MAT 105 – Vetores e Geometria Analítica PROVA 2 — GABARITO

Prof. Paolo Piccione

29 de junho de 2005

- (1) O plano π que é ortogonal à reta r e passante por P tem equação : x-3y+z+2=0. A interseção de π com r é o ponto Q=(-1,0,-1). A distância entre P e r é, por definição, a distância entre P e Q: dist $(P,Q)=\sqrt{2^2+2^2+4^2}=\sqrt{24}=2\sqrt{6}$.
- (2) A reta r passante por P e ortogonal ao plano π_2 é:

$$r: \begin{cases} x = 1 + 3t, \\ y = 2 - t, \\ z = 3 - t. \end{cases}$$

O ponto Q desejado é a interseção de r com π_1 , dada por Q = (4, 1, 2).

(3) O plano π que passa por A, B e C é dado pela equação x-2y+z+1=0. Esse plano contem o ponto D, o que prova que A, B, C e D são coplanares. Os vetores $BA = (1,1,1)_E$ e $CA = (2,1,0)_E$ não são L.D., o que prova que os pontos A, B e C não são alinhados, e portanto eles são os vértices de um triângulo. A reta r pelos pontos B e C tem equações paramétricas:

$$r: \begin{cases} x = 1 - t, \\ y = 1, \\ z = t. \end{cases}$$

O plano ρ passante por A e ortogonal a r tem equação cartesiana ρ : x-z-1=0; a interseção de ρ com r é o proprio ponto B. Isso quer dizer que o triângulo ABC é retângulo. A altura desse triângulo relativa ao vértice A é a distância entre A e B: $dist(A, B) = \sqrt{3}$.

(4) O plano π passante por $A, B \in C$ é ortogonal ao vetor $AB \times AC$. A equação cartesiana de π é calculada facilmente: π : 2x - y + 2z - 6 = 0. A reta pela origem do sistema de coordenadas e ortogonal a π tem equações paramétricas:

$$r: \begin{cases} x = 2t, \\ y = -t, \\ z = 2t, \end{cases}$$

e a interseção de r com π é o ponto $Q=(\frac{4}{3},-\frac{2}{3},\frac{4}{3})$. Este é o ponto de π mais próximo à origem do sistema de coordenadas.

(5) O plano π_1 é ortogonal ao vetor $N_1 = (2, -3, 4)_E$ e o plano π_2 é ortogonal ao vetor $N_2 = (1, -1, -1)_E$. Os vetores N_1 e N_2 são L.I., o que prova que π_1 e π_2 não são paralelos. O angulo θ entre π_1 e π_2 é, por definição, o ângulo entre N_1 e N_2 , cujo cosseno é calculado usando o produto escalar: $\cos \theta = N_1 \cdot N_2 / ||N_1|| \, ||N_2|| = 1/\sqrt{87}$.