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A NOTE ON THE MORSE INDEX THEOREM FOR GEODESICS
BETWEEN SUBMANIFOLDS IN SEMI-RIEMANNIAN GEOMETRY

PAOLO PICCIONE AND DANIEL V. TAUSK

ABSTRACT. The computation of the index of the Hessian of the actiortfun
tional in semi-Riemannian geometry at geodesics with twaalée endpoints is
reduced to the case offixedfinal endpoint. Using this observation, we give
an elementary proof of the Morse Index Theorem for Riemangieodesics
with two variable endpoints, in the spirit of the original ke’s proof. This
approach reduces substantially the effort required in tbefp of the Theorem
givenin [1, 5, 10]. Exactly the same argument works also éndéise of timelike
geodesics between two submanifolds of a Lorentzian mahifBbr the exten-
sion to the lightlike Lorentzian case, just minor changes raquired and one
obtains easily a proof of the focal index theorem presemntéd]i

1. INTRODUCTION

A geodesic in a semi-Riemannian manif¢}t, ¢) is a smooth curve : [a, b] —
M that is a stationary point for the action functiorfdlz) = %ffg(z, ) dt de-
fined in the set of pathsjoining two given points ofM. If (M, g) is Riemannian,
i.e., if g is positive definite, given one such critical poipntthe celebrated Morse
Index Theorem relates some analytical properties of thergkeariation off at~y
with some geometrical properties of More precisely, thendexof Hess; at -y,
that gives the number @ssentially differendirections in whichy can be deformed
to obtain a shorter curve, equals the number of conjugatgsgpalongy counted
with multiplicity, excluding the endpoints(a) and~(b).

The Index Theorem opened a very active field of research ftir geometers
and analysts, and the original result of Morse was sucadgsixtended in several
directions. Beem and Ehrlich extended the results to theaftimelike Lorentzian
geodesics (see [3]) and to the lightlike Lorentzian casg3[R The case of a Rie-
mannian geodesic with endpoints variable in two submadsfaf M has been
treated by several authors, including Ambrose, Bolton aatisK, (see [1, 5, 10],
see also [17]). Following the approach of Kalish [10], Ethrland Kim have then
proven in [8] the Morse Index Theorem for lightlike geodesidth endpoints vary-
ing on two spacelike submanifolds of a Lorentzian manifdlde case of spacelike
geodesics in semi-Riemannian manifolds was treated byeH#lf[9], where an
extension of the Index Theorem was proven in terms ofMaslovindex of a
curve, and by the introduction of a notion sifjnaturefor conjugate points. Ed-
wards extended in [7] the Morse Index Theorem to the casewfdlly self-adjoint
linear systems of ODE’s, and Smale proved in [16] a genensime of the Index
Theorem for strongly elliptic operators on a Riemannian ifioéth
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The key point in the original Morse’s proof of the theorem whaes introduction
of a functioni : [a,b] — IN that gives the index of the forny, which is the
Hessiantess restricted to the geodesig, ;. Using a suitable subdivision of the
interval [a, b] and some geometrical arguments (see [12, 6]) Morse proed ith
non decreasing and left continuous, with discontinuitiecisely at the conjugate
points, and that the jump efat each discontinuity poir, is given by the value of
the multiplicity of the conjugate point(ty).

When passing to the case of variable endpoints, i.e., whemdmits variations
with curves having endpoints varying on two fixed submadgdP and@ of M,
in which case a stationary point ¢fis a geodesiey that is orthogonal td® and
@ at its endpoints, some obstructions to the use of the ofigigament of Morse
arise, due mainly to the fact that the restricted index fdyrdoes not detect the
influence of the final manifold).

Ambrose [1] gave a proof of the Index Theorem that uses thdiggton argu-
ment, by introducing a family), of localized end-manifoldalong-~, constructed
with the help of the geodesic flow of the normal bundlg?ofround(v(a), y(a)).
This construction leads to technical difficulties (see dikf]), due to the fact
that the submanifold), may lose dimension and differentiability. The proof of
Bolton [5] also uses a subdivision argument, and it avoidsitikroduction of the
manifolds@), but it employs a restricted index function which is no longende-
creasing.

The passage to a restricted index function is avoided irsKaliproof of the In-
dex Theorem in the variable endpoints case (see [10]). $rettticle, it is given an
explicit direct sum decomposition of the spae€™?) = B & BS @ B of vector
fields alongy which are everywhere orthogonal 4oand tangent ta”? and @ re-
spectively aty(a) andvy(b). The index theorem is deduced with a study of the sign
of the index form in each of the three spaces; the definitiocsuch decomposition
is not very natural, and the remaining calculations areerativolved.

Ehrlich and Kim [8] have adapted Kalish'’s proof to the caskgbitlike Lorentz-
ian geodesics, where a suitable quotient space is usedaloggnwith the null
Morse Index Theorem of [2, 3].

The aim of this paper is to show that the proof of the Morse Xritieeorem for
geodesics with two variable endpoints is a simple adaptatfdhe classical proof
for the fixed endpoints case, in the spirit of the originalgérof Morse, which is
well understood. To this goal, the key observation is thatdase of a geodesic
with final point varying on a submanifol@ can be deduced immediately from
the case of a fixed final endpoint (see Theorem 2.7) by usinguaahaplitting of
the spacg(">?). Moreover, we emphasize that the case of causal (nonskeceli
Lorentzian geodesics is essentially analogous to the Ririaia case.

We try to keep all the statements and proofs of the paper ahthémum level
of generality; in particular, we present an approach th#fiamthe Riemannian
and the causal Lorentzian case, obtaining a proof of alleékalts for Riemannian
and causal Lorentzian geodesics at the same time. In Ren@rlarhong other
things we observe that, in the Lorentzian lightlike case, tise of the quotient
bundle employed in [2, 3, 8] is not really essential for thenpatation of the (non
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augmented) index, which allows to give an easier statemettteofocal index
theorem.

It is also important to observe that the result of Theoremapglies to a great
number of situations in semi-Riemannian geometry wherdvibiese Index Theo-
rem maynotwork, like for instance in the case of spacelike geodesissationary
Lorentzian manifolds (see Remark 2.10).

2. THE INDEX THEOREM

Let (M, g) be a semi-Riemannian manifoldy = dim(M), P € M be a
smooth submanifold oM and~ : [a, b] — M be a non constant geodesic/i,
with v(a) € P and5(a) € T, P*. We will say thaty is spacelike, timelike or
lightlike according tay(y, ) positive, negative or zero, respectively; tgusalwe
will mean either timelike or lightlike.

Let V denote the Levi-Civita connection gfand let

R(X,Y)=VxVy - VyVx - Vixy

be the curvature tensor &; moreover, for alp € P and alln € T,P+, letS”
be the second fundamental form Bfin the orthogonal directiom, which is the
following symmetric bilinear form o}, P:

SHP(UI’UQ) = g(n7 Vv1V2)a

whereV; is any extension of, to a vector field tangent t&. Observe that we are
notin principle making any non degeneracy assumptiorPoibut if the metric is
non degenerate df}, P then we can also define a linear m&g : 7, P — T,,P
such tharg(Sf(vl), ’U2) = STILD(Ul, UQ).

Given a (piecewise) smooth vector fidldalong~, we denote by’ the covari-
ant derivative ofi” along~; if V' is piecewise smooth and € [a, b], the symbols
V'(r~) and V'(rT) will mean respectively the left and right limits f'(¢) as
t—T.

If (M, g) is Lorentzian, i.e., if the index of is 1, and~ is timelike, we have
thatT’,,) P is spacelike, in the sense that the restrictio &b 7', ) P is positive
definite. More in general, the restriction of the metjito the orthogonal space
4(t)* is positive definite for alk € [a,b]. If v is lightlike, the restriction of the
metric to the orthogonal space is just positive semi-de&fittiaving a one dimen-
sional kernel spanned by(t)). However, if one assumes thta) & T, ) P, then
againT’,,) P is spacelike.

Let #? denote the vector space of all piecewise smooth vector fiéld®ng-y
such that/ (a) € T,,) P and leti?” be the subspace 61" consisting of thos&”
such thaty(V,4) = 0 andV (b) = 0; moreover, letr” : #” x H” — IR be the
symmetric bilinear form given by:

1)
b

VW) = [ oV W)+ (R V) 3] de = STy (Via), W),
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Observe that if the submanifol# consists of just one point, the term involving its
second fundamental forrﬁf;’(a) in (1) disappears. In this case we’ll write jukt

instead off .
Integration by parts op(V’, W’) gives yet another expression fbf:

(v,w) = /bg(R("% V)y =V W) dt +

a

) +9(V'(0), W (b)) = 9(V'(a), W(a)) = S5y (V(a), W(a)) +

N-1
+ > g(V'(t7) = V() W (),
=1

wherea =ty < t; < ... < ty = bis a partition of{a, b] such thafl” is smooth in
each intervalt;, t;+1],i=0,1,... ,N — 1.
It is well known thaty is a stationary point for the action functional

b
£ = [ otz di

defined in the se® p (5 of all piecewise smooth curves: [a, b] — M joining P
and~(b). Under the viewpoint of Calculus of Variations and Globaladysis, the
vector spacé{” is a subspace of thangent spacef (., atvy, andI”|, . is
the bilinear form given by theecond variatiorof f at the stationary point. We
will be concerned with thendexof 17 in H”, defined as follows. IK is a vector
subspace of”, then the index(I”, K) of I” in K is the number:

ind(I", K) = sup{dim(V) : V subspace ok with 1”|,, < 0},
and we set
(3) ind(I”) = ind(1¥, H?).
The numbeind (1) will be called theMorse Indexof .

A Jacobi field alongy is a smooth vector field satisfying the linear equation
J" — R(%,J)4 = 0. We say that/ is a P-Jacobi field if it satisfies in addition:

(4) J(a) € Tya) P,
and
(5) g(J' (a), w) + Sfyj(a)(J(a),w) =0, forallweT,qP.

If the metric is non degenerate @Q,) P’ we can rewrite (5) as
J'(a) + 84,y (J (@) € Ty P

In this case, a simple counting argument shows that the diimerof the vector
space ofP-Jacobi fields along is precisely equal tan and that the dimension of
P-Jacobi fields satisfying(J,4) = 0 is equal tom — 1 (for P-Jacobi fields the
conditiong(.J,¥) = 0 is equivalent tay(.J'(a),¥(a)) = 0). Observe that if? is a
point, then aP-Jacobi field is simply a Jacobi fieldlalong~ such that/(a) = 0.

Two pointsqy = (to) andgs = (1), to, t1 € [a,b], are said to beonjugate
alongr if there exists a non null Jacobi fieltlalongy with J(tp) = 0 andJ(¢;) =
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0. A point g9 = ~(to), to €]a,b] is said to be aP-focal pointalong- if there
exists a non nullP-Jacobi field.J along~ such that/(t,) = 0; the geometrical
multiplicity 1” (o) of a P-focal point~(to) is the dimension of the vector space
of all P-Jacobi fields alongy that vanish at,. If y(to) is not P-focal, we set
pF (to) = 0.

It is well known that, ify is either Riemannian or causal Lorentzian, aid) €
T,Y(CL)PL \ T, P (see Remark 2.6), then the set Bffocal points alongy is
discrete,' hence finite. Namely, if/;, ... , J,, is a linear basis for the space Bf
Jacobi fields along and F1, . .. , E,, is a parallely transported orthogonal basis
along, then the smooth function(t) = det(g(J;, E;)) has only simple zeroes on
[a,b], i.e., zeroes of finite multiplicity, exactly at those pai§ € [a, b] such that
v(to) is a P-focal point alongy (see for instance [13, Ex. 8, p. 299]). Similarly,
for all g0 = (o), the set of pointg; that are conjugate tg, along- is finite.

We are interested in the kernel of the restriction/ 6fto +*. To this aim, we
introduce the space§” and.7; as follows:

N = {fﬁ : [+ |a,b] — IR piecewise smoothf(a) = f(b) = o};
(6)
Jo = { P-Jacobi fields/ alongy : J(b) = 0}.

If ~ is lightlike we haveN" ¢ ‘HP and in fact\ is contained in the kernel df’
in ¥, as follows directly from (1). We now compute this kernel e tcase of
Riemannian or causal Lorentzian geodesics.

Lemma 2.1. Let (M, g) be either Riemannian or Lorentzian; in the latter case
assume that is causal. The kernel of the restriction of the bilinear fafmto +*

is equal to7; if (M, g) is Riemannian or if M, g) is Lorentzian and is timelike.

If v is lightlike andy(a) € T,Y(a)Pl \ T () P, this kernel is equal tgfy © V.

Proof. Observe that a&-Jacobi field which vanishes at some instant]eyb] is
automatically orthogonal tg, so that we really havely ¢ H”. If V e HP is
in the kernel of (the restriction off”, it follows from (2) and usual techniques
of calculus of variations thadt” — R(%, V) is parallel toy and thatV satisfies
equation (5). Sinc&” — R(¥,V)+ is also orthogonal tg, it follows thatV is

a Jacobi field, except for the case wheres lightlike. In the latter case, we get
V" — R(%, V)4 = ¢7 for some functiony and thereford” — f+ is a Jacobi field,
where f satisfiesf” = ¢ and f(a) = f(b) = 0. Observe thatly, "N = {0}
becausey(a) & Ty, P- O

The proof of the Index Theorem for Riemannian or causal Lizian geodesics
with initial endpoint varying on a submanifold and fixed eaih is a simple adap-
tation of the classical Morse proof of the Index Theorem i ¢hse of fixed end-
points (see for instance [6, 12]). For the reader’'s convergewe outline briefly
such adaptation.

1 As proved in [9], along a spacelike Lorentzian geodesic, orerin general along a semi-
Riemannian geodesic, the conjugate points may accumulate.
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We start with the following:

Lemma 2.2. Let Jy, Jo, ... , J, be any family ofP-Jacobi fields (not necessarily
linearly independent) and, ... , ¢,,%1,... ,¥, be real piecewise smooth func-
tions on[a, b]. Then,

P i Jis ) ) —/ Z(b JZ,Zz/JJ ) dt +
i=1 j=1
g(Z ¢i(b) - J; (b), Z »;(b) - J; (b))
i=1 j=1

Proof. It is a simple computation that uses the Jacobi equatiomutas (5), (1)
and the fact that, foP-Jacobi fields/; and.J;, one hag)(J/, J;) = ¢(J;, J}). O

(2] 7
For Riemannian or causal Lorentzian geodesics, the abavenzegives immedi-
ately the following Corollary:

(7)

Corollary 2.3. Let (M, g) be either Riemannian or Lorentzian; in the latter case
assume that is causal and thaf/(a) € T4, P \ T (o) P. Suppose there are no
P-focal points alongy. LetV,.J € H” be vector fields orthogonal tg, with .J

a P-Jacobi field and such thadt (b)) = J(b). ThenI”(V,V) > I (J,J). In the
Riemannian and timelike Lorentzian case equality holdadf anly ifVV = J, and

in the lightlike Lorentzian case it holds if and onlyif— J € V.

Proof. Setk = dim(P). Fori = 1,... ,k, choose Jacobi field$; such that the
vectors J;(a) are a basis of,,y P and such that/;(a) = —Sﬂa)(Ji(a)). For
i=k+1,...,m— 1, choose Jacobi field$ such that/;(a) = 0 and the vectors
J{(a) form a basis off’,,) P+ N 4(a)*. If v is lightlike chooseJ}, _,(a) = #(a).
Then, theJ;'s form a basis of the space éf-Jacobi fields orthogonal t9. Now,
we can writeV = 37! f,.7;, for piecewise smooth function.

For, defineJ; = J; fori = 1,... .k andJ;(t) = J;(t)/(t — a), Ji(a) = J/(a),
fori=k+1,... ,m—1. The absence aP-focal points alongy and the fact that,
under the hypothesis thafa) € T, ;) P\ T, (o) P, Ty )M = Ty () PO T (o) P,
imply that the vectord;(¢) are a ba3|s fof(t)* for t € [a, b).

Now, we haveJ = 7' ¢, J;, wheree; = fi(b). The desired inequality
follows directly from the Lemma 2.2 (equality implies thdt &; are constant,
except forf,,_1, in the lightlike case). O

We give the following definition:
Definition 2.4. A partitiona =ty < t; < ... < ty = b of [a,b] is said to be
normalif the following conditions are satisfied:
(@) forall: > 1 and allt €]t;,t;+1], the pointy(t) is not conjugate toy(t;)
alongv;
(b) for allt €]to,t1], the pointy(t) is not P-focal alongy.

If v is either Riemannian or causal Lorentzian arfd) € T, P+ \ T.
since the set ofP-focal points alongy is finite, it is easy to see that there exists
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d > 0 such that every partitiony, . .. ,ty of [a,b] with ¢, — ¢; < ¢ for all i is
normal. Namely, in order to (b) be satisfied, one can take be the Lebesgue
number of a covering of by totally normal neighborhoodésee Ref. [6]).

Given a normal partition, we define the following two subsgsaofH’:

Ho = {VGHP:V(ti):O, Vi > 1};

(8)
H?:{VGHP:V

is Jacobivi > 1, andv\[tO b is P—Jacob}.

[tistivi]
Observe that there exists an isomorphism:

N-1
9) ¢ Hy — P At)*

=1
given by settingp(V') = (V(t1),V(t2),...,V(tn-1)). Namely, sincey(t;) and
v(ti+1) are non conjugate for> 1, thetht_ fia] is uniquely determined by the
boundary valued/(t;) and V' (¢;+1); moreover, sincey(t;) is not P-focal, then
V\[to h] is uniquely determined by the valdé&(t; ).

This shows that{] N H% = {0} and that}’ + H? = H", hence we have:
(10) HE o HE =HE.

We are ready to prove the Morse Index Theorem for Riemanmiaausal Lorentz-
ian geodesics with variable initial point:

Theorem 2.5. Let (M, ¢g) be either Riemannian or Lorentzia#, a smooth sub-

manifold of M and~ : [a, b] — M a geodesic (causal, {fM, g) is Lorentzian)

withy(a) € P and5(a) € T, (o) P+ \ T P- Thenind(I”) = 3> uF(to) <
to€la,b|

+o00. (

Proof. For [a, 8] C [a,b], let I, g be the bilinear form (1) for the restricted
geodesicy|, 5 (omitting the term invoIvingSﬁa)); if o = a, then we sef[fy 4 to
be just the bilinear form (1) for the restricted geodesig, 5. Fort €la,b] let's

write i(t) = ind(]f;ﬂ); observe that(h) = ind(I*"). The function : [a,b] —

IN is non decreasing (if < s we can regard{;t] as a restriction 017[1:,3]’ by
extending vector fields ofa, ¢] to [a, s] defining them to be zero dp, s]).

We show that(t) is piecewise constant and left-continuous[erb], and that
i(tT) —i(t™) = uf(t) forall t €]a,b].

Lett € ]a, b] be fixed and choose a normal partitiQ. . . , ¢y of [a, b] such that
t €]ti,tiy1] for somei > 1 (we allowt = ¢, if t = band we set = N — 1).
Let's denote byH’ ([a,t]) andH/ ([a,t]) the spaces defined in (8), replacing the
interval [a, b] by [a, t] (and using the normal partition, . .. , ¢;, ¢ of [a, t]).
We observe that the direct sum (10) (for the inteffuat]) is I[{z’t]—orthogonal, ie.,

I[};t](‘/o,VJ) = 0 for all vy € Hl([a,t]) andV; € HE ([a,t]), which follows

directly from (2).
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Next, we claim that[[fg t]|HP([a g =0 To check this, just observe that for
) 0 )

V € HE ([a,t]) we have:
i1
[[i,t} (‘/7 V) = ‘[[tpmtl](V? V) + Z I[tj,tj+1](v7 V) + ‘[[ti7t} (‘/7 V)
j=1
The claim now follows from Corollary 2.3, by taking the Jachéld J = 0.
It follows thati(t) = ind(I[; ) = ind(I}; ;. H}([a.t])); Observe that as in (9)
the spacé{} ([a, t]) is isomorphic to the spack.. defined by:

H* - @fy(t])J—a
j=1

and we'll call this isomorphisna; : 1% ([a,t]) — H...

If s €]a,b] is sufficiently close ta or, more precisely, it €]t;,t;+1], the ar-
guments above can be repeated by repla¢ingth s (observe, in particular, that
the spacé.. obtained will be the same). We can use the isomorphisinetween
HE ([a, s]) andH, to define a symmetric bilinear fordy onH.. corresponding to
1f} - Clearlyi(s) = ind(I;).

We have now a one parameter family of symmetric bilinear forms on the
(fixed) finite dimensional spack. and it's not difficult to see thal, depends
continuously (actually, smoothly) on?

Let's consider the decompositidid, = H; ® H; © HY, wherel, is positive
(respectively, negative) definite @i (respectively;H; ) andH? is the kernel of
I;. We can also assume that this decompositiof-srthogonal (this is just the
Sylvester inertia Theorem). The dimensiorHof is i(¢).

Since the decompositioi}’([a, t]) & H% ([a,t]) is orthogonal with respect to

I[IZ ;» We know that the kernel of the restriction ff , to HE ([a,t]) (which cor-

responds td+? by the isomorphismy,) is just the intersection ot ([a,t]) and

the kernel ofI[IZ i the last one being given by Lemma 2.1. Observe fhatC

HE ([a,t]) and denote by7, the subspace oft. which corresponds tgy, i.e.,
J. = ¢:(Jo). Inthe lightlike Lorentzian case, write al3d. = ¢,(NNHE ([a,t])).

Observe thatV, is just the set of-tuples of vectors which are parallel 49 so
that \V,, doesn'’t change if we repladeby s in its definition, and therefordV, is
also contained in the kernel &f.

We see now thatt? = 7., except for the lightlike Lorentzian case whét& =
J« ® N.. The dimension off, is just the multiplicity.* (t) of ~(¢) as aP-focal
point.

By the continuous dependence bf on s we see that foe > 0 sufficiently
small ands €]t — €,t + €[, I, is negative definite oft{;” so thati(s) > i(t). For
s €]t — ¢,t] we have alsa(s) < i(t) so thati(s) = i(t), i.e., i is constant on

2To prove this fact, one uses equation (2) to write a expradsiol” on piecewise Jacobi fields
and observes that the integral vanishes. Thus, formula@joes to a finite sum, and the conclusion
follows from the theorem on smooth dependence on the it for the solutions of the Jacobi
differential equation.
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|t — €,t]. This finishes the proof thatis left continuous. From now on we suppose
t <b.

The same continuity argument show that for some 0, we have that/, is
positive definite ort;" for s € [t, ¢+ ¢[ (and positive semi-definite dH.. & N, for
~ lightlike), so thati(s) is bounded above by the codimensioriaf (or H; ® N,
respectively). Ify(t) is not aP-focal point this codimension equal&) so that
i(s) =i(t) fors €]t — e, t + €.

Finally, if v(t) is a P-focal point, by the above argument we only obtain the
inequality i(s) < i(t) 4+ uf'(t). We'll show below that fors €]t, ;1] and for
V = (v1,...,v;) € H. we havel,(V,V) < I,(V, V), the inequality being strict
if v; # 0 (orif v; is not parallel toy, in casey is lightlike). But this hypothesis ony
holds if V' € J,. andV ## 0, observing that the corresponding vector fieml(V)
onH% ([a,t]) is an unbroken Jacobi field. We conclude then théV, V) < 0 for
nonzerol’ € J, and hence for all nonzes € H, & 7., which implies that/, is
negative definite on this space aitd) > i(t) + u”(t).

We are now left with the proof of the inequalify(V, V) < I,(V, V). Towards
this goal, letl; € H%([a,t]) andVa € HE ([a, s]) be the vector fields correspond-
ingtoV € H,,i.e,Vi = ¢; (V) andVy = ¢; (V). ExtendV; to zero onlt, s].
Then,I;(V,V) = I[ZS](Vl, Vi) andIy(V,V) = I[IZ,S](VQ, V3). The vector fieldd;
andV; differ at the most in the intervat;, s|. The restriction of; to [t;, ¢] is the
only Jacobi field such thaf (t;) = v; andV; (t) = 0, while the restriction o4 to
[ti, s] is the only Jacobi field such th&k(t;) = v; andVa(s) = 0. We have:

L(V,V) = L,(V,V) = I, g(Vi, V1) — I, 5 (V2, V2).

We now apply Corollary 2.3 to the geodesig,, , (with starting and ending points
interchanged), for the Jacobi field, vector field; and submanifold equal to the
point {v(s)}. For the strict inequality we need the hypothesis that: 0 (re-
spectively,v; not parallel toy, in the lightlike Lorentzian case), since this implies
thatV; is not Jacobi irf¢;, s] (respectively, does not differ from a Jacobi field by a
multiple of 4, in the lightlike Lorentzian case). This concludes the proo O

Remark2.6. If (M, g) is Lorentzian, then the case thigla) € T’y P N T,Y(CL)PL
may happen only when is lightlike and P is a degenerate submanifold-gfa),

i.e., the restriction of to 7', P’ is degenerate. Observe that in this case the
thesis of Theorem 2.5 is clearly false. For instanceMf = IR? andg is the

flat Minkowski metricdz? — dt?, P is the diagonal: = ¢ and~ is any segment
contained inP, then every point ofy is P-focal.

We now want to extend the Morse Index Theorem to the case ovasiable
endpoints. To this end, we now assume tRadnd () are smooth submanifolds of
M, and thaty : [a,b] — M is a geodesic withy(a) € P, §(a) € T,Y(a)PL,
Y(b) € Q and(b) € T, Q.

We denote byH () the vector space of all piecewise smooth vector fiélds
along~y, with g(V,4) = 0, V(a) € T, P andV' (b) € T,y Q. Moreover, we will
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consider the symmetric bilinear forit”?) on =) given by:
(11) 1PV, W) = I7(V, W) + S5, (V (b), W (1))
Let 79 denote the subspace Bf"*?) consisting ofP-Jacobi fields, and let
be the symmetric bilinear form qffY obtained by the restriction df">?). Then,
it is easily computed from (1) using integration by parts:
A1, J2) = 82, (Ji(b), Ja(0) + g(J1(b), Ja(b)),  J1, Jo € TC.
Moreover, fort € [a, b], we introduce the spacé[t]:

Jt] = {J(t) 2 Jis P—Jacobi} C TyipyM;

observe that, fof € |a, b], v(t) is not P-focal if and only if 7[t] = T, ;) M.
We can now state and prove the following extension of the Blbrdex Theorem
for geodesics between submanifolds:

Theorem 2.7. Let (M, g) be a semi-Riemannian manifol#, () submanifolds of
M and~ : [a,b] — M be a geodesic such tha(a) € P, §(a) € T,y P,
v(b) € Q and(b) € T, Q*. Assume that7[b] > T, ;,)Q. LetV be a subspace
of HP®) that contains the spacg® of P-Jacobi fields alongy in %), Then,
ind(I7Q) V) = ind(I”, H N'V) + ind(A, J).

Proof. The spacét” is given by the subspace &f(>%) consisting of those vec-
tor fieldsV such thatl’ (b) = 0; moreover, the restriction df>?) to H* is pre-
cisely I”. Defining 7, as in formula (6), let7; be any subspace ¢f€ such that
J? =T ® Jy. Clearly, H(PQ) = 1P @ 7;, because7 [b] O T, Q; moreover,
from (11) it follows immediately that this decompositionZ/i¢>?)-orthogonal, i.e.,
IPRNV,.J) = 0forall V € HF and allJ € J;. SinceV contains7y, then
V=V nHP)® Ji. Henceind(IP9) V) = ind(I”, HP NV) 4 ind(A, 7).
To conclude the proof, we simply observe thad (.4, 7;) = ind(A, J), because
Jo C Kel"(.A). O

Remark2.8 One can consider suitable Hilbert space completigfhsandH (£>%)

of the spaceg{” and H("?) with respect to ani/'-Sobolev norm. Then, the
bilinear formsI*” and (@) extend uniquely to bounded symmetric bilinear forms
on these Hilbert spaces. Observe that a bounded symmadinedsiform on a
Hilbert space and its restriction to any dense subspacethawsame index. Using
a Hilbert space approach, Theorem 2.5 can be proven alteriyaty means of the
spectral theory for compact self-adjoint operators (sée Theorem 5.9.3] for an
idea of such a proof).

Remark2.9. If (M, g) is Riemannian ant? = (%), then Theorems 2.5 and 2.7
give as a particular case the Index Theorem of [10, p. 342}la@alder versions
of the Morse Index Theorem presented in [1, 5]. In [8] it wasefty mentioned the
fact that results analogous to the Riemannian case coulg &pghe Lorentzian
timelike case. As to the lightlike case, in References [B]3he authors consider
the index of (@) in the quotient spacé((">?) /N (recall formula (6)); in this
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situation,\V is contained in the kernel df”>%). By a simple linear algebra argu-
ment one proves that the index of a bilinear form in a quotspaice by a subspace
of its kernel is the same as the index of the form in the origamace. Hence,
Theorems 2.5 and 2.7 generalize the results of [2, 3, 8].

Remark2.1Q The result of Theorem 2.7 becomes significant when the sabspa
V of H(P®@) is chosen in such a way thaid(I”, 1" N V) is finite; observe
thatind(.A4, 7) is always finite. If one considers geodesics in semi-Rienamnn
manifolds with metric of index greater or equal 2p or spacelike geodesics in

Lorentzian manifolds, theind(IP,HP) is in general infinite (see Refs. [4, 9] for
further results in this direction). Nevertheless, therietivn to suitable subspaces
may Yield the finiteness of the index, and, possibly, weakesions of the Morse
Index Theorem may apply. For instance (see Ref. [15]), ¢etissider the case of a
stationary Lorentzian manifoldM, g), i.e., a Lorentzian manifold endowed with
a timelike Killing vector fieldY. Let~ be a spacelike geodesic; we consider for
simplicity the case that the initial manifold reduces to a point. The Killing vector
field Y induces the conservation lay(y,Y) = C, for all geodesicy; then, one
can consider only variationg, of v such thayy(,,Y") = Cs, and the correspond-
ing variational field\” = % <_o"s belongs to the space:

V= {v :3Cy € Rsuchthay(V',Y) — g(V,Y') = CV}.

It is a simple observation that contains all the Jacobi fields along moreover,
using the Sobolev Embedding Theorem one proves that theebiliformI? is
given by a self-adjoint operatdr on the closure o’ N H* in a suitable Sobolev
space completion of(”’, whereT is acompact perturbatiorof the identity (see
Ref. [11]). Thus)y N H(P9Q) satisfies the hypothesis of Theorem 2.7 and it is such
thatind(I”,V N HT) is finite. The question of whether such index equals the
geometrical index ofy remains still unanswered.
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