MAT 103 — Turma 18/28

Complementos de matemática para contabilidade e administração

Prof. Paolo Piccione 6 de Julho de 2011

Prova SUB — C

Nome:	 	 	
Número USP:		 	
Assinatura: _		 	

Instruções

- A duração da prova é de **uma hora e quarenta minutos**.
- Assinale as alternativas corretas na **folha de respostas** que está no final da prova. É permitido deixar questões em branco.
- Cada questão tem apenas uma resposta correta.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.1).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página)
- A nota da SUB substitue a menor nota entre a P1 e a P2.
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- \mathbb{R} denota o conjunto dos números reais, e \mathbb{R}^2 é o conjunto de pares ordenados de números reais: $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}.$
- $\sin x$ é a função "seno de x"; $\ln x$ é a função "logaritmo natural de x".
- Intervalos abertos são denotados com [a, b[.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!! Questão 1. Determine todos os pontos críticos da função

$$f(x) = 3x^4 + 16x^3 - 30x^2 - 1.$$

- (a) -5, 0 e 1;
- (b) $\frac{-8\pm\sqrt{124}}{6}$;
- (c) 5, 0 e 1;
- (d) $\frac{1}{4}$, $\frac{4}{3}$ e $\frac{5}{2}$;
- (e) -1, 0 e 1.

Questão 2. Considere a função $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^3 + 3x$, e seja $g : \mathbb{R} \to \mathbb{R}$ sua inversa. Calcule a derivada g'(-4).

- (a) f não admite inversa;
- (b) $\frac{1}{14}$;
- (c) 6;
- (d) $\frac{1}{6}$;
- (e) f'(-1).

Questão 3. Qual dos seguintes é o enunciado do Teorema do Valor Intermediário?

- (a) Se $f:[a,b]\to\mathbb{R}$ é uma função contínua, então existe $c\in]a,b[$ tal que f(b)-f(a)=f(c)(b-a);
- (b) Se $f:[a,b] \to \mathbb{R}$ é uma função contínua, então f toma todos os valores entre f(a) e f(b);
- (c) Se $f:[a,b]\to\mathbb{R}$ é uma função contínua, então f tem máximo em a e mínimo em b;
- (d) Se $f:[a,b] \to \mathbb{R}$ é contínua, então $f(a) \le f(x) \le f(b)$ para todo x;
- (e) Se $f:[a,b] \to \mathbb{R}$ é uma função contínua, então f é derivável em $c \in]a,b[$.

Questão 4. Qual é a derivada de $f(x) = \ln(1 + e^{\cos x})$?

(a)
$$f'(x) = \frac{-\sin x e^{\cos x}}{1 + e^{\cos x}};$$

(b)
$$f'(x) = \frac{1}{1 + e^{-\sin x}}$$
;

(c)
$$f'(x) = -\sin x e^{\cos x}$$
;

(d)
$$f'(x) = \frac{\sin x e^{\cos x}}{1 + e^{\cos x}};$$

(e)
$$f'(x) = \frac{e^{\cos x}}{1 + e^{\cos x}}$$
.

Questão 5. Qual é o polinômio $P_1(x)$ de grau menor ou igual a 1 que melhor aproxima a função $f(x) = \sin x$ perto do ponto $x_0 = -\frac{\pi}{4}$?

(a)
$$P_1(x) = \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}};$$

(b)
$$P_1(x) = -\frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{2}};$$

(c)
$$P_1(x) = -\frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}(1 + \frac{\pi}{4});$$

(d)
$$P_1(x) = \frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{2}};$$

(e)
$$P_1(x) = -\frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}(1 - \frac{\pi}{4}).$$

Questão 6. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável duas vezes, com derivada segunda contínua, tal que f(0) = 0, f'(0) = 0 e f''(0) = -2. Calcule o limite:

$$L = \lim_{x \to 0} \frac{f(x)}{\ln(1 + 2x^2)}.$$

(a)
$$L = +\infty$$
;

(b)
$$L = 0$$
;

(c)
$$L = \frac{1}{2}$$
;

(d)
$$L = -\frac{1}{4}$$
;

(e)
$$L = -\frac{1}{2}$$
.

Questão 7. Qual é a equação da reta tangente ao gráfico da função $f(x) = 2x + e^x$ no ponto de abscissa 1?

(a)
$$y = ex$$
;

(b)
$$y = -(2+e)x$$
;

(c)
$$y = (2 + e)x$$
;

(d)
$$y = (2 - e)x;$$

(e)
$$y = 2x$$
.

Questão 8. Qual das seguintes afirmações é verdadeira?

- (a) Se $x_0 \in [a, b]$ é um máximo da f, então $f'(x_0) = 0$;
- (b) Se $f''(x_0) > 0$, então x_0 é um mínimo local da f;
- (c) Se $f:[a,b]\to\mathbb{R}$ é diferenciável, e $x_0\in]a,b[$ é um extremo local da f, então x_0 é um ponto crítico da f;
- (d) Se $f:]a,b[\to \mathbb{R}$ é contínua, então f admite mínimo;
- (e) Se x_0 é um ponto crítico da f, então x_0 é um extremo local da f.

4

Questão 9. Suponha que $f:[0,1] \to [0,1]$ é uma função derivável, e com f(0) = 1, f(1) = 0 e f'(x) < 0 para todo x. Qual das seguintes afirmações é verdadeira?

- (a) existe $c \in [0, 1[$ tal que f'(c) = f(0) f(1);
- (b) A função inversa $f^{-1}:[0,1]\to[0,1]$ é decrescente;
- (c) f não admite máximo em [0,1];
- (d) f não é inversível;
- (e) $f^{-1}(0) = 0$ e $f^{-1}(1) = 1$.

Questão 10. Determine o maior domínio possível no qual fica bem definida a função $f(x) = \frac{1}{\sqrt{x-3}} + \ln(x^2 - 2)$.

- (a) $]-\infty, \sqrt{2}[\cup]\sqrt{2}, +\infty[;$
- (b) $]-\infty, \sqrt{2}[\cup]3, \infty[;$
- (c) $]-\infty,\sqrt{2}[;$
- (d) $]\sqrt{2}, +\infty[;$
- (e) $]3, \infty[.$

Questão 11. O conjunto de todos os números reais que satisfazem a desigualdade $|16-2^x| \le 16$ é:

- (a) $]-\infty, 4];$
- (b) [-4, 5];
- (c) [-5,5];
- (d) [4,5];
- (e) $]-\infty, 5].$

Questão 12. Qual dos seguintes é o enunciado do Teorema do Valor Médio (Teorema de Lagrange)?

- (a) Se $f:[a,b]\to\mathbb{R}$ é uma função derivável, então existe $c\in]a,b[$ tal que f'(c)=0;
- (b) Se $f:[a,b]\to\mathbb{R}$ é uma função derivável, então para todo $c\in]a,b[$ temos f(b)-f(a)=f'(c)(b-a);
- (c) Se $f:[a,b]\to\mathbb{R}$ não é uma função constante, então não existe $c\in]a,b[$ tal que f'(c)=0;
- (d) Se $f:[a,b] \to \mathbb{R}$ é uma função derivável, então existe $c \in]a,b[$ tal que f(b)-f(a)=f'(c)(b-a);
- (e) Se $f:[a,b]\to\mathbb{R}$ é uma função derivável, então existe $c\in]a,b[$ tal que f'(c)(f(b)-f(a))=(b-a).

5

Questão 13. Qual das seguintes afirmações é conseqüência do Teorema de Weierstrass?

- (a) A função $f(x)=\cos(x)$ admite máximo mas não admite mínimo em $\left]0,\frac{\pi}{3}\right];$
- (b) A função f(x) = x não admite mínimo em [0, 1[;
- (c) A função $f(x) = x^3$ admite máximo em $[0, \infty[$;
- (d) A função $f(x) = x^2$ admite máximo em]0,1];
- (e) A função $f(x) = e^{\cos^2 x}$ admite máximo em [-3, -1].

Questão 14. Qual é o polinômio $P_2(x)$ de grau menor ou igual a 2 que melhor aproxima a função $f(x) = e^{\cos x}$ perto do ponto $x_0 = 0$?

- (a) $P_2(x) = ex^2$;
- (b) $P_2(x) = e ex + ex^2$;
- (c) $P_2(x) = e \frac{ex^2}{2}$;
- (d) $P_2(x) = e ex + \frac{ex^2}{2}$;
- (e) $P_2(x) = ex + ex^2$.

Questão 15. O que diz o Teorema do Valor Médio (Teorema de Lagrange) a respeito da função $f(x) = e^{\sin(2x)}$ no intervalo $[0, \frac{\pi}{4}]$?

- (a) Que existe $c \in \left]0, \frac{\pi}{4}\right[$ tal que $e^{\sin(2c)} = e 1$;
- (b) Que existe $c \in \left[0, \frac{\pi}{4}\right]$ tal que $2\cos(2c)e^{\sin(2c)} = e 1$;
- (c) Que existe $c \in \left]0, \frac{\pi}{4}\right[$ tal que $2\cos(2c)e^{\sin(2c)} = 0;$
- (d) Que existe $c \in \left]0, \frac{\pi}{4}\right[$ tal que $2\cos(2c)e^{\sin(2c)} = 0;$
- (e) Que existe $c \in \left[0, \frac{\pi}{4}\right]$ tal que $-2\cos(2c)e^{\sin(2c)} = e 1$.

Questão 16. Em quais dos intervalos dados a função $f(x) = \ln(1 + \frac{1}{x^2})$ é crescente?

- (a) $]-e, +\infty[;$
- (b) $]0, +\infty[;$
- (c) $]-\infty, e[;$
- (d) $]-\infty, 0[;$
- (e) $]-\infty, -1[$ e $]1, +\infty[$.

Questão 17. Sejam $f, g : \mathbb{R} \to \mathbb{R}$ duas funções deriváveis, com:

$$f(1) = 2$$
, $f(2) = 3$, $f(3) = 1$, $f'(1) = 1$, $f'(2) = -2$, $f'(3) = -2$

$$g(1) = 1$$
, $g(2) = 3$, $g(3) = 2$, $g'(1) = 2$, $g'(2) = -1$, $g'(3) = 0$.

Se $h = f \circ g$, calcule o valor de h'(2).

- (a) h'(2) = 1;
- (b) h'(2) = 3;
- (c) h'(2) = 6;
- (d) h'(2) = 2;
- (e) h'(2) = -2.

Questão 18. Use o Teorema de De l'Hôpital para calcular o limite: $L=\lim_{x\to 0}\frac{e^{x^2}-1}{2x^2}$.

- (a) L = 1;
- (b) $L = \frac{e^0}{0}$;
- (c) $L = \lim_{x \to 0} \frac{e^{x^2}}{4x}$;
- (d) O Teorema de De L'Hôpital não pode ser aplicado para calcular este limite;
- (e) L = 0.

Questão 19. Em quais dos intervalos dados o gráfico da função $f(x) = x^4 - 2x^3 + 12x - 4$ tem concavidade para baixo?

- (a) $]-\infty, -1[e]0, +\infty[;$
- (b) $]-1,+\infty[;$
- (c) $]-\infty, 1[;$
- (d) $]-\infty, 0[e]1, +\infty[;$
- (e)]0,1[.

Questão 20. Calcular o máximo M e o mínimo m da função

$$f(x) = 2\sin x - 2\cos x$$

no intervalo $[\pi, 3\pi]$.

- (a) $M = \sqrt{2}, m = -1;$
- (b) $M = 2\sqrt{2}, m = -2\sqrt{2};$
- (c) $M = \sqrt{2}, m = -\sqrt{2};$
- (d) $M = 1, m = -\sqrt{2};$
- (e) M = 1, m = -1.

MAT 103 — Turma 18/28

Complementos de matemática para contabilidade e administração Prof. Paolo Piccione

Prova SUB — C

06 de Julho de 2011

Nome:		
Número USP:		
Assinatura:	-	

Folha de Respostas

1	a	b	c	d	е
2	a	b	c	d	е
3	a	b	c	d	e
4	a	b	c	d	e
5	a	b	c	d	e
6	a	b	c	d	e
7	a	b	c	d	е
8	a	b	c	d	е
9	a	b	c	d	e
10	a	b	c	d	e
11	a	b	c	d	e
12	a	b	c	d	e
13	a	b	c	d	e
14	a	b	c	d	e
15	a	b	c	d	е
16	a	b	c	d	e
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota