MAT 103 — Turma 2011118

Complementos de matemática para contabilidade e administração

Prof. Paolo Piccione 29 de Junho de 2011

PROVA B

Nome:	 	
Número USP:		
Assinatura:		

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na folha de respostas que está no final da prova. É permitido deixar questões em branco.
- Cada questão tem apenas **uma resposta correta**.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.1).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página)
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- \mathbb{R} denota o conjunto dos números reais, e \mathbb{R}^2 é o conjunto de pares ordenados de números reais: $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}.$
- $\sin x$ é a função "seno de x"; $\ln x$ é a função "logaritmo natural de x".
- Intervalos abertos são denotados com [a, b[.

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!! **Questão 1.** Sejam $f, g : \mathbb{R} \to \mathbb{R}$ duas funções deriváveis, com:

$$f(1) = 2, \ f(2) = 3, \ f(3) = 1, \ f'(1) = 1, \ f'(2) = -2, \ f'(3) = -1$$

$$g(1) = 1, \ g(2) = 3, \ g(3) = 2, \ g'(1) = 2, \ g'(2) = 1, \ g'(3) = 0.$$

Se $h = f \circ g$, calcule o valor de h'(2).

- (a) h'(2) = 1;
- (b) h'(2) = -1;
- (c) h'(2) = 6;
- (d) h'(2) = -2;
- (e) h'(2) = 3.

Questão 2. Qual dos seguintes é um dos teoremas de Cálculo estudados nesse curso?

- (a) Teorema de Gralange;
- (b) Teorema de Weiesmar;
- (c) Teorema do Valor Ordinário (TVO);
- (d) Teorema de Rolle;
- (e) Teorema de Caushy.

Questão 3. Determine todos os pontos críticos da função

$$f(x) = \frac{1}{4}x^4 + \frac{4}{3}x^3 - \frac{5}{2}x^2 + 1.$$

- (a) $\frac{1}{4}$, $\frac{4}{3}$ e $\frac{5}{2}$;
- (b) $\frac{-8\pm\sqrt{124}}{6}$;
- (c) 5, 0 e 1;
- (d) -1, 0 e 1;
- (e) -5, 0 e 1.

Questão 4. Considere a função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^3 + 3x$, e seja $g: \mathbb{R} \to \mathbb{R}$ sua inversa. Calcule a derivada g'(14).

- (a) $\frac{1}{f'(14)}$;
- (b) f não admite inversa;
- (c) $\frac{1}{15}$;
- (d) $f'(\frac{1}{14});$
- (e) 15.

9

Questão 5. Em quais dos intervalos dados a função $f(x) = e^{-\frac{1}{x^2}}$ é crescente?

P2-B

- (a) $]-e, +\infty[;$
- (b) $]-\infty, e[;$
- (c) $]-\infty, 0[e]0, +\infty[;$
- (d) $]0, +\infty[;$
- (e) $]-\infty, 0[.$

Questão 6. Qual é a derivada de $f(x) = \ln(1 + e^{2x})$?

(a)
$$f'(x) = \frac{1}{1 + e^{2x}}$$
;

(b)
$$f'(x) = \frac{2e^{2x}}{1 + e^{2x}};$$

(c)
$$f'(x) = \frac{e^x}{1 + e^{2x}};$$

(d)
$$f'(x) = \frac{e^{2x}}{1 + e^{2x}};$$

(e)
$$f'(x) = 2$$
.

Questão 7. Qual das seguintes afirmações é verdadeira?

- (a) Se $f:]a,b[\to \mathbb{R}$ é contínua, então f admite mínimo;
- (b) Se $x_0 \in [a, b]$ é um máximo da f, então $f'(x_0) = 0$;
- (c) Se $f''(x_0) > 0$, então x_0 é um mínimo local da f;
- (d) Se x_0 é um ponto crítico da f, então x_0 é um extremo local da f;
- (e) Se $f:[a,b] \to \mathbb{R}$ é diferenciável, e $x_0 \in]a,b[$ é um extremo local da f, então x_0 é um ponto crítico da f.

Questão 8. Calcular o máximo M e o mínimo m da função

$$f(x) = \cos x - \sin x$$

no intervalo $[0, 2\pi]$.

- (a) M = 1, m = -1;
- (b) $M = \sqrt{2}, m = -1;$
- (c) $M = \sqrt{2}, m = -\sqrt{2};$
- (d) $M = 1, m = -\sqrt{2};$
- (e) M = 1, m = 0.

Questão 9. O que diz o Teorema do Valor Médio (Teorema de Lagrange) a respeito da função $f(x) = \ln(2 + 2\sin x)$ no intervalo $[0, \frac{\pi}{2}]$?

29.06.2011

- (a) Que existe $c \in \left]0, \frac{\pi}{2}\right[$ tal que $\ln(\frac{\pi}{2}) = \frac{\pi \cos c}{2 + 2 \sin c}$;
- (b) Que existe $c \in \left]0, \frac{\pi}{2}\right[$ tal que $\ln 2 = \frac{\pi \ln(2 + 2 \sin c)}{2}$;
- (c) Que existe $c \in \left]0, \frac{\pi}{2}\right[$ tal que $\ln c = \frac{\pi \cos c}{2+2\sin c};$
- (d) Que existe $c \in \left]0, \frac{\pi}{2}\right[$ tal que $\ln 2 = \frac{\pi \cos c}{2+2\sin c};$
- (e) nenhuma das alternativas.

Questão 10. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável duas vezes, com derivada segunda contínua, tal que f(0) = 0, f'(0) = 0 e f''(0) = -1. Calcule o limite:

$$L = \lim_{x \to 0} \frac{f(x)}{1 - \cos(2x)}.$$

- (a) O limite não existe;
- (b) $L = +\infty$;
- (c) L = 0;
- (d) $L = -\frac{1}{2}$;
- (e) $L = -\frac{1}{4}$.

Questão 11. Use o Teorema de De l'Hôpital para calcular o limite: $L=\lim_{x\to 0}\frac{e^x}{x^2}.$

- (a) L = 0;
- (b) $L = \frac{e^0}{0}$;
- (c) O Teorema de De L'Hôpital não pode ser aplicado para calcular este limite;
- (d) $L = \lim_{x \to 0} \frac{e^x}{2x};$
- (e) $L = \frac{1}{2}$.

Questão 12. Qual é a equação da reta tangente ao gráfico da função $f(x) = 2x + e^x$ no ponto de abscissa 1?

- (a) y = -(2+e)x;
- (b) y = ex;
- (c) y = (2 + e)x;
- (d) y = 2x;
- (e) y = (2 e)x.

5

Questão 13. Suponha que $f:[0,1] \to [0,1]$ é uma função derivável, e com f(0) = 0, f(1) = 1 e f'(x) > 0 para todo x. Qual das seguintes afirmações é verdadeira?

- (a) f não é inversível;
- (b) A função inversa $f^{-1}:[0,1]\to[0,1]$ é crescente;
- (c) $f^{-1}(0) = 1$ e $f^{-1}(1) = 0$;
- (d) f não admite máximo em [0,1];
- (e) existe $c \in [0, 1[$ tal que f'(c) = f(0) f(1).

Questão 14. Qual das seguintes afirmações é conseqüência do Teorema de Weierstrass?

- (a) A função f(x) = x não admite mínimo em]0,1[;
- (b) A função $f(x) = x^3$ não admite máximo em $[0, \infty[$;
- (c) A função $f(x) = x^2$ admite máximo em (0, 1];
- (d) A função f(x) = sen(x) admite máximo e mínimo em $(0, 3\pi)$;
- (e) A função $f(x) = x^{13} 2e^{3x} + \ln(1+x^2)$ admite mínimo em [-3, -1].

Questão 15. Qual é o polinômio $P_1(x)$ de grau menor ou igual a 1 que melhor aproxima a função $f(x) = \sin x$ perto do ponto $x_0 = \frac{\pi}{4}$?

- (a) $P_1(x) = -\frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}(1 \frac{\pi}{4});$
- (b) $P_1(x) = \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}};$
- (c) $P_1(x) = -\frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}};$
- (d) $P_1(x) = \frac{1}{\sqrt{2}}x \frac{1}{\sqrt{2}};$
- (e) $P_1(x) = \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}(1 \frac{\pi}{4}).$

Questão 16. Qual dos seguintes é o enunciado do Teorema do Valor Intermediário?

- (a) Se $f:[a,b] \to \mathbb{R}$ é contínua, então $f(a) \le f(x) \le f(b)$ para todo x;
- (b) Se $f:[a,b]\to\mathbb{R}$ é uma função contínua, então existe $c\in]a,b[$ tal que f(b)-f(a)=f(c)(b-a);
- (c) Se $f:[a,b] \to \mathbb{R}$ é uma função contínua, então f tem máximo em a e mínimo em b;
- (d) Se $f:[a,b] \to \mathbb{R}$ é uma função contínua, então f toma todos os valores entre f(a) e f(b);
- (e) Se $f:[a,b] \to \mathbb{R}$ é uma função contínua, então f é derivável em $c \in]a,b[.$

6

Questão 17. Em quais dos intervalos dados o gráfico da função $f(x) = x^4 - 2x^3 + 12x - 4$ tem concavidade para cima?

P2-B

- (a) $]-\infty, 0[e]1, +\infty[;$
- (b) $]-\infty, -1[e]0, +\infty[;$
- (c) $]-\infty, 1[;$
- (d)]0,1[;
- (e) $]-1, +\infty[$.

Questão 18. Qual dos seguintes é o enunciado do Teorema do Valor Médio (Teorema de Lagrange)?

- (a) Se $f:[a,b]\to\mathbb{R}$ não é uma função constante, então não existe $c\in]a,b[$ tal que f'(c)=0;
- (b) Se $f:[a,b]\to\mathbb{R}$ é uma função derivável, então para todo $c\in]a,b[$ temos f(b)-f(a)=f'(c)(b-a);
- (c) Se $f:[a,b]\to\mathbb{R}$ é uma função derivável, então existe $c\in]a,b[$ tal que f(b)-f(a)=f'(c)(b-a);
- (d) Se $f:[a,b] \to \mathbb{R}$ é uma função derivável, então existe $c \in]a,b[$ tal que f'(c)(f(b)-f(a))=(b-a);
- (e) Se $f:[a,b] \to \mathbb{R}$ é uma função derivável, então existe $c \in]a,b[$ tal que f'(c)=0.

Questão 19. Qual é o polinômio $P_2(x)$ de grau menor ou igual a 2 que melhor aproxima a função $f(x) = e^{\cos x}$ perto do ponto $x_0 = 0$?

- (a) $P_2(x) = e ex + ex^2$;
- (b) $P_2(x) = e \frac{ex^2}{2}$;
- (c) $P_2(x) = e ex + \frac{ex^2}{2}$;
- (d) $P_2(x) = ex + ex^2$;
- (e) $P_2(x) = ex^2$.

Questão 20. Calcule a derivada segunda f''(x) da função $f(x) = x^2 e^x$.

- (a) $f''(x) = 2e^x$;
- (b) $f''(x) = (x^2 + 2x)e^x$;
- (c) $f''(x) = (x^2 + 2x + 2)e^x$;
- (d) $f''(x) = (x^2 + 4x)e^x$;
- (e) $f''(x) = (x^2 + 4x + 2)e^x$.

$\mathrm{MAT}\ 103 - \mathrm{Turma}\ 2011118$

Complementos de matemática para contabilidade e administração Prof. Paolo Piccione

Prova 1 — $\boxed{\mathbf{B}}$ 29 de Junho de 2011

Nome:		
Número USP:		
Assinatura:		

Folha de Respostas

1	a	b	c	d	е
2	a	b	c	d	е
3	a	b	c	d	е
4	a	b	c	d	е
5	a	b	c	d	е
6	a	b	c	d	е
7	a	b	c	d	e
8	a	b	c	d	e
9	a	b	c	d	e
10	a	b	c	d	e
11	a	b	c	d	e
12	a	b	c	d	e
13	a	b	c	d	e
14	a	b	c	d	е
15	a	b	c	d	е
16	a	b	c	d	е
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota