SECTION 2

Causality and Chronology

2.1. DEFINITION. A trip is a curve which is piecewise a future-oriented timelike
geodesic. A trip from x to y is a trip with past endpoint x and future endpoint y.
We write x « y (read x chronologically precedes y) if and only if there exists a trip
from x to y. Thus, the relation x « y states the existence of points x¢, X, -+ - , X,
with n = 1, a timelike geodesic called a segment having past endpoint x;_; and
future endpoint x;, for each i = 1,---,n, where we set x, = x, x, = y. Note
that since the curves defined here are required to contain all their endpoints, the
situation depicted in Fig. 9 (a “‘bad trip”’) in which the segments accumulate at a
point p cannot occur.’

F1G. 9. A “‘bad trip” has an infinite number of *‘joints” accumulating at p

2.2. Remark. We shall see in 2.23 that timelike curves could equally well have
been used in place of trips to define «, which would perhaps have been more
physical, but trips turn out to be easier to handle mathematically. Compare [18§].

Observe that in the above we could always choose n = 1 for x « yin Minkowski
space. On the other hand, space-times exist for which it is necessary for n to be
allowed to be indefinitely large. An example (a “mutilated Minkowski space”) is
given in Fig. 10. A less artificial example, which shows that we need to allow
n = 2, is afforded by the anti-deSitter space (Fig. 7; see also Fig. 11).

2.3. DEFINITION. A causal trip is defined in the same way as a trip except that
causal geodesics, possibly degenerate, replace the timelike geodesics of 2.1. We
write x < y (read x causally precedes y) if and only if there is a causal trip from
x to y. See [18].

2.4. Remark. Note that x < x for all x € M, since degenerate causal geodesics
are allowed. On the other hand, x « x signifies the existence of a closed trip in M,
that is, a trip whose past and future endpoints are identical. (Minkowski space,
for example, possesses no closed trips.) A closed nondegenerate causal trip is
signified by the existence of a pair of distinct points x, y such that x < yand y < x.

! A trip with infinitely many segments is allowable of course, provided it is future- or past-endless.
11



12 SECTION 2

AU IO

777D y=xn

xn_1 iz i

— iy W X p - 2
/

/
! .

/7110700000000 st oo, xsxo

727 . —

FI1G. 10. From Minkowski 2-space the half-lines t = k, (—1)*x = 0 are removed. To express the relation
X <« y, trips with arbitrarily large numbers of segments are required
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FIG. 11. The space-time M is Minkowski space with one point removed. The set J*(a) is not closed since
the null geodesic beyond the removed point, which extends that from a, is not part of J*(a),

whereas it is part of 3J *(a). (Small open circles in diagrams always denote removed points.)

2.5. PROPOSITION.
a<x b implies a<b;
axb, b«c implies a<c;

a<b, b<c implies a<c.

2.6. DEFINITION. The set I*(x) = {ye M|x « y} is called the chronological
(or open) future of x; I™(x) = {ye M|y « x} is the chronological past of x;
JT(x) = {ye M|x < y} is the causal future of x; J™(x) = {ye M|y < x} is the
causal past of x. The chronological or causal future of a set S = M is defined by
I7[S) = U I (%), JT[S] = U J"(x), respectively, and similarly for the pasts of

xeS xeS

S. (In general there will be a self-evident “duality”” obtained by interchanging
past and future in any result. The dual version of result will not normally be
stated explicitly in what follows.) The slight abuse of notation I *[y], etc., where y
is a trip, etc., will also be used.

2.7. Remark. In Minkowski space with the usual coordinates (¢, x,y, z), if
a=(0,0,0,0), then I*(a) = {(t,x, y, 2)t > (x* + y* + z%)!?}. Also J¥(a) is the
same but with > replacing “>.”” Here I*(a) is an open set and J *(a) a closed
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set. In fact, every chronological future is open (cf. 2.9) but not all causal futures are
closed. As an example of this, obtain the causal future J*(a) in Fig. 11,

2.8. PRrROPOSITION. I ¥ (a) is open for any ae M.

Proof. Let x € I"(a); then there is a trip y from a to x. Let N 3 x be a simple
region and let y be a point in N, other than x, on the terminal segment of y. Now
the vector exp; !(x) is timelike and future-pointing (being a tangent to the terminal
segment at y), and so belongs to the open set Q of timelike future-pointing vectors
in exp, '[N]. Since exp, is a homeomorphism in this neighborhood, it follows
that exp, Q is an open set in M (containing x) which lies in I (y) and therefore
in I"(a) (by 2.5), thus proving the result.

2.9. CoROLLARY. I*[S] is open, for any S = M.

2.10. PROPOSITION. x € I7(y) if and only if ye I (x); xeJ*(y) if and only if
velJ (x).

2.11. ProrosiTION. I1[S] = I*[S].

Proof. If y » x, x € §, then y » z, ze S since I (y) is open.

2.12. PROPOSITION. IT[S] = IT[I*[S]] = J¥[S] = JY[J*[S]].

Proof. This follows from 2.5, from the fact that a « b implies the existence of ¢
with @ « ¢ « b and from the corresponding statement for a < b.

2.13. DerFINITION. Let N be a simple region and define [36], [19] the world-
function ®:N x N - R by ®(x,y) = glexp; (v), exp; }(y)); in other words,
®(x, y) is the squared length of the geodesic xy. Clearly ®(x, y) = @(y, x) and is
positive, negative or zero according as xy is timelike, spacelike or null.

2.14. PROPOSITION. ®(x, y) is a continuous function of (x,y) in N x N.

Proof. See 1.11, [36],[19].

2.15. LemMA. The point pe N being kept fixed, the hypersurfaces H, g
= {x|®(p, x) = K} are smooth in N (except at x = p) and are spacelike, timelike
or null according as the constant K is positive, negative or zero. Furthermore, the
geodesic px is normal to H,  at x.

Proof. The smoothness follows from the fact that exp, is well-behaved in N,
the equation of H,, x in Minkowski normal coordinates being 1> — x> — y* — z?
= K, which is smooth (except at the origin, when K = 0). A smooth hyper-
surface is said to be spacelike, timelike, or null according as its normal vectors are
timelike, spacelike, or null. Let g be a point of H, ¢ and V a tangent vector to
H, g at q. Allowing q to vary on H, ¢ along a curve with tangent vector V, so that
pq describes a 1-parameter system of a. p. geodesics of squared length K, we see
that I belongs to a Jacobi field vanishing at p. Hence, by 1.16, V must be orthog-
onal, at ¢, to the direction of pgq. The result follows.

2.16. LEMMA. Let N be a simple region. Suppose a,b,ce N are such that ab
and bc are both future-causal, having distinct directions at b if both are null, or
suppose a timelike curve or trip y exists in N from a to c. Then ac is future-timelike.

Proof. Consider ®(x) = ®(a, x), as x varies from a to ¢ along § = ab U bc
or along y. As x proceeds in a future-causal direction defined by the vector T,
the rate of change of ® is measured by T'V,® (= T(®) = dT) = g(g~ ' d®, T))
= gijTiVj(D. This, by 2.15, is nonnegative whenever ax is future-causal (V®, or
g~ ' d® being normal to ® = const., i.e., to H, o) and strictly positive unless ax
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is null and T tangent to ax. (The scalar product of two future-causal vectors is
nonnegative, being zero only if both are null and proportional.) Hence ®(c)
= ®(a, ¢) > 0 and ac must be future-timelike, since exp, 'x never leaves the future
component of the timelike vectors at a.

2.17. Remark. The proof of the lemma in 2.16 is based on 2.15 for causal
ax (K =z 0). Alternatively, the argument could equally well have been given using
the result only for null ax (K = 0). Essentially we require only the fact that the
light cone H, ,, being a null hypersurface (except at a) cannot be crossed from
the inside to the outside by § or 7.

It is of some interest to note that the lemma in 2.16 is false for a V with torsion
(but with Vg = 0 still holding). This is illustrated in Fig. 12. The light cone with
respect to V is a timelike surface, being generated by null curves which are geodesics
with respect to V, but curl into the inside of the light cone with respect to V. Thus,
B or y can escape from inside to outside the light cone.

light cone with
respect to

timelike curve

light cone with
respect tov

spacelike geodesic
with respect to

F1G. 12. If we replace the Riemannian connection V by another connection V which still preserves the
metric (Vg = 0) but which possesses torsion, then 2.16 becomes untrue. We have a timelike
curve connecting a to b, but the geodesic ab (according to V) is spacelike

2.18. PROPOSITION.
a<b, b<c implies a<«c;

a<b, b«c implies a<«c.

Proof. Without loss of generality, suppose a « b and b < ¢. Let a be a trip
from a to b and y a causal trip from b to c. Then y (being compact)? can be covered
by a finite number of simple regions N, ---, N,. (It is clear that we can assume
that y has no closed-loop parts, since redundant portions can be deleted.) Set
xo = be N, , say. Let x, be the future endpoint of the connected component of
y N N;, from x,. Choose y; € N, on the final segment of a, with y; # x, (see
Fig. 13). Then by the lemma in 2.16, y,x, is future-timelike. Now, either x, = ¢,
in which case the result is established, or x; ¢ N, , whence x, € N, , say. In the
latter case, let x, be the future endpoint of the connected component of y N N,
from x, and choose y, € N;, on y;x; with y, # x;. Then either x, = ¢, in which
case we are finished, or we can repeat the argument. The process must eventually

terminate, since there are a finite number of connected components of the y n N;;.

2CtL13.
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F1G. 13. Construction for 218, to show that the trip a from a to b together with the causal trip y from
b to ¢ can be replaced by a single trip from ato ¢

2.19. PROPOSITION. If o is a null geodesic from a to b, and B is a null geodesic
from b to c, then either a « c or else a U B constitutes a single null geodesic from
atoc.

Proof. If o U B fails to constitute a single geodesic, this is because the future
direction of a at b does not agree with that of g at b (a “joint™). By 2.16, if x
on o and y on f are sufficiently close to (but distinct from) b, then there is a timelike
geodesic from x to y. Thus a < x « y < ¢, whence a « ¢ by 2.18.

2.20. PrROPOSITION. If a < b but a « b, then there is a null geodesic from a to b.

Proof. Let y be a causal trip from a to b. If y contains a timelike segment, then
repeated application of 2.18 yields a « b. If all segments of y are null, then repeated
application of 2.19 yields a « b unless y is a null geodesic.

2.21. Remark. The relation: “a < b but a « b”; is sometimes written a — b
(or a /" b) and is termed horismos [18], but I shall not concern myself with it
explicitly here. The concepts of <, « and — can refer to sets M more general
than space-times, e.g.,, to a causal space (see Kronheimer and Penrose [18]),
defined by relations <, « on a set M subject to 2.5 and 2.18, and, in addition,
to the requirements that a « a hold for no a and that a < b, b < a hold for no
distinct pair a, b (stating the exclusion of “closed trips’” or “closed causal trips™).

2.22. Remark. The converse of 2.20 is false. (In the example illustrated in
Fig. 14, there is a null geodesic from a to b, but a « b.) Observe, also, that we
can have two distinct null geodesics from a to ¢ and not have a « ¢ (cf. Fig. 14),
but it is a consequence of 2.19 that any point x on the continuation of either
geodesic beyond ¢ must satisfy a « x.

2.23. PROPOSITION. a < b if and only if there is a timelike curve y from a to b.

Proof. Suppose y exists. Cover y with a finite number of simple regions N;.
Let xo = a€ N, and let x; be the future endpoint of the connected component
of y n N,,, from x,. Then by 2.16, x,x, is future-timelike. Either x, = b, in which
case a « b as required, or else x; ¢ N;, so x, € N, , say. Let x, be the future end-
point of the connected component of y " N, , from x;. Then x;x, is future-
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FIG. 14. A two-dimensional “Einstein Universe” constructed by identifying (—1,t) with (1,¢t) in the
strip —1 2t £ 1 of Minkowski 2-space. Here a is (0,0), b is (0,2) and ¢ is (1,1). We have
a <« b even though b lies on a null geodesic through a

timelike. Either x, = b, whencea « b, orelse x, ¢ N; so x, € N;, and the argument
can be repeated. This terminates since there are a finite number of connected
components of the y N N,.

Conversely suppose a « b and let a be a trip from a to b. I shall show that the
“joints” of & can be smoothed so as to yield a timelike curve. Let 4 and 4 be
consecutive segments of . Let g be a point which is the future endpoint of the
timelike geodesic A and the past endpoint of the timelike geodesic u. Consider
exp, ' in some simple region N 5 g and choose standard Minkowski coordinates
(t,x,y,2) in Z“ so that the points of exp, ' u and exp, ' 1 have coordinates of

the form (r,7tan x, 0,0) and (—1, 7 tan y, 0, 0), respectively, where t varies over

nonnegative values and where y is fixed and satisfies 0 < y < n/4. Choosing

To > 0, connect (—1g,Totany,0,0) to (14,75tany,0,0) by a C* curve 5 in

T which joins on to exp; ' 4 and exp, ! u smoothly (C*) and which is everywhere

q

timelike according to the Minkowski metric (dt? — dx* — dy? — dz?) in T
q

For example, we could take # to be given by

Or , . | O -1
= -1
2X) exp(R sin (n — 2X) ) ,

R cos(

where ¢t = 7,Rsin 9, x = 1,Rcos 0 and |R| £ 1, 10| £ =/2. Measuring “‘angles”

according to a ‘“‘standard Fuclidean metric” dt? + dx? + dy? + dz?, we see that

the slope of # is bounded away from the nuil cone in T, by an angle ¢ (> 0), say,
q

where ¢ depends on y but need not depend on 7,. By choosing a small enough
neighborhood of ¢ in M we can ensure that the “error’ in the slopes of the images
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of the null cones in M under exp, ! is less than e. Hence, choosing 7, small enough,
we ensure that exp, 7 is timelike in M, thus achieving the required smoothing
of the “joint” in 4 L p

2.24. Remark. Although 2.23 has some intrinsic interest in showing that trips
and timelike curves are equivalent for defining the relation «, it will not in fact
be required for any of the later results. All arguments can be carried out directly
in terms of trips without any mention of smooth timelike curves.®> On the other
hand, the systematic use of timelike curves would be a little more awkward to
handle since ‘“‘smoothing arguments” would be required at various places
(cf. 2.18 for example).

There is a similar result to 2.23 for causal trips (trivially, since by 2.20 and 2.23
a null geodesic or a timelike curve connects any two points for which a < b).
However, I shall not restrict myself just to smooth causal curves here, since the
rote of a causal curve will be as a limit of timelike curves (or trips). A limit of a
sequence of smooth curves need not be smooth. Let us therefore make the following
definition which admits, under the term ‘“‘causal curve,” all such appropriate
limits (cf. [21], [22], [6]).

2.25. DEFINITION. A curve y is a causal curve if and only if for all a, be y and
for every open set Q containing the portion* of y from a to b, there is a causal trip
from a to b (or from b to a) lying entirely in Q.

2.26. Remark. Although a causal curve y need not be smooth, there is a restric-
tion on its “degree of wildness’” imposed by the fact that it satisfies a Lipschitzian
type of condition. As a consequence, y must possess a tangent almost everywhere
(remark due to R. P. Geroch), even though examples can be concocted in which y
fails to have a tangent at a set of points dense on 7.

* Except, strictly speaking, that given for 8.8.

* If the reader is concerned about a slight illogicality here, in the confusion of two notions of “curve,’
he may care to rephrase the statement (i.e., “the portion of y from a to b” refers to the equivalence
class of paths under parameter change, whereas to be contained in @ it must be a point set). This kind
of looseness of terminology is also to be found in many other places in these notes.

»



