Chapter 5

Paracompact spaces

Paracompact spaces simultaneously generalize both compact spaces and metrizable
spaces; although defined much later than the two latter classes, paracompact spaces quickly
became popular among topologists and analysts, and now are considered to be one of the
most important classes of topological spaces. Due to the introduction of paracompactness,
many theorems in topology and analysis were generalized and many proofs were simplified.
It also turned out that the notion of a locally finite family and notions related to it are very
efficient and natural tools for studying topological spaces.

Section 5.1 is devoted to paracompact spaces. We start with three theorems containing
various characterizations of paracompactness (the characterizations in terms of partitions of
unity is particularly important for analysis). Then we prove that paracompact spaces have the
property of collectionwise normality, which is much stronger than just normality, and we give
a few examples. In the second part of the section we study operations on paracompact spaces
and the behaviour of this class of spaces under mappings. The section concludes with the
Tamano theorem establishing an interesting external characterization of paracompactness.

In Section 5.2 we study the class of countably paracompact spaces. The theorems in
that section contain various characterizations of countable paracompactness.

Section 5.3 is devoted to weakly and strongly paracompact spaces. Like the class of
countably paracompact spaces, those two classes are of much less importance than the class
of paracompact spaces; however, they do play a role in dimension theory and in algebraic
topology. Among the theorems in that section, the most important are the Nagami-Michael
theorem stating that every collectionwise normal weakly paracompact space is paracompact,
and the Worrell theorem establishing invariance of weak paracompactness under closed map-
pings.

The last section is a continuation of Section 4.4; five further metrization theorems are
given there.

5.1 Paracompact spaces

The notion of a locally finite family of sets, introduced in Chapter 1, leads to the
definition of an important class of topological spaces, the paracompact spaces. A topological
space X is called a paracompact space if X is a Hausdorff space and every open cover of X
has a locally finite open refinement.

Let us observe that, in contrast to the definition of compactness, in the definition of
paracompactness the term “refinement” cannot be replaced by the term “subcover”. In fact,
one readily sees that every discrete space is paracompact — the cover consisting of all one-
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point sets is open and locally finite and refines any other cover of the space — and yet the
open cover {N N [1,i]}%, of the space of natural numbers N has no locally finite subcover
(cf. Exercise 5.1.A(d)).

The definition of paracompactness yields

5.1.1. THEOREM. Every compact space 1s paracompact.®

Using the notion of paracompactness, Theorems 3.8.11 and 4.4.1 can be stated as follows:
5.1.2. THEOREM. Every Lindeldf space is paracompact.®

5.1.3. THEOREM. Every metrizable space is paracompact.m

The reader can easily deduce from Theorem 5.1.12 and Remark 5.1.7 that the existence
of open refinements which are both locally finite and o-discrete, established for metrizable
spaces in Theorem 4.4.1, is only formally stronger than paracompactness.

5.1.4. LEMMA. Let X be a paracompact space and A, B a pair of closed subsets of X. If for
every £ € B there exist open sets U,V such that A C Uz, z € Ve and U, NV, = B, then
there also exist open sets U,V suchthat ACU,BCV andUNV = 0.

PROOF. The family {V;}:ep U {X \ B} is an open cover of the space X, so that it has
a locally finite open refinement {W,},cs. Letting So = {s € S : W, N B # 0} we have

ANW, =0 forevery s€ Sg and BC U W,.
SE€ES,

By virtue of Theorem 1.1.11 the set U = X \ U,¢s, W, is open; one readily sees that U
and V = (J,¢g, Ws have all the required properties.®

5.1.5. THEOREM. Every paracompact space is normal.

PROOF. Substituting one-point sets for A in the above lemma, we see that every para-
compact space is regular; using this fact and applying the lemma again we obtain the theo-
rem.m

Let us observe that the last theorem is a common generalization of Theorems 1.5.18,
3.1.9 and 3.8.2.

A family {f,}ses of continuous functions from a space X to the closed unit interval I
is called a partition of unity on the space X if > ¢ fs(z) = 1 for every z € X. The last
equality means that for each 7o € X only countably many functions fs do not vanish at zo
and that the series Y oo, fs,(Z0), where {s1,52,...} = {s € S : fs(zo) # O}, converges to 1;
since the sequence is absolutely convergent, the arrangement of terms does not matter and
convergence to 1 means that 1 is the least upper bound of the set consisting of all numbers
of the form f,, (o) + fe,(Z0) + - .- + fs,(20), where 51,89,...,5x € Sand k=1,2,...

We say that a partition of unity {fs}scs on a space X is locally finste if the cover
{f71((0,1])}ses of the space X is locally finite. This means that for each o € X there exists
a neighbourhood Ug of the point zg and a finite set Sp = {s1,52,.-. ,8k} C S such that for
every z € U we have f,(z) = O whenever s € S \ So, and fs, (z) + fs,(z) + ... + fa(z) = 1.

A partition of unity {f,}scs on a space X is subordinated to a cover A of X if the cover
{/71(0,1]) }ses of the space X is a refinement of A.
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Our next theorem contains two characterizations of paracompactness in terms of parti-
tions of unity; these characterizations are very useful not only in topology but also in analysis
and differential geometry. The theorem will be preceded by two lemmas. The first one will
also be applied later and is stated in a form slightly more general than needed here; in our
theorem instead of using this lemma one could apply — less elementary — Theorem 1.5.18.

5.1.6. LEMMA. If every open cover of a regular space X has a locally finite refinement (con-
sisting of arbitrary sets), then for every open cover {U,},cs of the space X there ezists a
closed locally finite cover {F,}scs of X such that F, C U, for every s € S.

PROOF. By regularity of X there exists an open cover W of the space X such that
{W : W € W} is a refinement of {U,},e5. Take a locally finite refinement {A¢}ter of the
cover W, for every t € T choose an s(t) € S such that A; C Us(t)> and let Fy = |Jy)=, 4.
From Theorems 1.1.11 and 1.1.13 it follows readily that {F;},cs is a closed locally finite cover
of X and the definition of the F,’s implies that Fy C U, for every s € S.m

5.1.7. REMARK. Let us note that if the cover { A;}scr in the last proof is open, then the sets
Ve = Us(t): , At are open and V, = F,. Hence, for every open cover {Us}ses of a paracompact
space there exists a locally finite open cover {V,};es such that V', C U, for every s € S.

5.1.8. LEMMA. If for an open cover U of a space X there ezists a partition of unity {fs}ses
subordinated to it, then U has an open localy finite refinement.

PROOF. To begin, let us observe that for every continuous function g : X — I and any
point zo € X satisfying g(zo) > O there exists a neighbourhood Uy of the point zy and a finite
set So C S such that

(1) fs(z) < g(z) forzeUsandse S\ Sp.

Indeed, one easily verifies that any set So = {s1,52,...,8:} C S such that

k
1= fe(®o) < g(zo)

i=1

and the openset Uy ={z € X:1 — Ef_ fao:(x) < g(z)} satisfy (1).

For every = € X there exists an s(z) € S such that f,(;)(z) > 0. Letting g = fo(z) in
the above observation we infer from 2.1.12 that the formula f(z) = sup,cg fs(z) defines a
continuous function f : X — (0,1]. For every s € S the set

Vo= {z€ X: 1,(2) > 1 f(2))

is open, and the family V = {V,};cs is a refinement of U. Letting g = %f in our original
observation we infer that V is a locally finite family.m

5.1.9. THEOREM. For every Ti-space X the following conditions are equivalent:

(i)  The space X is paracompact.

(i) Every open cover of the space X has a locally finite partition of unity subordinated to it.
(iii) Every open cover of the space X has a partition of unity subordinated to 1t.
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PROOF. Assume that X is paracompact and consider an open cover A of X. Let U =
{Us}scs be a locally finite open refinement of A. By virtue of Lemma 5.1.6 there exists a
closed cover {F,},es of the space X such that F; C U, for every s € S. From Urysohn’s
lemma it follows that for every s € S one can find a continuous function g; : X — I such
that g,(z) =0 for z € X \ U, and ¢,(z) = 1 for z € F,. The family U being locally finite, by
letting g(z) = 3 _,cs59s(x) we define a continuous function g : X — R. One easily sees that
{fs}ses, where f, = gs/g, is a locally finite partition of unity subordinated to A. Hence the
implication (i)=>(ii) is established.

Since the implication (ii)=>(iii) is obvious, to conclude the proof it suffices to show that
(iii)=-(i), which — by virtue of Lemma 5.1.8 ~ reduces to showing that every Tj-space X
satisfying (iii) is a Hausdorff space. Consider a pair of distinct poins z1,z3 € X. The open
cover ¥ = {X\ {z;}, X\ {z2}) of the space X has a partition of unity {f,}scs subordinated
to it. Take an so € S such that f,,(z1) = a > 0; since the set f;-!((0,1]) is contained in
X \ {z2}, we have f,,(z2) = 0. The open sets Uy = f,;!((a/2,1]) and U; = f;;*([0,a/2)) are
disjoint and contain z; and z, respectively.m

Three further characterizations of paracompactness are stated in the next theorem.

5.1.10. LEMMA. Every open o-locally finite cover V of a topological space X has a locally
finite refinement.

PROOF. Let V = U2, V;, where V; = {V,},es, is a locally finite family of open sets and
5; N S; = @ whenever ¢ # j. For every so € 5; let

Alo= co\U U VJ;
k<i s€S,

the family A = {4,}secs, where § = |J2, S;, covers X and is a refinement of V. We shall
show that A is locally finite. Consider a point z € X, denote by k the smallest natural number
such that z € ,¢g, Vs, and take an sy € Sy, satisfying z € V,,; clearly V, is a neighbourhood
of z disjoint from all sets A; with s € U,->k S;. Since the families V; are locally finite, for
every 7 < k there exists a neighbourhood U; of £ which meets only finitely many members
of Vi. The neighbourhood Uy NU; N ...N Ui NV, of the point z meets only finitely many
members of 4.m

5.1.11. THEOREM. For every regular space X the following conditions are equivalent:
(i) The space X ts paracompact.

(ii) Every open cover of the space X has an open o-locally finite refinement.

(ili) Every open cover of the space X has a locally finite refinement.

(iv) Every open cover of the space X has a closed locally finite refinement.

PROOF. The theorem follows from 5.1.10, 5.1.6 and 4.4.12. =

Let us note that the last theorem immediately implies that every Lindelof space is
paracompact. It should be also noted that in (ii) the second “open” cannot be replaced by
“closed” (see the remark to Problem 5.5.3(a)).

We shall now introduce some notions related to the notion of a cover, which will be
applied to establish further characterizations of paracompactness. Let A = {4,};cs be a
cover of a set X; the star of a set M C X with respect to A is the set St (M, A) = |J{4, :
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M N A, # 8}. The star of a one-point set {z} with respect to a cover A is called the star of
the point = with respect to A and is denoted by St (z, A). We say that a cover B = {B:}ier
of a set X is a star refinement of another cover A = {A,},cs of the same set X if for every
t € T there exists an s € S such that St (B;, B) C A,; if for every £ € X there existsans € S
such that St (z,B) C A,, then we say that B is a barycentric refinement of A. Clearly, every
star refinement is a barycentric refinement and every barycentric refinement is a refinement.
The next theorem contains yet three characterizations of paracompactness; it will be
deduced directly from Lemmas 5.1.13, 5.1.15, and 5.1.16 that are stated and proved below.

5.1.12. THEOREM. For every Ti-space X the following conditions are equivalent:

(i) The space X is paracompact.

(ii) Every open cover of the space X has an open barycentric refinement.

(iii) Every open cover of the space X has an open star refinement.

(iv) The space X is regular and every open cover of X has an open o-discrete refinement.

5.1.13. LEMMA. If an open cover U of a topological space X has a closed locally finite refine-
ment, then U has also an open barycentric refinement.

PROOF. Let 7 = {Fi}er be a closed locally finite refinement of ¥ = {U,};cs. For every
t € T choose an s(t) € S such that F; C Uy(1)- It follows from the local finiteness of 7 that
the set T(x) = {t € T : z € F;} is finite for every z € X, and this implies that the set

(2) Vo= n Ua(t) n (X\ U Ft)

teT(z) t¢T(z)
is open for every £ € X. As z € V,, the family V = {V,},cx is an open cover of X. Let z; be
a point of X and ¢y an element of T(zo); it follows from (2) that if zg € Vy, then g € T(z),
and thus V; C Uy,). Hence we have St (zo, V) C U,(t,) which shows that V is a barycentric
refinement of . m

5.1.14. REMARK. The same proof shows that if a locally finite open cover of a topological
space has a closed locally finite refinement then it has also a locally finite open barycentric
refinement; indeed, if the cover U is locally finite, then the family of all sets of the form (2)
is a locally finite open barycentric refinement of U.

5.1.15. LEMMA. If a cover A = {As}.cs of a set X is a barycentric refinement of a cover
B = {Bt}ter of X, and B is a barycentric refinement of a cover C = {C,},cz of the same
set, then A is a star refinement of C.

PROOF. Let us take an sg € S and for every = € A,, let us choose a t(z) € T such that

(3) St (.’C, A) C Bt(z)'

Thus we have

(4) St (Ase, A) = |J St(z,4) ¢ |J By
ZeAso ZEASO

Let zg be a fixed element of A,,; from {3) it follows that z € By(;) for every z € A, so that

U By(z) C St (=0, B).

ZE€EAs,
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Since St (zo, 8) C C; for a z € Z, the last inclusion, along with (4), implies that 4 is a star
refinement of C.m

5.1.16. LEMMA. If every open cover of a topological space X has an open star refinement,
then every open cover of X has also an open o-discrete refinement.

PROOF. Consider an open cover U = {U,},ecs of the space X. Let Uy = U and denote
by Uy, Us,... a sequence of open covers of X such that

(5) Uity is a star refinement of U; for 1 = 0,1,...
For every s € S and 1 = 1,2,... take the open set

U, i = {z € X : z has a neighbourhood V such that St (V,U;) C U,}.
The family {U, ;}:cs is an open refinement of ¥ for i = 1,2,... Let us observe that
(6) if z € U, ; and y ¢ U, i41, then there is no U € U;,, such that z,y € U.

Indeed, it follows from (5) that for every U € U;,; there exists a W € U; such that
St(U,Us41) C W; therefore if z € U N Ui, then W C St(z,U;) C U, which implies that
St (U,Ui1) C U, and U C U, 444.

Take a well-ordering relation < on the set S and let

(7) Vso,i = so,i\ U Us,i+l~

8<38p
For every pair s;,s; of distinct elements of S we have either s; < s3 or sy < s1; depending
on which part of the alternative holds, by virtue of (7) we have

either Vag,i C X\ Us;,i+l or Vsl,i cX \ Usg,H-l-

Hence, it follows from (6) that if z € Ve,i and y € V,, ;, where 51 # sg, then there is no
U € U;y, such that 2,y € U. Thus the family of open sets {Vs,:}ses is discrete for 7 = 1,2,...

To conclude the proof it suffices to show that the family {Vs,i}?il,ses is a cover of X.
Let z be a point of X; denote by s(z) the smallest element in S such that z € Us(z),s for some
positive integer ¢ - the existence of s(z) follows from the fact that for ¢ = 1,2,... the family
{Us,i}ses is a cover of X. Since z ¢ U, i42 for s < s(z), it follows from (6) that

St (,Uir2) N | Ussis1 =9,

s<s(z)
and this shows that z & Vi(2),i-®

PROOF OF THEOREM 5.1.12. By virtue of the last three lemmas and by Theorem 5.1.11,
it suffices to show that every Tj-space X satisfying (iii) is regular. Consider a point z € X
and a closed set F' C X such that z ¢ F and take an open star refinement U of the open cover
{X\F, X\{z}} of the space X. Let U be a member of I that contains z. As St (U, ) C X\F,
we have U N F = {, so that the space X is regular.m




