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vector is discontinuous. We shall require that at such points the two
tangent vectors
=
+

that is, thcy point into the same half of the null cone.
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Proposition 4.5.1

Let % be a convex normal coordinate neighbourhood about ¢. Then the
points which can be reached from g by timelike (respectively non-
spacelike) curves in % are those of the form exp, (X), X e 7, where
g(X, X) < 0 (respectively < 0). (Here, and for the rest of this section,
we consider the map exp to be restricted to the neighbourhood of the
origin in 7, which is diffeomorphic to % under exp,,.)

In other words, the null geodesics from g form the boundary of the
region in % which can be reached from ¢ by timelike or non-spacelike
curves in %. This is fairly obvious intuitively but because it is funda-
mental to the concept of causality we shall prove it rigorously. We
first establish the following lemma:

Lemma 4.5.2

In % the timelike geodesics through ¢ are orthogonal to the three-
surfaces of constant o (o < 0) where the value of & at p € % is defined
" to be glexp, 1 p, exp,~'p).

The ]:)roof is based on the fact that the vector representing the separa-
tion of points equal distances along neighbouring geodesics remains
orthogonal to the geodesics if it is so initially. More precisely, let X(t)
denote a curve in T}, where g(X(t), X({)) = — 1. One must show that
the corresponding curves A(f) = exp,(s,X(t)) (s, constant) in %, where
defined, are orthogonal to the timelike geodesics y(s) = exp,(sX(¢,})
(t, constant). Thus in terms of the two-surface a defined by
2(s,1) = exp,(sX(f)), one must prove that
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(see figure 11). Now

el -, (P2 2\, . (2 D¢
257\ s’ a:.)‘g 226 at)  I\as B ar)



104 PHYSICAL SIGNIFICANCE OF CURVATURE [4.5
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Ficure 11. In a normal neighbourhood, surfaces at constant distance from ¢
are orthogonal to the geodesics through gq.

The first term on the right is zero as é{2s is the unit tangent vector to
the timelike geodesics from ¢. In the second term one has from the
definition of the Lie derivative that
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Therefore g(8/0s, &fét) is independent of s. But at s = 0, (9/at), = 0.
Thus g(2fes, ¢[ét) is identically zero. 1

Proof of proposition 4.5.1. Let C, denote the set of all timelike vectors
at ¢. These constitute the interior of a solid cone in 7, with vertex at
the origin. Let y(t) be a timelike curve in % from g to p and let ¥(t) be
the piecewise C? curve in 7, defined by ¥(t) = exp, ~I(y(t)). Then
identifying the tangent space to 7, with 7, itself, one has

(Blat)_r [¢ = (2f2t)5],-
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Therefore at g, (2/ot); will be timelike. This shows that the curve y(t)
will enter the region C,. But exp, (C,) is the region of % on which o is
negative and in which by the previous lemma the surfaces of constant
o are spacelike. Thus & must monotonically decrease along y(t) since
(2/ét), being timelike can never be tangent to the surfaces of constant o
and since at any non-differentiable point of y(f) the two tangent
vectors point into the same half of the null cone. Therefore p € exp,(C,)
which completes the proof for timelike curves. To prove that a non-
spacelike curve y(t) remains in exp, (C,), one performs a small varia-
tion of y(t) which makes it into a timelike curve. Let Y be a vector
field on 7}, such that in % the induced vector field exp,.(Y) is every-
where timelike and such that g(Y, (d/2t),|,) < 0. For each € > 0 let
B(r,€) be the curve T, starting at the origin such that the tangent
vector (8[or), equals (8f2t);];~,+€Y |y, 9. Then B(r,€) depends differ-
entiably on r and €. For each € > 0, exp, (B(r,€)) is a timelike curve
in % and so is contained in exp,((;). Thus the non-spacelike curve

exp, (B(r, 0)) = y(r) is contained in exp, (C,) = exp, ((_J'Q). O

Corollary

If p € % can be reached from ¢ by a non-spacelike curve but not by a
timelike curve, then p lies on a null geodesic from g. O

The length of a non-spacelike curve y(¢) from ¢ to p is

sran = [-o(3 2 a

where the integral is taken over the differentiable sections of the curve.

In a positive definite metric one may seek the shortest curve between
two points but in a Lorentz metric there will not be any shortest curve
as any curve can be deformed into a null curve which has zero length.
However, in certain cases there will be a longest non-spacelike curve
between two points or between a point and a spacelike three-surface.
We deal first with the situation when the two points are close together.
We shall then derive necessary conditions in the general case when the
two points are not close. The sufficient condition in this case will be
dealt with in §6.7.

Proposition 4.5.3

Let g and p lie in a convex normal neighbourhood #. Then, if ¢ and p
can be joined by a non-spacelike curve in %, the longest such curve
is the unique non-spacelike geodesic curve in % from ¢ to p. Moreover,



