MAT 104 — Cálculo 1 Prof. Paolo Piccione Prova REC — 28.07.2010

Nome:		
Número USP:		
Assinatura:		

Instruções

- A duração da prova é de **uma hora e quarenta minutos**.
- Assinale as alternativas corretas na **folha de respostas** que está no final da prova. É permitido deixar questões em branco.
- A prova consiste em 15 questões. Cada questão tem apenas uma resposta correta.
- O valor total da prova é de 10.5 pontos; cada questão correta vale 0.7 pontos e cada questão errada implica num desconto de 0.1 ponto.
- A prova SUB é *semi-aberta*, ou seja, caso o aluno entregue a prova para correção, a nota entrará necessariamente no cálculo da nota final, substituindo a menor entre a nota da P1 e da P2.
- Boa Prova!

Notações e Terminologia Utilizada na Prova

- R denota o conjunto dos números reais.
- A derivada de uma função f é denotada com f'. A derivada segunda é f''.
- Dadas funções f e g, a composta é indicada por $f \circ g$.
- log denota a função logaritmo em base e (logaritmo natural). Para $a>0,\ a\neq 1,\ \log_a x$ é o logaritmo em base a.
- Um extremo local de uma função f é um ponto de mínimo ou de máximo local da f.
- Um ponto de inflexão de uma função f é um ponto onde muda a concavidade do gráfico de f.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!!

В

Questão 1. Em qual dos intervalos dados a função $f(x) = 3\sqrt{x} + \frac{3}{\sqrt{x}}$ é crescente?

- (a) $]2, +\infty[;$
- (b) $]1, +\infty[;$
- (c)]0,1[;
- (d) $]0,\sqrt{2}[;$
- (e) $\left| \frac{1}{2}, +\infty \right|$.

Questão 2. Qual das seguintes retas é uma assíntota para a função

$$f(x) = \frac{2x^2 - 3x + 1}{x + 2}$$

quando $x \to +\infty$?

- (a) y = 2x 14;
- (b) y = 4x 6;
- (c) y = 2x + 4;
- (d) y = 2x 7;
- (e) $y = 2x \frac{3}{2}$.

Questão 3. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável, e com inversa f^{-1} . Sabendo que f(0)=1, f(1)=3, f(3)=4, f'(0)=2, f'(1)=1, f'(3)=4, calcule $(f^{-1})'(3)$.

- (a) $-\frac{1}{4}$;
- (b) $\frac{1}{4}$;
- (c) $-\frac{1}{2}$;
- (d) 1;
- (e) $\frac{1}{2}$.

Questão 4. Calcule o limite $L = \lim_{x\to 0} \frac{3^x - 1}{\tan(2x)}$.

- (a) $L = +\infty$;
- (b) $L = \frac{3^0 1}{\sin 0}$;
- (c) $L = \log 3$;
- (d) $L = \frac{3}{2}$;
- (e) $L = \log(\sqrt{3})$.

Questão 5. Quantos pontos de inflexão tem o gráfico da função f dada?

$$f(x) = 2e^{x^2}, \quad x \in \mathbb{R}.$$

- (a) quatro;
- (b) nenhum;
- (c) três;
- (d) um;
- (e) dois.

Questão 6. Qual das seguintes afirmações é verdadeira?

(a) se
$$\lim_{n\to\infty} a_n = +\infty$$
 e $\lim_{n\to\infty} b_n = 0$, então $\lim_{n\to\infty} a_n \cdot b_n = 0$;

(b) se
$$\lim_{n\to\infty} a_n = +\infty$$
 e $\lim_{n\to\infty} b_n = 0$, então $\lim_{n\to\infty} a_n \cdot b_n = +\infty$;

(c) se
$$a_n$$
 é limitada, então existe o limite $\lim_{n\to\infty} a_n$;

(d) se
$$\lim_{n\to\infty} a_n \cdot b_n = 1$$
, então $\lim_{n\to\infty} a_n \neq 0$ e $\lim_{n\to\infty} b_n \neq 0$;

(e) se
$$a_n$$
 é uma sequência limitada, e $\lim_{n\to\infty}b_n=0$, então $\lim_{n\to\infty}a_n\cdot b_n=0$.

Questão 7. Seja P o ponto do plano cujas coordenadas são (1,-1). Determine o ponto Q pertencente ao gráfico da função $f(x)=\frac{1}{x},$ com x>0, com a propriedade que a reta por P e Q seja tangente ao gráfico da f no ponto Q.

(a)
$$Q = \left(\sqrt{2} - 1, \frac{1}{\sqrt{2} + 1}\right);$$

(b)
$$Q = \left(\sqrt{2} + 1, \frac{1}{\sqrt{2} + 1}\right);$$

(c)
$$Q = \left(\sqrt{2} - 1, \frac{1}{\sqrt{2} - 1}\right);$$

(d)
$$Q = \left(\frac{1}{\sqrt{2} - 1}, \sqrt{2} - 1\right);$$

(e)
$$Q = \left(\frac{1}{\sqrt{2}+1}, \sqrt{2}+1\right)$$
.

Questão 8. Determine o conjunto das soluções da desigualdade

$$\log_{1/2}(x^2 - 3x + 5/2) < 1.$$

- (a) $]-\infty, 1[\bigcup]2, +\infty[;$
- (b) $]1, +\infty[;$
- (c) $]-\infty, 2[;$
- (d) $]2, +\infty[;$
- (e) [1, 2].

Questão 9. Sejam $f:\mathbb{R}\to\mathbb{R}$ e $g:\mathbb{R}\to\mathbb{R}$ duas funções deriváveis, tais que:

$$f(0) = 1$$
, $g(2) = 2$, $f'(0) = 4$, $g'(0) = -1$, $f(2) = 3$, $f'(2) = -2$, $g(3) = -2$, $g'(3) = 4$.

Calcule $(g \circ f)'(2)$.

- (a) 6;
- (b) -8;
- (c) 12;
- (d) 8;
- (e) -4.

Questão 10. Qual das seguintes afirmações é verdadeira?

- (a) Se $f:[0,1]\to\mathbb{R}$ é derivável, f(0)=0 e f(1)=2, então existe $\xi\in]0,1[$ tal que $f'(\xi)=1;$
- (b) Se $x_0 \in [a, b]$ é um ponto de máximo da f em [a, b], então $f'(x_0) = 0$;
- (c) Se $f:[0,2]\to\mathbb{R}$ é derivável, f(0)=0 e f(2)=2, então existe $\xi\in]0,2[$ tal que $f'(\xi)=1;$
- (d) Se $f''(x_0) = 0$, então x_0 é um ponto de inflexão;
- (e) Se $f'(x_0) = 0$, então x_0 é um máximo ou um mínimo local da f.

Questão 11. Determine e classifique os extremos locais da função

$$f(x) = e^{x^2}(2-x).$$

- (a) $x = \frac{2-\sqrt{2}}{2}$ é um máximo local, $x = \frac{2+\sqrt{2}}{2}$ é um mínimo local;
- (b) x = 0 é um mínimo local e x = 2 é um máximo local;
- (c) $x = \frac{2-\sqrt{2}}{2}$ é um mínimo local, $x = \frac{2+\sqrt{2}}{2}$ é um máximo local;
- (d) x = 0 é um máximo local e x = 2 é um mínimo local;
- (e) f não possui extremos locais.

Questão 12. Determine o único ponto crítico x_0 da função $f(x) = \frac{3 \log x}{x}$.

- (a) $x_0 = \frac{1}{e}$;
- (b) $x_0 = 1$;
- (c) $x_0 = -1$;
- (d) $x_0 = e;$
- (e) $x_0 = 0$.

Questão 13. Calcule o limite $L = \lim_{n \to \infty} \frac{(2n)!}{n^4}$.

(a)
$$L = \frac{n^2}{(n-1)!}$$
;

- (b) $L = +\infty$;
- (c) L = 0;
- (d) L = 1;
- (e) $L = \frac{\infty!}{\infty^3}$.

Questão 14. Sejam $(A_n)_{n\in\mathbb{N}}$ uma família de *afirmações*, cada uma das quais pode ser ou verdadeira ou falsa. Suponha que:

- A_5 é verdadeira;
- se \mathcal{A}_n é verdadeira, então \mathcal{A}_{n+2} também é verdadeira.

O que podemos deduzir?

- (a) A_{n+2} é verdadeira para todo $n \geq 5$;
- (b) A_n é falsa para todo n < 5;
- (c) A_{2n+1} é verdadeira para todo $n \geq 2$;
- (d) A_n é falsa para todo n > 5;
- (e) \mathcal{A}_{2n} é verdadeira para todo n > 2.

Questão 15. Calcule a derivada segunda da função $f(x) = \frac{e^x - 1}{x}$.

(a)
$$f''(x) = \frac{e^x(x^2 - 4x + 2) - 4x}{x^4}$$
;

(b)
$$f''(x) = \frac{e^x(x^3 - x + 2) - 2x}{x^4}$$
;

(c)
$$f''(x) = \frac{e^x (x^2 - 2x + 2) - 2}{x^3}$$
;

(d)
$$f''(x) = \frac{e^x (x^3 - 4x + 2) - 2}{x^3}$$
;

(e)
$$f''(x) = \frac{e^x (x^3 - 2x + 1) - x}{x^4}$$
.

MAT 104 — Cálculo 1 Prof. Paolo Piccione Prova REC

28 de Julho de 2010

Nome:		
Número USP:		
Assinatura:		
Turma: FÍSICA	QUÍMICA	

Folha de Respostas B

1	a	b	c	d	e
2	a	b	c	d	e
3	a	b	c	d	e
4	a	b	c	d	e
5	a	b	c	d	e
6	a	b	c	d	e
7	a	b	c	d	e
8	a	b	c	d	e
9	a	b	c	d	e
10	a	b	c	d	e
11	a	b	c	d	e
12	a	b	c	d	e
13	a	b	c	d	e
14	a	b	c	d	e
15	a	b	c	d	e

Deixe em branco.

Corretas	Erradas	Nota				