MAT 103 — Complementos de Matemática para Contabilidade e Administração

Prova REC — A

24 de Julho de 2008

Nome:	 	
RG:		
Assinatura:		

Instruções

- A duração da prova é de uma hora e quarenta minutos.
- Assinale as alternativas corretas na **folha de respostas** que está no final da prova. É permitido deixar questões em branco.
- \bullet O valor total da prova é de ${\bf 10}$ pontos; cada questão correta vale ${\bf 0,5}$ ponto.
- Boa Prova!

Questão 1. Considere a função $f(x) = -x^3 - x^2 + x - 1$ e o ponto $x_0 = -1$. Quais das seguintes afirmações é verdadeira?

- (a) $\lim_{x \to x_0} f(x) = 0;$
- (b) x_0 é um ponto de mínimo local da f;
- (c) x_0 não é um extremo local da f;
- (d) x_0 é um ponto de máximo local da f;
- (e) nenhuma das outras respostas.

Questão 2. Seja $f:]-1, +\infty[\to \mathbb{R} \ dada \ por \ f(x) = \log_2(x+1)$. Qual é sua inversa?

- (a) $g(x) = \log_{1/2}(x+1)$;
- (b) f não é inversível;
- (c) $g(x) = \log_{1/2}(x-1)$;
- (d) $g(x) = 2^x 1$;
- (e) nenhuma das outras respostas.

Questão 3. Sejam f e g duas funções que admitem derivada segunda. Qual é a derivada segunda da função $h = -f^2 - fg$?

- (a) $h'' = -(f'')^2 f''g 2f'g' fg''$;
- (b) $h'' = -(f')^2 + ff'' f''g 2f'g' fg'';$
- (c) nenhuma das outras respostas;
- (d) $h'' = -(f')^2 + f''g'';$
- (e) $h'' = -2(f')^2 2ff'' + f''g 2f'g' fg''$.

Questão 4. Se f é uma função derivável no intervalo [a,b] e f'(x) > 0 em todo ponto x de [a,b], então:

- (a) f é estritamente decrescente em [a, b];
- (b) f é estritamente crescente em [a, b];
- (c) nenhuma das outras respostas;
- (d) f tem concavidade para cima em [a, b];
- (e) f tem concavidade para abaixo em [a, b].

Questão 5. Sejam f e g duas funções deriváveis, com f(1) = 2, f(2) = 1, f'(1) = 3, f'(2) = -1, g(1) = 3, g(2) = -4, g'(1) = -2, g'(2) = 5. Seja $h = g \circ f$. Qual das seguintes afirmações é verdadeira?

- (a) h(2) = 3 e h'(2) = 5;
- (b) nenhuma das outras respostas;
- (c) h(2) = -4 e h'(2) = -5;
- (d) h(2) = 3 e h'(2) = 2;
- (e) h(2) = 6 e h'(2) = -6.

Questão 6. Determine as soluções $x \in \mathbb{R}$ da designaldade:

$$\left| \frac{x^2 + 2x + 2}{3 - x} \right| < x.$$

- (a) a desigualdade não tem soluções;
- (b) $]-\infty, 3];$
- (c) $]-\frac{2}{5},3[;$
- (d) $]-\infty, -\frac{2}{5}[;$
- (e) nenhuma das outras respostas.

Questão 7. Calcule a derivada da função $f(x) = \arctan(\sin x)$.

(a)
$$f'(x) = \frac{\cos x}{1 + x^2}$$
;

(b)
$$f'(x) = \frac{e^x}{\sqrt{1 - e^{2x}}};$$

(c)
$$f'(x) = \frac{1}{1 + \sin^2 x}$$
;

(d)
$$f'(x) = \frac{\cos x}{1 + \sin^2 x}$$
;

(e) nenhuma das outras respostas.

Questão 8. Dada a função $f(x) = x^2 \cos x$, qual das seguintes afirmações é verdadeira?

- (a) f é uma função par;
- (b) f é uma função crescente;
- (c) nenhuma das outras respostas;
- (d) f é uma função impar;
- (e) f é uma função decrescente.

Questão 9. Seja $f(x) = \sqrt[4]{x}$ e $g(x) = \log_{1/5}(x-1)$. Qual é o domínio da função composta $f \circ g$?

- (a) $]2, +\infty[;$
- (b)]0,2[;
- (c) [0, 2];
- (d) nenhuma das outras respostas;
- (e) $[2, +\infty[$.

Questão 10. Qual é o argumento correto para provar que

$$\lim_{x \to -\infty} e^x \operatorname{sen} x = 0?$$

- (a) $e^x \operatorname{sen} x \le e^x$ para todo x < 0, daí $\lim_{x \to -\infty} e^x \operatorname{sen} x \le \lim_{x \to +\infty} e^{-x} = 0$;
- (b) $e^x < \sin x$ para todo x;
- (c) $\lim_{x \to -\infty} e^x = 0$ e sen x é uma função limitada;
- (d) $\lim_{x \to -\infty} e^x \operatorname{sen} x = \left(\lim_{x \to -\infty} e^x\right) \cdot \left(\lim_{x \to -\infty} \operatorname{sen} x\right) = 0 \cdot \left(\lim_{x \to -\infty} \operatorname{sen} x\right) = 0;$
- (e) O limite não é zero.

Questão 11. Calcule o limite $\lim_{x\to 0} \frac{1-\cos x}{2\sin x \tan x}$.

(a)
$$\frac{1}{2}$$
;

(b)
$$-1$$
;

(c)
$$\frac{1}{4}$$
;

(d)
$$1;$$

(e) nenhuma das outras respostas.

Questão 12. Qual é o domínio da função $f(x) = 3 \frac{\sqrt{\log_3 x + 1}}{2 - \log_2 x}$?

(a)
$$\left[\frac{1}{3}, 25\right] \cup \left[25, +\infty\right]$$
;

(b)
$$\left[\frac{1}{5}, 9\right] \bigcup [9, +\infty[;$$

(c)
$$\left[\frac{1}{3}, \frac{1}{25}\right] \bigcup \left[\frac{1}{25}, +\infty\right];$$

(d) $\left[25, +\infty\right];$

(d)
$$[25, +\infty[$$

(e) nenhuma das outras respostas.

Questão 13. Calcule o limite $\lim_{x\to 1} \frac{\sqrt{x^2+1}-\sqrt{2}}{e^x-e}$.

(a)
$$e\sqrt{2}$$
;

(b)
$$\frac{1}{e\sqrt{2}}$$
;

(c)
$$\frac{\sqrt{2}}{e}$$
;

(e) nenhuma das outras respostas.

Questão 14. Considere os conjuntos

$$A = \big\{n \in \mathbb{Z} : n \ge -6\big\}, \quad e \quad B = \big\{n \in \mathbb{Z} : n < 7\big\}.$$

Quantos elementos contem o conjunto $\mathcal{P}(A \cap B)$ das partes de $A \cap B$?

(a)
$$2^{14}$$
;

(c)
$$2^3$$
;

(e)
$$2^{13}$$
.

Questão 15. Qual é a derivada segunda da função $f(x) = -x^2 e^{\sin x}$?

(a)
$$f''(x) = -e^{\sin x} [2 + 4x \cos x + x^2 \cos^2 x - x^2 \sin x];$$

(b)
$$f''(x) = -e^{\sin x} [2 + 4x \cos x + x^2 \cos^3 x - 2x \sin x];$$

(c)
$$f''(x) = -e^{\sin x} [2 - 4x \cos x + x^2 \cos^3 x + 2x \sin x];$$

- (d) nenhuma das outras respostas;
- (e) $f''(x) = -2xe^{\sin x} + x^2 \cos x e^{\sin x}$.

Questão 16. Quais são os pontos críticos da função

$$f(x) = 2x^3 - 6x^2 - 18x + 24,$$

e de que tipo?

- (a) nenhuma das outras respostas;
- (b) x = -1 é um mínimo local e x = 3 é um máximo local;
- (c) x = -1 é um máximo local e x = 3 é um mínimo local;
- (d) x = -3 é um mínimo local e x = 1 é um máximo local;
- (e) x = -3 é um máximo local e x = 1 é um mínimo local.

Questão 17. Considere a função $f(x) = -3x^4 + 2x^3 + x^2 + 1$ no intervalo [0,1]. Usando o Teorema do Valor Médio, podemos afirmar que:

- (a) nenhuma das outras respostas;
- (b) existe um ponto $x_0 \in]0,1[$ tal que $f'(x_0) = 0;$
- (c) em todo ponto de [0,1] a derivada da f é nula;
- (d) em nenhum ponto de [0,1] a derivada da f é nula;
- (e) existe um ponto $x_0 \in [0, 1]$ tal que $f'(x_0) = 20$.

Questão 18. Em qual dos intervalos dados o gráfico da função $f(x) = e^{-x^2}$ tem concavidade para cima?

(a)
$$]-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}[;$$

- (b) $]0, +\infty[;$
- (c) $\left]-\infty, -\frac{1}{\sqrt{2}}\right[;$
- (d) $]-\infty, 0[;$
- (e) nenhuma das outras respostas.

Questão 19. Sejam f e g duas funções definidas no intervalo [a,b], com f > 0, g > 0, f' < 0 e g' < 0 em todo ponto de [a,b]. Qual das seguintes afirmações vale?

- (a) nenhuma das outras respostas;
- (b) O produto $f \cdot g$ é estritamente crescente em [a, b];
- (c) $f \in g$ são estritamente crescentes em [a, b];
- (d) A soma f + g é estritamente crescente em [a, b];
- (e) O produto $f \cdot g$ é estritamente decrescente em [a, b].

Questão 20. Dada a função $f(x) = -x + \ln(1 + 3x^2)$, qual das seguintes afirmações é verdadeira?

- (a) o gráfico da f tem concavidade para cima no intervalo [-2, -1];
- (b) f é estritamente crescente no intervalo [-2, -1];
- (c) f é estritamente decrescente no intervalo [-2, -1];
- (d) nenhuma das outras respostas;
- (e) f não está definida no intervalo [-2, -1].

MAT 103 — Complementos de Matemática para Contabilidade e Administração Prova ${\rm REC}-{\rm A}$

24 de Julho de 2008

Nome:				
RG:				
Assinatur:	a:			

Folha de Respostas

1	a	b	c	d	e
2	a	b	c	d	e
3	a	b	c	d	e
4	a	b	c	d	e
5	a	b	c	d	e
6	a	b	c	d	e
7	a	b	c	d	e
8	a	b	c	d	e
9	a	b	c	d	e
10	a	b	c	d	e
11	a	b	c	d	е
12	a	b	c	d	e
13	a	b	c	d	е
14	a	b	c	d	е
15	a	b	c	d	e
16	a	b	c	d	e
17	a	b	c	d	е
18	a	b	С	d	е
19	a	b	c	d	е
20	a	b	c	d	е