

## Instituto de Matemática e Estatística



## MAT0104 — CÁLCULO 1

## LISTA DE EXERCÍCIOS 3

PROFESSOR: PAOLO PICCIONE MONITOR: RENATO GHINI BETTIOL

**Exercício 1:** Calcule as duas primeiras derivadas de f(x) e explicite seus domínios, nos seguintes casos:

$$f(x) = x^{2010} \qquad f(x) = 5x^2 + 3x - 7 \qquad f(x) = (x^2 - 1)\log x$$

$$f(x) = x + \log x^2 \qquad f(x) = x \log x^2 \qquad f(x) = x^x$$

$$f(x) = \sin x \qquad f(x) = \cos 2x \qquad f(x) = \sin^2 x + \cos x$$

$$f(x) = e^{-x} \qquad f(x) = e^{\frac{-x^2}{2}} \qquad f(x) = 2^x$$

$$f(x) = \frac{1}{\tan x} \qquad f(x) = \sec 3x \qquad f(x) = e^x \sin x$$

$$f(x) = \frac{1}{\sqrt{1 + x^4}} \qquad f(x) = (1 + x^{2010})^{\frac{1}{2010}} \qquad f(x) = \frac{e^x + e^{-x}}{2}$$

**Exercício 2:** Encontre a reta tangente ao gráfico y = f(x) no ponto (1, f(1)) para todas funções f(x) do Exercício 1.

**Exercício 3:** O ponto P=(0,1) está em duas retas tangentes a parábola  $y=x^2+1$ . Encontre as equações dessas duas retas.

**Exercício 4:** Dadas três funções diferenciáveis  $f, g, h : \mathbb{R} \to \mathbb{R}$ , calcule a derivada da composta  $f \circ g \circ h$ .

Exercício 5: Verdadeiro ou falso? (Justifique ou dê um contra-exemplo)

(1) Se uma função  $f: \mathbb{R} \to \mathbb{R}$  não é contínua, então f não é diferenciável;

Date: 7 de Maio 2010.

- (2) Dadas funções  $f,g:\mathbb{R}\to\mathbb{R}$ , se f é contínua e g é diferenciável, então f+g e  $f\circ g$  são diferenciáveis;
- (3) Dadas funções  $f,g:\mathbb{R}\to\mathbb{R}$ , se f é contínua e g é diferenciável, então f+g e  $f\circ g$  são contínuas;
- (4) Dadas funções diferenciáveis  $f,g:\mathbb{R}\to\mathbb{R}$ , as funções f+g,fg e  $f\circ g$  são diferenciáveis;
- (5) Suponha que  $f, g : \mathbb{R} \to \mathbb{R}$  são funções diferenciáveis, com  $f'(x) \ge 0$  e  $g'(x) \ge 0$ . Então fg é crescente;
- (6) Suponha que  $f, g : \mathbb{R} \to \mathbb{R}$  são funções diferenciáveis, com f'(x) > 0 e g'(x) < 0. Então f g é decrescente;
- (7) Suponha que  $f, g: \mathbb{R} \to \mathbb{R}$  são funções diferenciáveis, com f'(x) > 0 e  $g'(x) \geq 0$ . Então 2f(x)(g(x) + x) é estritamente crescente;

**Exercício 6:** O ponto P=(0,4) pertence a uma única reta tangente ao gráfico de  $y=x+\frac{1}{x},\,x>0$ . Determine o valor de a tal que P pertence a reta tangente a esse gráfico no ponto  $\left(a,a+\frac{1}{a}\right)$ , e escreva a equação dessa reta.

Dica:  $N\tilde{a}o$  será necessário resolver uma equação quadrática em a.

**Exercício 7:** Uma pedra é derrubada de um penhasco de modo que sua altura s(t) em metros acima do solo após t segundos é dada por

$$s(t) = 80 - 5t^2$$
.

- (1) Determine a velocidade final  $v_f$  com que a pedra atinge o solo, i.e., quando s(t) = 0, t > 0;
- (2) Determine a que altura a pedra atinge velocidade  $\frac{1}{2}v_f$ .

## Exercício 8: Determine para as seguintes funções:

- (1) sua derivada f'(x);
- (2) os valores de  $x \in \mathbb{R}$  para os quais f(x) é crescente;
- (3) os pontos críticos de f(x), i.e., os valores de  $x \in \mathbb{R}$  tais que f'(x) = 0.

$$f(x) = x^2 - x$$
  $f(x) = \frac{1}{x}$   $f(x) = x + \sin x$   $f(x) = \pi$  
$$f(x) = e^x + 2x$$
  $f(x) = \frac{x^2 - 4}{x - 1}$   $f(x) = \frac{x}{\log x}$   $f(x) = \frac{e^x - e^{-x}}{2}$ 

$$f(x) = 2x^2(1+\sqrt{x})$$
  $f(x) = (x-1)^{x+2}$   $f(x) = \sin x \cos x$   $f(x) = \sin(\sin x)$ 

$$f(x) = \sqrt{x + \sqrt{x}}$$
  $f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$   $f(x) = x^x$   $f(x) = \frac{\log x}{x^2 - 1}$ 

**Exercício 8:** Sejam  $f: \mathbb{R} \to \mathbb{R}$  e  $g: \mathbb{R} \to \mathbb{R}$  duas funções deriváveis, tais que:

f(0) = 1, g(0) = 2, f'(0) = 4, g'(0) = -1, f(2) = 3, f'(2) = 0, g(1) = -2, g'(1) = 7. Calcule:

- (1)  $f \circ g(0)$ ;
- (2)  $g \circ f(0)$ ;
- (3)  $f(0) \cdot g(0)$ ;
- (4)  $(f \circ g)'(0)$ ;
- (5)  $(g \circ f)'(0)$ ;
- (6)  $(f \cdot g)'(0)$ .