Details on proof of lemma 10 in chp. 4 of O'Neill's Semi-Riemannian Geometry with Applications to Relativity

G. Ramos

gustavopramos@gmail.com

M is a paracompact smooth manifold, hence metrizable.

Let d be a metric on M which induces the same topology M has as a smooth manifold to the metric space (M, d).

Let \mathcal{D} be a locally finite open refinement of the open covering \mathcal{C}^* . We may suppose that given $D \in \mathcal{D}, \ \nexists \tilde{D} \in \mathcal{D}$ such that $\tilde{D} \subset D$. (one may obtain another locally finite open covering $\tilde{\mathcal{D}}$ by taking out the sets $D \in \mathcal{D}$ for which $\exists \tilde{D} \in \mathcal{D}$ such that $D \subset \tilde{D}$)

Let us construct an open covering \mathcal{B} of M such that given $A, B \in \mathcal{B}$, if $A \cap B \neq \emptyset$ then there exists C in \mathcal{C}^* such that $A \cup B \subset C$.

Given $p \in M$:

Let U_p be an open neighborhood of p which intersects a finite number of sets in \mathcal{D} , which we shall denote $D_{p,1}, ..., D_{p,n}$. \mathcal{D} is a open covering of M, so we may suppose that there exists $D \in \mathcal{D}$ such that $U_p \subset D$. (indeed, as \mathcal{D} is an open covering of M, there exists $D \in \mathcal{D}$ such that $p \in D$ so $\tilde{U_p} = U_p \cap D$ is an open neighborhood of p which intersects a finite number of elements in \mathcal{D})

Fix $D^p \in \mathcal{D}$ such that $U_p \subset D^p$.

By renumbering the sets in \mathcal{D} which intersect U_p , we may suppose $D_{p,1}, ..., D_{p,k}$ are all the sets $D_{p,i}$ such that $p \notin D_{p,i}$, where $0 \leq k \leq n$.

If k = 0, let $r_p > 0$ and $V_p = U_p \cap B_{r_p}(p) \cap D_{p,1} \cap ... \cap D_{p,n}$.

Otherwise, note that given j = 1, ..., k; $d(p, D_{p,j} - D^p) > 0$. (indeed, D^p is an open neighborhood of p and $p \notin D_{p,j}$ for j = 1, ..., k)

Let $r_p > 0$ be such that $r_p \leq \frac{1}{3} \min\{d(p, D_{p,j} - D^p) : j = 1, ..., k\}.$

Let $V_p = U_p \cap B_{r_p}(p) \cap D_{p,k+1} \cap \ldots \cap D_{p,n}$. (if k = n, let $V_p = U_p \cap B_{r_p}(p)$)

Finally, let $\mathcal{B} = \{V_p : p \in M\}.$

Let us prove that \mathcal{B} has the desired properties.

Given $p, q \in M$, there are two possible cases:

1. $p \in D^q$ (or $q \in D^p$):

In this case, $V_q \subset D^p$ $(V_p \subset D^q)$ because D^p (D^q) is one of the $D_{q,i}$ $(D_{p,i})$ such that $q \in D_{q,i}$ $(p \in D_{p,i})$.

Therefore, $V_p \cup V_q \subset D^p$ (D^q) and we have the desired property because \mathcal{D} is an open refinement of \mathcal{C}^* .

2. $p \notin D^q$ and $q \notin D^p$:

We shall show that $V_p \cap V_q = \emptyset$. Suppose otherwise.

 $V_p \subset B_{r_p}(p), V_q \subset B_{r_q}(q)$ and $V_p \cap V_q \neq \emptyset$, so there exists $x \in B_{r_p}(p) \cap B_{r_q}(q)$.

On one hand, $d(p,q) \leq d(p,x) + d(x,q) \leq r_p + r_q$.

On the other hand, $V_p \cap V_q \neq \emptyset$ so D^p is one of the $D_{q,i}$ which intersects V_q but $q \notin D^p$ and conversely for D^q with respect to p. Therefore, $d(p,q) \ge d(p, D^q - D^p) \ge 3r_p$ and $d(p,q) \ge d(q, D^p - D^q) \ge 3r_q$ so $d(p,q) \ge \frac{3}{2}(r_p + r_q)$.

Contradiction.