MAT 104 — Cálculo 1 Prof. Paolo Piccione

Prova 1 26.04.2010

	2010	120
Nome:		
RG:		
Assinatura:		

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na **folha de respostas** que está no final da prova. É permitido deixar questões em branco.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{3}{25}$ de ponto (0.12).
- Boa Prova!

Notações Utilizadas na Prova

- \bullet $\mathbb R$ denota o conjunto dos números reais, e $\mathbb N$ denota o conjunto dos números inteiros não negativos.
- Dadas funções f e g, a composta é indicada por $f \circ g$.
- ullet log denota a função logaritmo em base e (logaritmo natural).
- Dado $a>0,\,a\neq 1,\,\log_a$ denota o logaritmo em base a.
- A função $\tan x$ é a tangente.

Qui-E

Questão 1. Calcule o limite $L=\lim_{n\to\infty}a_n$, onde a_n é definida por recurrência pela fórmula $a_{n+1}=\sqrt{a_n+1},\ n\in\mathbb{N},$ e $a_0=0.$

- (a) não existe o limite;
- (b) L = 0;
- (c) $L = +\infty$;
- (d) $L = \frac{1+\sqrt{5}}{2}$;
- (e) nenhuma das outras respostas.

Questão 2. Determine o conjunto das soluções da desigualdade:

$$|2x - 4| + |8 - 3x| < 3.$$

- (a) $]\frac{9}{5}, 2[\bigcup]3, +\infty[;$
- (b) nenhuma das outras respostas;
- (c) $]\frac{9}{5}, 3[;$
- (d) $]-\frac{9}{5},2[;$
- (e) $]-\infty, 2[.$

Questão 3. Determine o conjunto das soluções da desigualdade

$$\log_{1/2}(x^2 - 3x + 5/2) \ge \frac{1}{2}.$$

- (a) [1,2];
- (b) nenhuma das outras respostas;
- (c) $]2, +\infty[;$
- (d) $]-\infty,1[\bigcup]2,+\infty[;$
- (e) $]1, +\infty[.$

Questão 4. Seja $f(x) = \sqrt{x}$ e $g(x) = \log(1+x)$. Qual é o domínio de $f \circ g$?

- (a) $]0, +\infty[;$
- (b) nenhuma das outras respostas;
- (c)]0,1[;
- (d) $]-1,+\infty[;$
- (e) $\mathbb{R} \setminus \{-1\}$.

Questão 5. Calcule a função inversa $f^{-1}(y)$ da função $f:[\pi,2\pi]\to[-1,1]$ definida por $f(x)=\cos x$.

- (a) $f^{-1}(y) = \arccos y + \frac{3\pi}{2}$;
- (b) $f^{-1}(y) = \arcsin y + \frac{3\pi}{2}$;

(c)
$$f^{-1}(y) = \arccos y + \pi$$
;

(d) nenhuma das outras respostas;

(e)
$$f^{-1}(y) = \arccos y$$
.

Questão 6. Calcule o limite $L = \lim_{x\to 0} \frac{\log(1+x^2)}{2x}$.

(a)
$$L = \frac{1}{2}$$
;

(b) nenhuma das outras respostas;

(c)
$$L = 0$$
;

(d)
$$L = 1$$
;

(e)
$$L = +\infty$$
.

Questão 7. Calcule o limite $L = \lim_{x\to 0} \frac{\tan x}{x e^{x-1}}$.

(a)
$$L = 1$$
;

(b)
$$L = \tan(e^{-1});$$

(c) nenhuma das outras respostas;

(d)
$$L = \frac{1}{e}$$
;

(e)
$$L = 0$$
.

Questão 8. Determine: a forma explícita da sequência a_n definida pela fórmula: $a_{n+2} = 3a_{n+1} - 2a_n$, e pelas condições iniciais: $a_0 = 3$, $a_1 = 5$.

(a)
$$a_n = n^2 + n + 3$$
;

(b)
$$a_n = 1 + 2^n$$
;

(c) nenhuma das outras respostas;

(d)
$$a_n = 3 + 2n$$
;

(e)
$$a_n = 1 + 2^{n+1}$$
.

Questão 9. Calcule o limite $L = \lim_{n \to \infty} \frac{n^3}{n!}$.

(a)
$$L = +\infty$$
;

(b) nenhuma das outras respostas;

(c)
$$L = 1$$
;

(d)
$$L = 0$$
;

(e)
$$L = \frac{n^2}{(n-1)!}$$
.

Questão 10. Que letra do alfabeto grego é: η ?

- (a) nenhuma das outras respostas;
- (b) "eta" minúsculo;
- (c) "ni" maiúsculo;
- (d) "ni" minúsculo;
- (e) "gama" maiúsculo.

Questão 11. Determine o conjunto das soluções da desigualdade

$$\frac{|x-1|}{x^2 - 5x + 6} < 0.$$

- (a) $]1, 2[\bigcup]3, +\infty[;$
- (b) nenhuma das outras respostas;
- (c)]2,3[;
- (d)]1,3[;
- (e) $]-\infty, 1[\bigcup]2, 3[.$

Questão 12. Qual das seguintes afirmações é falsa?

- (a) se $f: A \to B$ é injetora e sobrejetora, então f é inversível;
- (b) toda função $f: \mathbb{R} \to \mathbb{R}$ pode ser escrita como soma de uma função não negativa e uma função negativa;
- (c) toda função $f: \mathbb{R} \to \mathbb{R}$ é ou par ou impar;
- (d) toda função $f: \mathbb{R} \to \mathbb{R}$ pode ser escrita como soma de uma função par e uma função impar;
- (e) toda função $f: \mathbb{R} \to \mathbb{R}$ inversível é injetora.

Questão 13. Sejam $(A_n)_{n\in\mathbb{N}}$ uma família de *afirmações*, cada uma das quais pode ser ou verdadeira ou falsa. Suponha que:

- A_0 é verdadeira;
- se A_n é verdadeira, então A_{n+2} também é verdadeira.

O que podemos deduzir?

- (a) A_n é falsa para todo n > 2;
- (b) A_{n+2} é verdadeira para todo $n \in \mathbb{N}$;
- (c) A_n é verdadeira para todo n > 2;
- (d) \mathcal{A}_{2n} é verdadeira para todo $n \in \mathbb{N}$;
- (e) A_n é falsa para todo n > 0.

Questão 14. Calcule o limite $L = \lim_{x\to 0} \frac{2^x - 1}{\sin(2x)}$.

(a) nenhuma das outras respostas;

(b)
$$L = \log 2$$
;

(c)
$$L = \frac{1}{2} \log 2$$
;

(d)
$$L = \frac{1}{2}$$
;

(e)
$$L = +\infty$$
.

Questão 15. Calcule o limite $L = \lim_{x \to 1} \left(\frac{x^2 - 2x + 1}{x^2 - 3x + 2} \right)$.

(a)
$$L = -\infty$$
;

(c)
$$L = +\infty$$
;

(d)
$$L = 0$$
;

(e)
$$L = 1$$
.

Questão 16. Qual das seguintes afirmações é verdadeira?

(a) se
$$\lim_{n\to\infty} a_n = +\infty$$
 e $\lim_{n\to\infty} b_n = 0$, então $\lim_{n\to\infty} a_n \cdot b_n = +\infty$;

(b) se
$$a_n$$
 é uma sequência limitada, e $\lim_{n\to\infty} b_n = 0$, então $\lim_{n\to\infty} a_n \cdot b_n = 0$;

(c) se
$$\lim_{n\to\infty} a_n \cdot b_n = 1$$
, então $\lim_{n\to\infty} a_n \neq 0$ e $\lim_{n\to\infty} b_n \neq 0$;

(d) se
$$a_n$$
 é limitada, então existe o limite $\lim_{n\to\infty} a_n$;

(e) se
$$\lim_{n\to\infty} a_n = +\infty$$
 e $\lim_{n\to\infty} b_n = 0$, então $\lim_{n\to\infty} a_n \cdot b_n = 0$.

Questão 17. Seja a_n uma sequência não crescente. Qual das seguintes afirmações é verdadeira?

(a) existe o limite
$$\lim_{n\to\infty} a_n$$
;

(b)
$$a_n = \frac{1}{n}$$
;

(c)
$$\lim_{n\to\infty} a_n = 0$$
;

(d)
$$\lim_{n\to\infty} a_n = -\infty;$$

(e)
$$a_n$$
 é limitada.

Questão 18. Sejam f e g duas funções reais tais que $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$

0. Qual das seguintes afirmações é verdadeira?

(b)
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$
, pois $\lim_{x \to 0} \frac{\sin x}{x} = 1$;

(c)
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$
, pois $\frac{0}{0} = 1$;

(d)
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$
, pois $\frac{0}{g(x)} = 0$ para todo x ;

(e)
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \infty$$
, pois $\frac{f(x)}{0} = \infty$ para todo x .

Questão 19. Sejam $a \in \mathbb{R}$, e $f, g:]0, +\infty[\to \mathbb{R}$ duas funções tais que

$$f(x) \le g(x) \le f(x) + \frac{1}{x}$$

para todo x. Suponha que existe o limite $\lim_{x\to +\infty} f(x)=\pi$. Qual das seguintes afirmações é necessariamente verdadeira?

- (a) nenhuma das outras respostas;
- (b) g é decrescente;
- (c) g é crescente;
- (d) $\lim_{x \to +\infty} g(x) = \pi;$
- (e) $\lim_{x \to +\infty} g(x) = \pi + \frac{1}{\pi}$.

Questão 20. Calcule o limite $L = \lim_{x \to +\infty} \left(\frac{4x^3 + 3x^2 - 1}{4x^3 + 2x - 3} \right)^{3x - 1}$.

- (a) $L = e^{9/4}$;
- (b) L = 1;
- (c) L = e;
- (d) $L = e^3$;
- (e) nenhuma das outras respostas.

MAT 104 — Cálculo 1 Prof. Paolo Piccione

Prova 1 26.04.2010

	2010120
Nome:	
RG:	
Assinatura:	

Folha de Respostas Qui-E

1	a	b	c	d	е
2	a	b	c	d	e
3	a	b	c	d	e
4	a	b	c	d	e
5	a	b	c	d	e
6	a	b	c	d	e
7	a	b	c	d	e
8	a	b	c	d	e
9	a	b	c	d	e
10	a	b	c	d	e
11	a	b	c	d	е
12	a	b	c	d	е
13	a	b	c	d	е
14	a	b	c	d	е
15	a	b	c	d	e
16	a	b	c	d	е
17	a	b	c	d	е
18	a	b	с	d	е
19	a	b	с	d	е
20	a	b	с	d	е