - 1}{x}$.

(a)
$$f''(x) = \frac{e^x(x^2 - 2x + 2) - 2}{x^3}$$
;

(b)
$$f''(x) = \frac{e^x (x^3 - x + 2) - 2x}{x^4}$$
;

(c)
$$f''(x) = \frac{e^x(x^3 - 4x + 2) - 2}{x^3}$$
;

(d)
$$f''(x) = \frac{e^x (x^3 - 2x + 1) - x}{x^4}$$
;

(e)
$$f''(x) = \frac{e^x(x^2 - 4x + 2) - 4x}{x^4}$$
.

Questão 10. Quantos pontos de inflexão tem o gráfico da função f dada?

$$f(x) = e^{x^2}, \quad x \in \mathbb{R}.$$

- (a) quatro;
- (b) um;
- (c) nenhum;
- (d) dois;
- (e) três.

Questão 11. Qual das seguintes afirmações é verdadeira?

- (a) Se $f'(x_0) = 0$, então x_0 é um máximo ou um mínimo local da f;
- (b) Se $f''(x_0) = 0$, então x_0 é um ponto de inflexão;
- (c) Se $f:[0,1]\to\mathbb{R}$ é derivável, f(0)=0 e f(1)=2, então existe $\xi\in]0,1[$ tal que $f'(\xi)=1;$
- (d) Se $x_0 \in [a, b]$ é um ponto de máximo da f em [a, b], então $f'(x_0) = 0$;
- (e) Se $f:[0,2]\to\mathbb{R}$ é derivável, f(0)=0 e f(2)=2, então existe $\xi\in]0,2[$ tal que $f'(\xi)=1$.

Questão 12. Determine o único ponto crítico x_0 da função $f(x) = \frac{\log x}{x}$.

- (a) $x_0 = e$;
- (b) $x_0 = 0$;
- (c) $x_0 = 1$;
- (d) $x_0 = -1$;
- (e) $x_0 = \frac{1}{e}$.

Questão 13. Sejam $(A_n)_{n\in\mathbb{N}}$ uma família de *afirmações*, cada uma das quais pode ser ou verdadeira ou falsa. Suponha que:

- A_5 é verdadeira;
- se \mathcal{A}_n é verdadeira, então \mathcal{A}_{n+2} também é verdadeira.

O que podemos deduzir?

- (a) A_n é falsa para todo n > 5;
- (b) A_{n+2} é verdadeira para todo $n \geq 5$;
- (c) \mathcal{A}_n é falsa para todo n < 5;
- (d) \mathcal{A}_{2n} é verdadeira para todo n > 2;
- (e) A_{2n+1} é verdadeira para todo $n \geq 2$.

Questão 14. Seja P o ponto do plano cujas coordenadas são (1,-1). Determine o ponto Q pertencente ao gráfico da função $f(x) = \frac{1}{x}$, com x > 0, com a propriedade que a reta por P e Q seja tangente ao gráfico da f no ponto Q.

(a)
$$Q = \left(\frac{1}{\sqrt{2} - 1}, \sqrt{2} - 1\right);$$

(b)
$$Q = \left(\frac{1}{\sqrt{2}+1}, \sqrt{2}+1\right);$$

(c)
$$Q = \left(\sqrt{2} - 1, \frac{1}{\sqrt{2} + 1}\right);$$

(d)
$$Q = \left(\sqrt{2} + 1, \frac{1}{\sqrt{2} + 1}\right);$$

(e)
$$Q = \left(\sqrt{2} - 1, \frac{1}{\sqrt{2} - 1}\right)$$
.

Questão 15. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável, e com inversa f^{-1} . Sabendo que f(0) = 1, f(1) = 3, f(3) = 4, f'(0) = 2, f'(1) = 1, f'(3) = 4, calcule $(f^{-1})'(3)$.

(a)
$$\frac{1}{2}$$
;

(b)
$$-\frac{1}{4}$$
;

(c)
$$\frac{1}{4}$$
;

(d)
$$-\frac{1}{2}$$
;

MAT 104 — Cálculo 1 Prof. Paolo Piccione Prova SUB

5 de Julho de $2010\,$

Nome:		
Número USP:		
Assinatura:		
Turma: FÍSICA	QUÍMICA	

Folha de Respostas $\boxed{\mathbf{B}}$

1	a	b	c	d	е
2	a	b	\mathbf{c}	d	e
3	a	b	c	d	e
4	a	b	c	d	е
5	a	b	c	d	е
6	a	b	c	d	е
7	a	b	c	d	е
8	a	b	c	d	е
9	a	b	c	d	е
10	a	b	c	d	e
11	a	b	c	d	е
12	a	b	c	d	е
13	a	b	c	d	e
14	a	b	с	d	e
15	a	b	\mathbf{c}	d	е

Deixe em branco.

Corretas	Erradas	Nota				