MAT 103 — Turma 2011118

Complementos de matemática para contabilidade e administração

Prof. Paolo Piccione 11 de Maio de 2011

PROVA F

Nome:	 	 	
Número USP:			
Assinatura:			

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na **folha de respostas** que está no final da prova. É permitido deixar questões em branco.
- Cada questão tem apenas **uma resposta correta**.
- O valor total da prova é de **10** pontos; cada questão correta vale $\frac{1}{2}$ ponto (0.5) e cada questão errada implica num desconto de $\frac{1}{10}$ de ponto (0.1).
- No final da prova, deve ser entregue apenas a folha de respostas (na última página)
- Boa Prova!

Terminologia e Notações Utilizadas na Prova

- \mathbb{R} denota o conjunto dos números reais, e \mathbb{R}^2 é o conjunto de pares ordenados de números reais: $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}.$
- Ø denota o conjunto vazio.
- Intervalos abertos são denotados com (a, b).

NÃO ESQUEÇA DE POR SEU NOME NA FOLHA DE RESPOSTAS!!! Questão 1. Assinale a alternativa que contém o valor correto de

$$L = \lim_{x \to 0} \frac{\ln(x^3 + 1)}{7x^2}$$

P1-F

- (a) $L = +\infty$;
- (b) L = 7;
- (c) L = 1;
- (d) L = 0;
- (e) $L = \frac{1}{7}$.

Questão 2. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função tal que $\lim_{x\to 0} \frac{f(x)}{\sin x} = 1$. Qual das seguintes afirmações é verdadeira?

- (a) $f(x) = \sin x$;
- (b) f(x) = x;
- (c) o limite $\lim_{x\to 0} f(x) = 0$ não existe;
- (d) $\lim_{x \to 0} f(x) = 1;$
- (e) $\lim_{x \to 0} f(x) = 0$.

Questão 3. Qual é a função f^{-1} inversa da função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$?

- (a) $f^{-1}(x) = \sqrt{x}$;
- (b) $f^{-1}(x) = x^{-2}$;
- (c) $f^{-1}(x) = \frac{1}{\sqrt{x}};$
- (d) $f^{-1}(x) = \frac{1}{x^2}$;
- (e) f não é inversível.

Questão 4. Determine o maior domínio possível no qual fica bem definida a função $f(x)=\sqrt{\frac{e^x}{x^2-3x+2}}$.

- (a) $(-\infty, -2) \cup (-1, +\infty);$
- (b) $(0, +\infty)$;
- (c) $(-\infty, 1) \cup (2, +\infty)$;
- (d) $(0,1) \cup (2,+\infty)$;
- (e) $(-\infty, -1) \cup (2, +\infty)$.

Questão 5. Calcule o seguinte limite:

$$L = \lim_{x \to 0} \frac{x^2 e^x}{\ln(1+x)}$$

- (a) $L = -\infty$;
- (b) L = 1;
- (c) o limite não existe;
- (d) $L = +\infty$;
- (e) L = 0.

Questão 6. Uma função $f: A \to B$ é dita sobrejetora quando:

- (a) se $y_1, y_2 \in B$, e $y_1 \neq y_2$, então existem $x_1, x_2 \in A$ com $f(x_1) = y_1$ e $f(x_2) = y_2$;
- (b) para todo $y \in B$ existe $x \in A$ tal que f(x) = y;
- (c) não é injetora;
- (d) o domínio de f é maior que A;
- (e) para $x_1, x_2 \in A$, com $x_1 \neq x_2$, vale $f(x_1) \neq f(x_2)$.

Questão 7. Calcule o seguinte limite:

$$L = \lim_{x \to +\infty} \frac{x^3 + 3x}{x^2 + 3x}.$$

- (a) $L = +\infty$;
- (b) L = 0;
- (c) $L = -\infty$;
- (d) L = 1;
- (e) o limite não existe.

Questão 8. Qual das seguintes letras do alfabeto grego é a eta?

- (a) ξ ;
- (b) ν ;
- (c) η ;
- (d) ϵ ;
- (e) ρ .

4

Questão 9. O conjunto de todos os números reais que satisfazem a desigualdade $|2^x - 16| \le 16$ é:

- (a) [-5,5];
- (b) [4,5];
- (c) [-4, 5];
- (d) $(-\infty, 4]$;
- (e) $(-\infty, 5]$.

Questão 10. Assinale a alternativa que contém uma inequação verdadeira, para todo x no intervalo (0,1):

- (a) $\log_{10}(x) < e^{-x}$;
- (b) $e^x < \log_2(x)$;
- (c) $\log_{10}(x) > 1$;
- (d) $\log_{\frac{1}{2}}(x) < 5;$
- (e) $\log_{\frac{1}{2}}(x) < \log_{10}(x)$.

Questão 11. Considere $f, g : \mathbb{R} \to \mathbb{R}$. Assinale a alternativa que contém a afirmação verdadeira a respeito do limite:

$$\lim_{x \to 0} f(x)g(x)$$

- (a) Se f e g são limitadas, então o limite sempre existe;
- (b) Se $\lim_{x\to 0} f(x) = 0$ e $\lim_{x\to 0} g(x) = +\infty$, então o limite acima vale 0;
- (c) Se $\lim_{x\to 0} f(x) = 0$ e $\lim_{x\to 0} g(x) = +\infty$, então o limite acima vale $+\infty$;
- (d) O limite pode não existir, mesmo que f e g sejam limitadas;
- (e) Se $\lim_{x\to 0} f(x) = +\infty$ e g é limitada, então o limite acima vale $+\infty$.

Questão 12. O conjunto $S \subset \mathbb{R}$ solução da desigualdade $\left| \ |x| - 2x \right| + x > 5$ é:

- (a) $S = (-\infty, -\frac{5}{2}) \cup (\frac{5}{2}, +\infty);$
- (b) $S = (-\infty, -2) \cup (5, +\infty);$
- (c) $S = (-\infty, 0) \cup (\frac{5}{2}, +\infty);$
- (d) $S = (-\frac{5}{2}, \frac{5}{2});$
- (e) $S = (-\infty, -\frac{5}{2}) \cup (0, +\infty).$

Questão 13. Determine o maior domínio possível no qual fica bem definida a função $f(x) = \frac{1}{\sqrt{x-3}} + \ln(x^2 - 2)$.

(a)
$$(-\infty, \sqrt{2}) \cup (\sqrt{2}, \infty)$$
;

(b)
$$(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$$
;

(c)
$$(-\infty, -3) \cup (3, \infty)$$
;

(d)
$$(-\infty, \sqrt{2}) \cup (3, \infty)$$
;

(e)
$$(-\infty, -\sqrt{2}) \cup (3, \infty)$$
.

Questão 14. A respeito do limite

$$\lim_{x \to 0} \frac{\operatorname{sen}(5x)}{\operatorname{sen}(3x)},$$

é correto afirmar que:

- (a) O limite existe e vale $\frac{3}{5}$;
- (b) O limite existe e vale $\frac{5}{3}$;
- (c) O limite não existe porque sen(5x) = 0 e sen(3x) = 0 quando x = 0;
- (d) O limite existe e vale 0;
- (e) O limite não existe porque sen(5x) e sen(3x) são limitadas.

Questão 15. Qual das seguintes funções é crescente em todo seu domínio?

(a)
$$\log_{10}(x+1)$$
;

(b)
$$e^{-x}$$
;

(c)
$$\log_{10}\left(\frac{1}{x}\right)$$
;

(d)
$$\frac{1}{e^x}$$
;

(e)
$$\log_{0.5}(x+3)$$
.

Questão 16. Calcule o seguinte limite:

$$L = \lim_{x \to 1} \frac{\operatorname{sen}(x^2 - 1)}{x - 1}$$

- (a) o limite não existe;
- (b) L = 2;
- (c) L = 0;
- (d) $L = -\infty$;
- (e) L = 1.

6

Questão 17. Uma função $f:A\to B$ é dita injetora quando:

- (a) para $x_1, x_2 \in A$, com $x_1 \neq x_2$, vale $f(x_1) \neq f(x_2)$;
- (b) se $y_1, y_2 \in B$, e $y_1 \neq y_2$, então existem $x_1, x_2 \in A$ com $f(x_1) = y_1$ e $f(x_2) = y_2$;
- (c) a imagem de f é igual a B;
- (d) para todo $y \in B$, existe $x \in A$ tal que f(x) = y;
- (e) não é sobrejetora.

Questão 18. Qual das seguintes afirmações é verdadeira?

- (a) Se $f: A \to B$ não é inversível, então f não é injetora;
- (b) Se $f: A \to B$ é sobrejetora, então f é inversível;
- (c) Se f é inversível, então f é crescente ou decrescente;
- (d) Se $f: A \to B$ é inversível, então f é injetora;
- (e) Se $f: A \to B$ não é inversível, então f é não é sobrejetora.

Questão 19. Uma função real f é dita limitada quando:

- (a) para $x_1 < x_2$, $f(x_1) < f(x_2)$;
- (b) existe uma constante a tal que f(x) < a para todo x no domínio da f;
- (c) existem constantes a < b tais que $a \le f(x) \le b$ para todo x no domínio da f:
- (d) existem os limites $\lim_{x \to +\infty} f(x)$ e $\lim_{x \to -\infty} f(x)$;
- (e) existe o limite $\lim_{x\to 0} f(x)$.

Questão 20. Considere os conjuntos $A = \{1, 3, 5, 7, 8\}$ e $B = \{1, 3, 4, 5, 6\}$ como subconjuntos do conjunto universo $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Assinale a alternativa que corresponde ao conjunto $X = ((A \cap B)^c - A)^c$.

- (a) $X = \{2, 4, 6, 9, 10\};$
- (b) $X = \{1, 3, 5, 7, 8\};$
- (c) $X = \{1, 3, 5, -7, -8\};$
- (d) $X = \emptyset$;
- (e) $X = \{-1, -3, -5, 7, 8\}.$

MAT 103 — Turma 2011118

Complementos de matemática para contabilidade e administração Prof. Pa
olo Piccione

> Prova 1 — $\boxed{\mathbf{F}}$ 11 de Maio de 2011

Nome:	 	
Número USP:		
Assinatura:		

Folha de Respostas

1	a	b	c	d	е
2	a	b	c	d	е
3	a	b	c	d	е
4	a	b	c	d	е
5	a	b	c	d	е
6	a	b	c	d	е
7	a	b	c	d	е
8	a	b	c	d	е
9	a	b	c	d	е
10	a	b	c	d	е
11	a	b	c	d	е
12	a	b	c	d	е
13	a	b	c	d	e
14	a	b	c	d	е
15	a	b	c	d	е
16	a	b	c	d	е
17	a	b	c	d	е
18	a	b	c	d	е
19	a	b	c	d	е
20	a	b	c	d	е

Deixe em branco.

Corretas	Erradas	Nota