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Introduction

It has become evident through many mathematical theories of our century that
Geometry and Topology offer very powerful tools in the study of qualitative and
also quantitative properties of differential equations. The main idea behind these
theories is that some equations, or better, some classes of equations can be studied
by means of theisymmetrieswhere by symmetry we mean generically any alge-
braic or geometric structure which is preserved by their flow. Once such invariant
structures are determined for a class of differential equations, many properties of
the solutions of the class can be read off from the geometry of the curve obtained
by the flow, taking values in the space (typically a Lie group) of all structure-
preserving morphisms.

A simple, but instructive, example is given by the Sturmian theory for second
order ordinary differential equations 8. The Sturm oscillation theorem deals
with equations of the form-(pz’)’ +rx = Az, wherep andr are functionsp > 0,
and )\ is a real parameter. The theorem states that, denotirdg. by, 3] the space
of C*-functions onla, 5] vanishing atx and3, the index of the symmetric bilinear
form B(z,y) = f:[px'y’ + rzy] dt in Cl[a, b] is equal to the sum overc Ja, b]
of the dimension of the kernel of the bilinear forﬁ:‘][px’y' + ray] dt in Cl[a, ).

The classical proof of the Sturm oscillation theorem (see for instah¢&hap-
ter 8]) is obtained by showing that the two quantities involved in the thesis can be
obtained as thevinding numbeiof two homotopic closed curves in the real projec-
tive line.

The class of differential equations that we are interested in consists in the so
called “symplectic differential systems”; these are linear systemR'ing IR™*
whose flow preserve the canonicgimplectic formgiven byw((v, a), (w, ﬁ)) =
B(v) — a(w). Recall that a symplectic form is a nondegenerate skew-symmetric
bilinear form on a (necessarily even dimensional) vector space. These differential
systems appear naturally in a great variety of fields of pure and applied mathe-
matics, and many areas of mathematics and physics, like Calculus of Variations,
Hamiltonian systems, (Pseudo-)Riemannian Geometry, Symplectic Geometry, Me-
chanics and Optimal Control Theory produce examples of symplectic systems as
basic objects of investigation. For instance, Morse—Sturm systems are special
cases of symplectic systems; such systems are obtained from the Jacobi equation
along any pseudo-Riemannian geodesic by means of a parallel trivialization of the
tangent bundle of the pseudo-Riemannian manifold along the geodesic. More in
general, symplectic systems are obtained by considering the linearized Hamilton
equations along any solution of a (possibly time-dependent) Hamiltonian problem,

\
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using a symplectic trivialization along the solution of the tangent bundle of the
underlying symplectic manifold. Another large class of examples where the the-
ory leads naturally to the study of symplectic systems is provided by Lagrangian
variational theories in manifolds, possibly time-dependent, even in the casa-of
strained variational problems. Indeed, under a suitaloleertibility assumption
called hyper-regularity the solutions to such problems correspond, vialthe
gendre transformto the solutions of an associated Hamiltonian problem in the
cotangent bundle.

The fundamental matrix of a symplectic system is a curve insimaplectic
group, denoted bySp(2n, IR), which is a closed subgroup of the general linear
groupGL(2n, IR), hence it has a Lie group structure. This structure is extremely
rich, due to the fact that symplectic forms on a vector space are intimately related
to its complex structures, and such relation produces other invariant geometric and
algebraic structures, such as inner products and Hermitian products.

Many interesting questions can be answered by studying solutions of symplec-
tic systems whose initial data belong to a fixeatjrangian subspacef IR" @ IR™*.

Recall that a Lagrangian subspace of a symplectic space is a maximal subspace on
which the symplectic form vanishes. Such initial conditions are obtained, for in-
stance, in Riemannian or pseudo-Riemannian geometry when one considers Jacobi
fields along a geodesic that are variations made of geodesics starting orthogonally
at a given submanifold. Since symplectic maps preserve Lagrangian subspaces,
the image of the initial Lagrangian by the flow of a symplectic system is a curve

in the setA of all Lagrangian subspaces @™ @ IR™*. The setA is a smooth
(indeed, real-analytic) submanifold of ti@&rassmanniarG,,([R™ @ IR™*) of all
n-dimensional subspaces Bf" @ IR"*; A is called theLagrangian Grassmannian

of the symplectic spac&™ & R™*.

The original interest of the authors was the study of conjugate points along
geodesics in a semi-Riemannian manifold and their stability (38e34), with
the aim of developing an infinite dimensional Morse Theory (86 12, 2¢) for
semi-Riemannian geodesics. A few decades ago a new integer valued homological
invariant, called théMaslov indexwas introduced by the Russian school (see for
instance 1] and the references therein) for closed curves in a Lagrangian submani-
fold M of the spacdR?” endowed with its canonical symplectic structure. The no-
tion of Maslov index has been immediately recognized as an important tool in the
study of conjugate points, and it has has been thoroughly investigated and extended
in several directions by mathematical-physicists, geometers and analysts. There is
nowadays a very extensive literature about the subject, and it is almost impossible
to acknowledge the work of all the many authors who have given significant con-
tributions to the field. Our list of reference$([9, 11, 14, 15, 16, 24, 28, 36,2
is far from being exhaustive.

Periodic or non periodic solutions of Hamiltonian systems, like for instance
geodesics in a semi-Riemannian manifold, define a curve in the symplectic group,
or in the Lagrangian Grassmannian, hence they define a Maslov index. Roughly
speaking, the Maslov index gives a sortatgebraic counof the conjugate points
along a solution; here are some of the main properties of this invariant:
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e it is always finite (even when the number of conjugate points is infinite);

o it is stableby “small” perturbations of the data;

e it coincides with thegeometric indexn the case of a causal (timelike or
lightlike) Lorentzian geodesic;

e itis related to thenalytic indexor, more in general, to the relative index)
of the solution, which is the index of the second variation of an associated
Lagrangian action functional;

e itisrelated to the spectral properties of the associated Hamiltonian second
order differential operator.

Conjugate and focal points appear naturally in Optics, both classical and rela-
tivistic, and the Maslov index provides a new topological invariant. For instance,
the optics of light rays in a general-relativistic medium, like vacuum, dust, or
plasma, magnetized or not, etc., can be described using a Hamiltonian formal-
ism. As the underlying spacetime model one assumes an arbitrary 4-dimensional
Lorentzian manifold M, g), and the trajectories of light rays are projections onto
M of solutions in the cotangent bundl&\/* of some Hamiltonian functio :

TM* — IR. Typically, the explicit form of the functio involves the spacetime
metric and a number of tensor fields by which the medium is characterized. For a
comprehensive discussion of this subject we refer to Per88k [

The aim of this booklet is to provide a complete, self-contained study of the
geometry of the Grassmannian manifolds, the symplectic group and the Lagrangian
Grassmannian. This study will lead us naturally to the notion of Maslov index, that
will be introduced in the context of symplectic differential systems.

These notes are organized as follows. In Chapter 1 we describe the algebraic
setup; we will study complex structures and symplectic structures on finite dimen-
sional vector spaces. Special attention is given to the Lagrangian subspaces and to
the Lagrangian decompositions of a symplectic space.

Chapter 2 is entirely dedicated to Differential Geometry; we will study at
the differentiable structure of the Grassmannian manifolds and of the Lagrangian
Grassmannians. We will develop briefly the theory of Lie groups and their actions
on differentiable manifolds, so that we will be able to describe the Grassmannians
as homogeneous spaces.

In Chapter 3 we will develop the algebraic topological framework of the the-
ory, including the basics of homotopy theory and of singular homology theory for
topological spaces. Using the long exact sequences in homotopy and in homology,
and using the Hurewicz homomorphism we will compute the first homology and
relative homology group of the Grassmannians.

In Chapter 4 we will introduce the notion of Maslov index for curves in the
Lagrangian Grassmannian, and we will present some methods to compute it in
terms of the change of signature of curves of bilinear forms.

In Chapter 5 we will show how symplectic differential systems are produced
in several geometrical problems; more precisely, we will consider the case of the
Jacobi equation along a semi-Riemannian geodesic, and the case of the linearized
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Hamilton equation along the solution of a Hamiltonian problem in a symplectic
manifold.

At the end of each Chapter we have given a list of exercises whose solution is
based on the material presented in the chapter. The reader should be able to solve

the problems as he/she goes along; the solution or a hint for the solution of (almost)
all the exercises is given in Appendix A.
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Ognuno sta solo sul cuor della terra
trafitto da un raggio di sole:
edé subito sera.






CHAPTER 1
Symplectic Spaces

1.1. A Short Review of Linear Algebra

In this section we will briefly review some well known facts concerning the
identification of bilinear forms and linear operators on vector spaces. These identi-
fications will be used repeatedly during the exposition of the material, and, to avoid
confusion, the reader is encouraged to take a few minutes to go through the pain of
reading this section.

The results presented are valid for vector spaces over an arbitrarTjdlow-
ever we will mainly be interested in the case that= IR or K = C. Moreover,
we emphasize that even though a few results presented are also valid in the case of
infinite dimensional vector spaces, in this chapterwill always assumthat the
vector spaces involved afimite dimensional

Let V and W be vector spaces. We denote b (V, W) and byB(V, W) re-
spectively the vector spaces of all tiveear operatorsi” : V' — W and ofbilinear
operators called alsdilinear forms B : V x W — K; by V* we mean thelual
spacd.in(V, K) of V. Shortly, we seLin(V') = Lin(V, V) andB(V) = B(V, V).

There is anaturalisomorphism:

(1.1.1) Lin(V, W*) — B(V, W),
which is obtained by associating to each linear operatol” — W* the bilinear
form By € B(V, W) given by By (v, w) = T'(v)(w).

1.1.1. REMARK. Given vector spacds W, V;, W, and a paif L, M) of linear
operators, withl, € Lin(V;, V) andM € Lin(W, W), one defines another linear
operator:

(1.1.2) Lin(L, M) : Lin(V, W) — Lin(V3, W})
by:
(1.1.3) Lin(L,M)-T=MoTo L.

In this way, Lin(-, -) becomes a functor, contravariant in the first variable and co-
variant in the second, from the category of pairs of vector spaces to the category
of vector spaces. Similarly, given linear operatdrse Lin(V;,V) and M €
Lin(W7, W), we can define a linear operat®fL, M) : B(V,W) — B(V;, W7)

by settingB(L, M) - B = B(L-,M-). In this way,B(-,-) turns into a functor,
contravariant in both variables, from the category of pairs of vector spaces to the
category of vector spaces. This abstract formalism will infact be useful later (see
Section 2.3).
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The naturality of the isomorphism (1.1.1) may be meant in the technical sense
of natural isomorphism between the functbis(-, -) andB(-, -) (see Exercise 1.1).

To avoid confusion, in this Section we will distinguish between the symbols
of a bilinear formB and of the associated linear operalyy, or between a linear
operatorT” and the associated bilinear forBy. However, in the rest of the book
we will implicitly assume the isomorphism (1.1.1), and we will not continue with
this distinction.

Given another pair of vector spacésand¥; and operatoré; € Lin(V7,V),

Ly € Lin(Wy, W), the bilinear formsBr(L;-,-) and Br (-, Ly-) correspond via
(1.1.1) to the linear operatof3> L; andLjoT respectively. Herel5 : W* — W7
denotes théranspose linear operatoof Lo given by:

Li(a) =ao Ly, VYae W™

We will identify every vector spac& with its bidual V** and every linear
operatorT” with its bitransposel™*. GivenT < Lin(V, W*) we will therefore
look atT* as an element ikiin(W, V*); if By is the bilinear operator associated
to T, then the bilinear operataB;~ associated td@™ is the transpose bilinear
operator B}, € B(W, V) defined byB}.(w,v) = Br (v, w).

Given B € B(V), we say thatB is symmetricif B(v,w) = B(w,v) for
all v,w € V; we say thatB is anti-symmetridf B(v,w) = —B(w,v) for all
v,w € V (see Exercise 1.2). The sets of symmetric bilinear forms and of anti-
symmetric bilinear forms are subspace®¢1”), denoted respectively s, (V)
andBa_gym (V).

The reader is warned that, unfortunately, the identification (1.1.1) does
behave well in terms of matrices, with the usual convention for the matrix repre-
sentations of linear and bilinear operators.

If (v;)7_, and(w; )i, are bases df andlV respectively, we denote y;)!"_;
and(w})™, the corresponding dual baseslof andW*. ForT e Lin(V, W*),
the matrix representatia(T;;) of 7" satisfies:

m

T(vj) = Tijw}.

=1
On the other hand, iB € B(V, W), the matrix representatiqiB; ;) of B is defined
by:
Bij = B(vi, wj);
hence, for alll” € Lin(V, W*) we have:
Tij = T(vj)(wi) = Br(vj, wi) = [Brlji-

Thus, the matrix of a linear operator is ttransposeof the matrix of the corre-
sponding bilinear operator; in some cases we will be considssingmetricopera-
tors, and there will be no risk of confusion. However, when we deal syithplectic
forms(see Section 1.4) one must be careful not to make sign errors.
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1.1.2. CEFINITION. GivenT € Lin(V, W), we define thgull-backassociated
to 7' to be map:
T% : B(W) — B(V)
given byT#(B) = B(T-,T-). WhenT is anisomorphismwe can also define the
push-forwardassociated t@’, which is the map:

Ty :B(V) — B(W)
defined byl (B) = B(T~'-,T~1).
1.1.3. XAMPLE. Using (1.1.1) to identify linear and bilinear operators, we
have the following formulas for the pull-back and the push-forward:
(1.1.4) T#(B)=T*oTgoT, Tu(B)= (T oTgoT

The identities (1.1.4) can be interpreted as equalities involving the matrix repre-
sentations, in which case one must use the matrices that repiés@ﬁi(B) and
Ty (B) as linear operators

For B € B(V), thekernelof B is the subspace df defined by:
(1.1.5) Ker(B) = {v eV :Bu,w) =0,Vwe V}.

The kernel of B coincides with the kernel of the associated linear operator
V — V*. The bilinear formB is said to benondegeneraté Ker(B) = {0};
this is equivalent to requiring that its associated linear opeftiarinjective, or
equivalently, an isomorphism.

1.1.4. XamMPLE. If B € B(V) is nondegenerate, the# defines an isomor-
phismTz betweerl” andV* and therefore we can define a bilinear fdffig] . (B)
in V* by taking the push-forward aB by Tz. By (1.1.4), such bilinear form is
associated to the linear operat@i;*)*; if B is symmetric, thefiT;z]4(B) is the
bilinear form associated to the linear m&p"’.

1.1.5. DEFINITION. Let B € Bgym (V') be a symmetric bilinear form if.
We say that a linear operat@i : V' — V is B-symmetrigrespectively,B-anti-
symmetri¢ if the bilinear formB(T", -) is symmetric (respectively, anti-symmet-
ric). We say thaf” is B-orthogonalif 7#[B] = B, i.e., if B(T-,T-) = B.

1.1.6. EXAMPLE. GivenB € By, andT' € Lin(V), the B-symmetry ofT" is
equivalent to:

(1.1.6) TpoT =(ITpoT)";
clearly, theB-anti-symmetry is equivalent tbp o T' = — (T o T)*.

When B is nondegenerate, we can also definetthaspose ofl" relatively to
B, which is the operatof’ € Lin(V') such thatB(Tv,w) = B(v,Tw) for all
v,w € V. Explicitly, we have

(1.1.7) T=Tg' oT*oTg.
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Then, T is B-symmetric (resp.B-anti-symmetric) iffl’ = T (resp., iff T’ = —T),
and it isB-orthogonal iff7’ = 7.
We also say thdl is B-normalif 1" commutes withl".

Given a subspacé C V and a bilinear formB € B(V), the orthogonal
complemens of S with respect taB is defined by:

(1.1.8) Sl:{UEV:B@&0:QVw€S}

In particular,Ker(B) = V. Theannihilator S° of S is the subspace of *
defined as:

SO:{QGV*:a(w):Q VwES}.
Observe thaf* = T (S°).

1.1.7. XAMPLE. Assume thatB3 € By, (V') is nondegenerate and &t e
Lin(V); denote byl’ the B-transpose of . If S C V is aninvariant subspacéor
T,i.e., ifT(S) c S, then theB-orthogonal complemeri+ of S is invariant for
T. This follows from (1.1.7) and from the identity- = 7;;*(S°), observing that
the annihilatorS® of S is invariant for7™.

1.1.8. RRoprosITION If B € B(V) is nondegenerate anfl C V is a sub-
space, therlim(V) = dim(S) + dim(S+).

PROOF. Simply note thatlim(V) = dim(S) + dim(S°) and thaidim(S+) =
dim(S°), andS+ = T5*(S°), with T an isomorphism, becaug#is nondegen-
erate. O

If B is either symmetric or anti-symmetric, then it is easy to see $hat
(S1)*+; the equality doesot hold in general, but only if3 is nondegenerate.

1.1.9. @MROLLARY. Suppose thaB € B(V) is either symmetric or anti-
symmetric; ifB is nondegenerate, the$i = (S+)*.

PROOF Itis S C (S+)*; by Proposition 1.1.8im(S5) = dim((S4)4). O

If B € B(V) is nondegenerate arfl C V' is a subspace, then the restriction
of Bto S x S may be degenerate. We have the following:

1.1.10. RROPOSITION The restrictionB|sx s is nondegenerate if and only if
V=SaoSt

PROOF. The kernel of the restrictioR| s 5 is SN S*; hence, ift = S& S+,
it follows that B is nondegenerate a$l. Conversely, ifB is nondegenerate ao$,
thenS N S+ = {0}. It remains to show thalt = S + S+. For, observe that the
map:

(1.1.9) S>az+— Bz, )|s €5

is an isomorphism. Hence, givenc V, there exists: € S such thatB(z, -) and
B(v,-) coincide inS, thusz — v € S+. This concludes the proof. O
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1.1.11. ®ROLLARY. Suppose thaB € B(V) is either symmetric or anti-
symmetric; ifB is nondegenerate, then the following are equivalent:

e B is nondegenerate ofi;
e B is nondegenerate ofi.

PROOF Assume thatB is nondegenerate ofi. By Proposition 1.1.10 it is
V = S®S+; by Corollary 1.1.9 we have” = S+ @ (S+)+, from which it follows
that B is nondegenerate ot~ by Proposition 1.1.10. The converse is analogous,
since(S+)+ = S. O

1.1.12. XaMPLE. Proposition 1.1.10 actually doest hold if V' is not finite
dimensional. For instance, ¥f is the space ofquare summablsequences =
(zi)iev of real numbers, i.e}", .y 27 < +o0, B is thestandard Hilbert product
in V given by B(z,y) = > ,cn %y andS C V is the subspace consisting of
all almost nullsequences, i.ex; # 0 only for a finite number of indices € IV,
then it is easy to see that- = {0}. What happens here is that the map (1.1.9) is
injective, but not surjective.

1.1.13. EMARK. Observe that Proposition 1.1.10 is indeed true if we assume
only thatS is finite dimensional; for, in the proof presented, only the finiteness of
dim(.S) was used to conclude that the map (1.1.9) is an isomorphism.

As an application of Proposition 1.1.10 we can now prove that every symmetric
bilinear form is diagonalizable. We say that a bdsig}_, of  diagonalizeghe
bilinear formB if B(v;,v;) = 0foralli # j, i.e., if B is represented by a diagonal
matrix in the basigv;)?"_;.

1.1.14. THEOREM. Suppose thak is a field of characteristic different fro2
GivenB € Bgym(V), there exists a basig););* ; of V that diagonalizes3.

PROOF We prove the result by induction afim(V'). If dim(V) = 1 the
result is trivial; assumdim(V') = n and that the result holds true for every vector
space of dimension less thanlf B(v,v) = 0forallv € V, thenB = 0. For,

0=B(v+w,v+w) =2B(v,w),
and the filedK has characteristic different froth Since the result in the case that
B = 0istrivial, we can assume the existencepf V' such thatB(vy,v1) # 0. It

follows that B is nondegenerate on the one-dimensional subspacegenerated
by v1; by Proposition 1.1.10 we get:

V=Kuv®(Kuv)".

By the induction hypothesis, there exists a bésj$_, of (K v;)* that diagonal-
izes the restriction oB; it is then easy to check that the bagig);" , diagonalizes
B. O

1.2. Complex Structures

In this section we will study the procedure of changing the scalar field of a real
vector space, making it into a complex vector space. Of course, given a complex
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vector space, one can always reduce the scalars to the real field: such operation
will be calledreduction of the scalars

Passing from the real to the complex field requires the introduction of an ad-
ditional structure, that will be called @mplex structure Many of the proofs in
this section are elementary, so they will be omitted and left as an exercise for the
reader.

For clarity, in this section we will refer to linear operators/Bslinear orC-
linear, and similarly we will talk aboutR-bases ofC-bases, real or complex di-
mension, etc.

Let Y be a complex vector space; we will denotely the real vector space
obtained by restriction of the multiplication by scalétsx V — Vo IR x V —
V. Observe that the underlying set of vectors, as well as the operation of sum,
coincides inY andVi. We say thatVy, is arealification of V, or thatVy, is
obtained by a reduction of scalars fram

The endomorphism — iv of V given by the multiplication by the imaginary
unit; = /—1 is C-linear, hence alsdr-linear. The square of this endomorphism
is given by minus the identity df. This suggests the following definition:

1.2.1. CEFINITION. LetV be areal vector space. @mplex structuréin V' is
alinear operatoy : V — V suchthat/? = J o J = —Id.

Clearly, a complex structuré is an isomorphism, sincé—! = —J.

Given a complex structurg on V it is easy to see that there exists a unique
way of extending the multiplication by scalafgx V' — V of V' to a multiplication
by scalarC x V' — V' in such a way that/ (v) = iv. Explicitly, we define:

(1.2.1) (a+bi)v=av+bJ(v), abeR, veV.

Conversely, as we had already observed, every complex extension of multiplication
by scalars fol defines a complex structure &hby J(v) = iv.

We will henceforth identify every paifV, J), whereV is a real vector space
and.J is a complex structure df, with the complex vector spadeobtained from
(V,J) by (1.2.1). Observe thaf is the realificationVj; of V.

1.2.2. EXAMPLE. For everyn € IN, the spacdR?" has acanonical complex
structuredefined byJ (z,y) = (—y, z), for z,y € IR". We can identify(IR?", .J)
with the complex vector spad@” by (z,y) — x + iy. In terms of matrix repre-
sentations, we have:

0 -1
(1.2.2) J = ( T o )

where0 andI denote respectively thieand the identityr x n matrices.
We have the following simple Lemma:

1.2.3. LEMMA. Let(V3, ;) and(V4, J2) be real vector spaces endowed with
complex structures. AR-linear operatorT : V; — V5 is C-linear if and only if
ToJy = JooT. In particular, theC-linear endomorphisms of a vector space with
complex structuréV, .J) are the R-linear endomorphisms d6f that commute with
J.
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PrROOE Left to the reader in Exercise 1.3. O

1.2.4. EMARK. Observe thatif/ is a complex structure o¥i, then also-J is
a complex structure, that will be called tbenjugate complex structur&or\ € C
andv € V, the product of\ andv in the complex spacéV, —.J) is given by the
product ofA andwv in the complex spacg/, .J), where) is the complex conjugate
of A. The set of complex bases @f, J) and(V, —.J) coincide; observe however
that the components of a vector in a fixed basis are conjugated when replacing
by —J.

A C-linear operatofl” between complex spaces is stilllinear when replacing
the complex structures by their conjugates in both the domain and the counterdo-
main. The representationsBiwith respect to fixed bases in the complex structures
and the same bases in the conjugate complex structures are given by conjugate ma-
trices.

1.2.5. CEFINITION. A map T between complex vector spaces is said to be
anti-linear, or conjugate lineay if it is additive and if'(A\v) = \T'(v) for all
A € C and allv in the domain off".

An anti-linear map is alway#-linear when we see it as a map between the
realifications of the domain and the counterdomain. Moreover, a map is anti-linear
if and only if it is C-linear when the complex structure of its domain (or of its
counter domain) is replaced by the complex conjugate. In particular, the anti-linear
endomorphisms afV, .J) are thelR-linear endomorphisms éf thatanti-commute
with J.

We have the following relation between the baseglof/) and of V:

1.2.6. RROPOSITION LetV be a (possibly infinite dimensional) real vector
space and/ a complex structure oW. If (b;),c 7 is aC-basis of(V, J), then the
union of(b;)j € J and (J(bj))jej is an IR-basis ofV/.

PrROOF. Left to the reader in Exercise 1.4. O

1.2.7. @WROLLARY. The real dimension df is twice the complex dimension
of (V, J); in particular, a (finite dimensional) vector space admits a complex struc-
ture if and only if its dimension is an even number.

PrROOFE We only need to show that every real vector space of even dimension
admits a complex structure. This is easily established by choosing an isomorphism
with IR?" and using the canonical complex structure given in Example 1.2[2.

1.2.8. xampLE. If (V,J) is a real vector space with complex structure, then
the dual complex space ¢V, J) is given by the set ofR-linear mapsy : V' — C
such that:

(1.2.3) aoJ(w)=ia(v), veV.

It is easy to see that (1.2.8) determines the imaginary paxtwhen it is known
its real part; hence we have #linear isomorphism:

(1.2.4) V,J)*sar— Roae V",
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whereR : C — IR denotes the real part operator. The isomorphism (1.2.4) there-
fore induces a unique complex structureldf that makes (1.2.4) into @-linear
isomorphism. Such complex structure is called din@l complex structureand it

is easy to see that it is given simply by the transpose opeyétor

We conclude this section with a relation between the matrix representations of
vectors and operators in real and complex bases(Wef) be a2n-dimensional
vector space with complex structure; a basi¥’addapted to/ , shortly a.J-basis
is a basis of the form

(1.2.5) (b1, ey bny J(b1), -5 T (b))

in this case(b;)_, is a complex basis dfl’; J). For instance, the canonical basis
of IR?", endowed with the canonical complex structure, j&laasis corresponding
to the canonical basis @”. In other words, the/-bases of a vector space are
precisely those with respect to which the matrix representatiofsiothat given
by (1.2.2). The existence of-bases is given by Proposition 1.2.6.

Let a J-basis of V' be fixed, corresponding to a complex baBis= (bj)g.;l
of (V,J). Givenv € V with coordinategzi,..., z,) in the basisB, then its
coordinates in the (realj-basis ofl” are:

v~ ($17-‘-7$n7917--~>yn)=

wherez; = x; + iy;, xj,y; € IR. If T is aC-linear operator represented in the
complex basis by the matriX = A + i B (A and B real), then its representation
in the corresponding-basis is:

(1.2.6) T ~ < g _AB )

1.2.9. REMARK. Formula (1.2.6) tells us that the map

Z:A+Bi'—><é _AB)

is aninjective homomorphisraf the algebra of complex x n matrices into the
algebra of reabn x 2n matrices.

1.3. Complexification and Real Forms

In this section we show that any real vector space can be “extended” in a canon-
ical way to a complex vector space, by mimicking the relation betwieéandC";
such an extension will be called a complexification of the space. We also show that,
given a complex space, it can be seen as the complexification of several of its real
subspaces, that will be called the real forms of the complex space. We will only
consider the case of finite dimensional spaces, even though many of the results
presented will hold in the case of infinite dimensional spaces, up to minor modifi-
cations. Some of the proofs are elementary, and they will be omitted and left to the
reader as Exercises.
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1.3.1. DEFINITION. LetV be a complex vector spacereal formin V is a real
subspac@’, of V (or, more precisely, a subspace of the realificatignof 1) such
that:

Vr=Vo®1i V.

In other words, a real forny, in V is a real subspace such that everg V
can be written uniquely in the form= vy + i vy, with v1, v2 € V.
To a real formV, we associate maps:

(1.3.1) R:V—Vy, S:V—YVy, ¢:V—YV,

given by%(vl + Z"Ug) = 1, %(Ul + ivz) = vy and C(’U1 + Z"U2) = U1 — 1 V9,
for all v1,v2 € V. We callR, & andc respectively theeal part, imaginary part
andconjugationoperators associated to the real forin All these operators are
IR-linear; the operator is also anti-linear. For € V, we also say that(v) is the
conjugateof v relatively to the real form/y, and we also write:

c(v) =v.

1.3.2. DEFINITION. LetV be a real vector space. @mplexificatiorof V is a
pair (V, 1), whereVC is a complex vector space and V' — VC is an injective
IR-linear map such tha{V) is a real form inl/C.

The result of the following Proposition is usually known asuinéversal prop-
erty of the complexification

1.3.3. RROPOSITION LetV be a real vector spacé)/’C, 1) a complexification
of V-and»V a complex vector space. Then, given/Adinear mapf : V — Wk,
there exists a uniqué-linear mapf : V¢ — W such that the following diagram
commutes:

(1.3.2) vC
T o f
t .
N
\% ? )4Y%
PrRoOOE Left to the reader in Exercise 1.5. O

As corollary, we obtain the uniqueness of a complexification, up to isomor-
phisms:

1.3.4. ®ROLLARY. Suppose thafV\*, 1) and (Vy", 1o) are complexifications
of V. Then, there exists a uniq@linear isomorphisms : V;* — V. such that
the following diagram commutes:

PrRoOFE Left to the reader in Exercise 1.6. O
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If V' is a real vector space, we can make the direct 8um V' into a complex
space by taking the complex structufév, w) = (—w,v). Settingc(v) = (v,0),
it is easy to see thdl” @ V,.) is a complexification oV, that will be called the
canonical complexificationf the real vector space.

By Corollary 1.3.4, we do not need to distinguish between complexifications
of a vector space; so, from now on, we will denotetb(i} the canonical complex-
ification of 7, or, depending on the context, we may use the symboto denote
some other complexification &f, which is necessarily isomorphic to the canonical
one.

The original spac&” will then be identified with,(1'), so that we will always
think of an inclusionl” c V<; since. (V) is a real form ini’©, thenVC is a direct
sum ofV andi V:

VE=vaiV.

1.3.5. EXAMPLE. The subspac&” C C" is a real form inC", henceC" is a
complexification oflR™.

1.3.6. EXAMPLE. The spaceV/,,(IR) of realn x n matrices is a real form in
the spacél/,,(C) of complexn x n matrices.

A less trivial example of a real form inZ,,(C) is given byu(n), which is the
space ofanti-Hermitian matricesi.e., matricesA such thatd* = — A, whereA*
denotes the conjugate transpose matrixofin this exampleju(n) is the space
of Hermitian matricesi.e., the space of those matricdssuch thatd* = A. Itis
easy to see thdt/,,(C) = u(n) @ iu(n), and sou(n) is a real form inM,,(C) and
M,,(C) is a complexification ofi(n).

1.3.7. XAMPLE. If V is a complex vector space and(if;)7_, is a complex
basis ofV, then the real subspatg of Vi given by:

Vo={ Y Aty x € B, Vi)
7j=1
is a real form iny.

Actually, every real form ofy’ can be obtained in this way; for, Wy C V
is a real form, then adz-basis(b;)7_, of 1y is also aC-basis ofV. It follows
in particular that the real dimension of a real fowg is equal to the complex
dimension ofy.

Example 1.3.7 tells us that every complex space admits infinitely many real
forms; in the following proposition we give a characterization of the real forms in
a complex space. We recall that a bijectipiof a set is said to be anvolutionif

¢ =¢o¢=1Id,

1.3.8. RROPOSITION LetV be a complex space. Then there exists a bijection
between the set of real forms¥hand the set of the anti-linear involutive automor-
phisms of). Such bijection is obtained by:

e associating to each real foriyy C V its conjugation operatok (see
(1.3.1);
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e associating to each anti-linear involutive automorphisof V' the set of
its fixed point3y = {v € V : ¢(v) = v}. O

The above result suggests an interesting comparison between the operation of
realification of a complex space and the operation of complexification of a real
space. In Section 1.2 we saw that, roughly speaking, the operations of realification
and of addition of a complex structure are mutually inverse; the realification is a
canonical procedure, while the addition of a complex structure employs an addi-
tional information, which is an automorphisiwith J2 = —Id. In this section we
have the opposite situation. The complexification is a canonical operation, while
its “inverse” operation, which is the passage to a real form, involves an additional
information, which is an anti-linear involutive automorphism.

Let us look now at the complexification adunctorial construction. Lef;
andVs be real spaces; from the universal property of the complexification (Propo-
sition 1.3.3) it follows that each linear operatbr: V7 — V5, admits a unique
C-linear extensio’™ : V;* — V,£. We have the following commutative diagram:

C
VE —— VF

im—"W
T
The operatof ' is called thecomplexificatiorof 7; more concretely, we have that
TC is given by:
TC(w+iw) =Tw)+iT(w), v,we V.
It is immediate that:

(1.3.3) (Ty o T) ¢ =TFoT¥, 1d° =1d,
and, wheril is invertible
(1.3.4) (1%~ = (11T,

The identities (1.3.3) imply that the complexification— VC, T +— TC is afunc-

tor from the category of real vector spaces with morphismdRhénear operators

to the category of complex vector spaces with morphismgtiaear operators.
Given a linear operatdf : V; — V5, itis easy to see that:

(1.3.5) Ker(T®) = (Ker(T))®, Im(T%) = Im(T)%;

in the context of categories, the identities (1.3.5) say that the complexification is an
exact functori.e., it takes short exact sequences into short exact sequences.

If U C V is a subspace, it is easy to see that the complexificatiaf the
inclusioni : U — V is injective, and it therefore gives an identificationdf with
a subspace ofC. More concretely, the subspaté of VC is the direct sum of
the two real subspacésand: U of VC; equivalently,U® is the complex subspace
of VC generated by the sé& c VC. However, not every subspace 6f is the
complexification of some subspacelof We have the following characterization:
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1.3.9. LEMMA. LetV be a real vector space and It ¢ VC be a complex
subspace of its complexification. Then, there exists a real subgpacel” with
Z = UC if and only if Z is invariant by conjugatioyi.e.,

«(2)C Z,

wherec is the conjugation relative to the real forii ¢ VC. If Z = U®, then such
U is uniquely determined, and it is given explicitylby= Z N V.

PROOF. Left to the reader in Exercise 1.7. 0
Given real vector spacéd andVs, observe that the map:

(1.3.6) Lin(Vi,Va) 5 T — TC € Lin(VE, Vi)

is IR-linear; we actually have the following:

1.3.10. LEMMA. The mag1.3.6)takesLin(V;, V) isomorphically onto a real
form in Lin(V,E, Vi©).

PROOF Since(Vy) g = Va @i Va, itis easy to see that:
(1.3.7) Lin(Vl, (VQC)IR) = Lin(V4, V5) @ iLin(V4, Va).

From the universal property of the complexification, it follows thatrriction
operator

(1.3.8) Lin(VE,Vi$) 38 = 8y, € Lin(Vl, (VQC)B)

is an isomorphism. From (1.3.7) and (1.3.8) it follows:

(1.3.9) Lin(V;%, V4°) 2 Lin(V4, V2) @ Lin(V4, Va),

where the two summands on the right of (1.3.9) are identified respectively with the
image of (1.3.6) and with the same image multiplied by O

From Lemma 1.3.8 it follows in particular that the dual = Lin(V, IR)
can be identified with a real form of the dual of the complexificatidit)* =
Lin(VC, C) (compare with Example 1.2.8).

Along the same lines of Lemma 1.3.9, in the next lemma we characterize the
image of (1.3.6):

1.3.11. LEMMA. LetV;, Vs be real vector spaces. Given(&linear maps :
V€ — V£, the following statements are equivalent:

e there exists atR-linear mapT : V; — V5 such thatS = TC;
e S preserves real formse.,S(V1) C Va;
e S commutes with conjugatign.e.,c o S = S o ¢, wherec denotes the
conjugation operators ifr;> andl;" with respect to the real formig, and
V5 respectively.
When one (hence all) of the above conditions is satisfied, there exists a unique
T ¢ Lin(Vi, V5) such thatS = T, which is given by the restriction . O
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1.3.12. XampPLE. Let V4,15 be real vector spaces; choosing baseslior
and V;, the same will be bases for the complexificatidriS and V" (see Ex-
ample 1.3.7). With respect to these bases, the matrix representation of a linear
operatorT : V; — V5 is equalto the matrix representation of its complexification
7€ : V¥ — V¥ (compare with the result of Section 1.2, and more in particular
with formula (1.2.6)). In terms of matrix representations, the map (1.3.6) is simply
the inclusion of the real matrices into the complex matrices.

1.3.13. EXAMPLE. The real form inLin(V;C, V) defined in the statement
of Lemma 1.3.10 corresponds to a conjugation operatdriirfV,*, V;°); given
S € Lin(V{, Vi), we denote bys its conjugate operator Explicitly, S is given
by:

S=coSoc.

For, using Proposition 1.3.8 and Lemma 1.3.11, it suffices to observesthat
¢ o S o ¢ defines an anti-linear involutive automorphismIgh(V;, Vi) whose
fixed point set is the image of (1.3.6). Observe that we have the identity:

S@) = 3(v), veVE.

In terms of bases, the matrix representatiolsaé the complex conjugatef the
matrix representation af.

The theory presented in this section can be easily generalized to the case of
multi-linear operators, anti-linear operators and operators with “mixed” multi-
linearity, like sesquilinear operators. The latter case has special importance:

1.3.14. DEFINITION. Given complex vector spaces, V- and), we say that
amapB : Vi x Vo — V is sesquilinearf for all v; € V; the mapB(vy,-) is
anti-linear and for alby € V, the mapB(-, v2) is C-linear.

If V1 =)V, and if a real form is fixed i/, we say that a sesquilinear m&p
is Hermitian (respectivelyanti-Hermitian) if B(vi,v2) = B(ve,v1) (respectively,
B(vy,v3) = —B(vg, v1)) for all vy, vy € V.

A Hermitian formin a complex spac® is a sesquilinear Hermitian map :
Y x V — C; if Bis positive definitei.e., B(v,v) > 0 for all v # 0, we also say
that B is apositive Hermitian produgior simply anHermitian productin V.

In the same way that we define the complexificatith for an IR-linear op-
erator, we can define the complexificati#t of an IR-multilinear operatotB :
Vi x --- x V, — V as itsuniqueextension to &C-multi-linear operatorB® :
VE x - x Vp‘C — VC. Similarly, we can associate to dR-linear operator its
unique extensioff© : V;* — V,* to ananti-linear operator and to anR-bilinear
operatorB : Vi xV, — V its uniquesesquilinear extensioB® : VExVF — VC,

In Exercise 1.8 the reader is asked to generalize the results of this section,
in particular Proposition 1.3.3, Lemma 1.3.10 and Lemma 1.3.11, to the case of
multi-linear, conjugate linear or sesquilinear operators.



14 1. SYMPLECTIC SPACES

1.3.15. XAMPLE. If V is a real vector space anfél € By, (V) is a sym-
metric bilinear form onV/, then the bilinear extensioB® of B to VC is sym-
metric; on the other hand, the sesquilinear extend®dn of B is a Hermitian
form onVC. Similarly, the bilinear extension of an anti-symmetric bilinear form
is anti-symmetric, while the sesquilinear extension of an anti-symmetric form is
anti-Hermitian.

The notions of kernel (see (1.1.5)), nondegeneracy and orthogonal complement
(see (1.1.8)) for symmetric and anti-symmetric bilinear forms generalize in an ob-
vious way to sesquilinear Hermitian and anti-Hermitian formsB lfs symmetric
(or anti-symmetric), it is easy to see that the condition of nondegeneraByi®f
equivalent to the nondegeneracy of eitfir or B®. Moreover, if B € Bsym (V)
is positive definitei.e., B(v,v) > 0 for all v # 0, then its sesquilinear extension
B% is also positive definite. Observe that thebilinear extension3¢ will be
nondegeneratdut it is not positive definitésee Exercise 1.9).

For instance, theanonical inner product ofR™ is given by:

n
(x,y) =Y ;.
j=1
Its sesquilinear extension defines ttamonical Hermitian product i”, given by
n
(1.3.10) (z,w)% =" 2wy,
j=1
while its C-bilinear extensions given by:
n
(z,w)C = Z Zjwj.
j=1

1.3.16. EMARK. In the spirit of Definition 1.1.5, given a complex spage
and a Hermitian fornB in V, we say that &-linear operatofl € Lin(V) is B-
Hermitian(respectivelyB-anti-Hermitiar) if 5(7 -, -) is a Hermitian (respectively,
anti-Hermitian) form. We also say th@tis B-unitaryif B(7-,7-) = B.

Given a real vector spacE, B € Bgm(V) and if I' € Lin(V) is a B-
symmetric (respectively3-anti-symmetric) operator, then its complexificatibh
in Lin(VC) is a B®-Hermitian (respectivelyB3®s-anti-Hermitian) operator.

If T is B-orthogonal, thed™® is BCs-unitary.

1.3.1. Complex structures and complexificationsThe aim of this subsec-
tion is to show that there exists a natural correspondence between the complex
structures of a real spadéand certain direct sum decompositions of its complex-
ification V°C.

LetV be areal vector space andJet V' — V be a complex structure ii; we
have that/C is aC-linear automorphism of the complexificatiéf that satisfies
(J©)2 = —1Id. ltis then easy to see th&* decomposes as the direct sum of
the two eigenspaces df° corresponding to the eigenvalueand—i respectively;
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more explicitly, we define:
Vi={veV®: J%) =i},
Vi={ve Ve J%w) = —iv}.
Then, VY andV ¢ are complex subspaces Bf, andVC = VY @ V¢ the projec-
tions onto the subspac&?d andV ® are given by:
e e
_v—iJ (v), T(0) = v+iJ (v)’
2 2
We call the spaceB " andV © respectively thdrolomorphicand theanti-holomor-

phic subspaces oFC. Next proposition justifies the names of these spaces (see
also Example 1.3.18 below):

(1.3.11) ™ (v) veVE.

1.3.17. ROPOSITION LetV be a real vector space andl a complex struc-
ture in V. Then, the projections? and® given in(1.3.11)restricted toV define
respectively aC-linear isomorphism ofV, .J) onto V" and aC-anti-linear iso-
morphism of V, J) onto V. O

Proposition 1.3.17 tells us that, if we complexify a sp&téhat already pos-
sesses a complex structufewe obtain a complex spadé® that contains a copy
of the original spacéV,.J) (the holomorphic subspace) and a copy(bf—.J)
(the anti-holomorphic subspace). Observe also that the holomorphic and the anti-
holomorphic subspaces of° aremutually conjugate

Ve=c(VY), Vh=c(ve),

wherec denotes the conjugation &fC relative to the real forny.

In our next example we make a short digression to show how the theory of this
subsection appears naturally in the context of calculus with functions of several
complex variables.

1.3.18. XaMPLE. The construction of the holomorphic and the anti-holomor-
phic subspaces appears naturally when one studies calculus of several complex
variables, or, more generally, when one studies the geometry of complex manifolds.

In this example we consider the sp&c®, that will be thought as the real space
IR?" endowed with the canonical complex structure. The real canonical basis of
C" ~ (IR*", J) will be denoted by:

(i 90 90 9 ):
Azl 9z Ayl oyn )’
this is a basis of?R?" adapted toJ, and the corresponding complex basi€fis
given by:
0 0
(axl"“’axn)‘
We now consider another complex space, given by the complexifiqditéh)© ~
C?". We denote by the multiplication by the scalarin C", while in C** such
multiplication will be denoted in the usual way— iv. Let J© : C** — C?” be
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the complexification off, which defines the holomorphic and the anti-holomorphic
subspaces of?".

By Proposition 1.3.17, the projectiond and=*® defined in (1.3.11) map the
canonical complex basis @™ respectively into a basis of the holomorphic sub-
space and a basis of the anti-holomorphic subspa€8'bfThese bases are usually
denoted b)(%)?

) and(%)?zl; using (1.3.11) we compute explicitly:
9 _1(o 0N 9 _1(0 0
92 2\ oy ) 9z 2\0w oy )
Observe that the vectef; is conjugate to the vectaf.

The notation,2;, % for the canonical basis dR?" is justified by the iden-
tification of vectors inlR?>" with the partial derivative operator®n differentiable
functionsf : IR?™ — IR. The complexification ofR?" is therefore identified with
the space of partial derivative operators acting on complex differentiable functions
f : IR?™ — C; in this notation, theCauchy—Riemann equatigrtbat characterize
the holomorphic functionsare given by setting equal tbthe derivatives in the

directions of the anti-holomorphic subspace:
0 .

Observe thatf satisfies (1.3.12) if and only if its differential at each point is a
C-linear operator fron€" ~ (IR*",.J) to C.

We now show that the decomposition into holomorphic and anti-holomorphic
subspace determines the complex structure:

1.3.19. ROPOSITION LetV be areal vector space and consider a direct sum
of the complexificatio © = 2, ¢ Z,, whereZ; and 2, are mutually conjugate
subspaces df . Then, there exists a unique complex structlien V' such that
Z, = VY: moreover, for sucly, itis also 2, = V.

PROOF. The uniqueness follows from the fact that is the graph of-.J when
we use the isomorphisi® ~ V @ V. For the existence, consider the unique
C-linear operator i/ that hasz; and 2, as eigenspaces corresponding to the
eigenvalueg and—i respectively. Clearly, such operator commutes with the con-
jugation and its square equaldd. From Lemma 1.3.11 it follows that it is of the
form JC for some complex structurg: V — V. O

Let nowT be aC-linear endomorphism afV, J), i.e., anIR-linear endomor-
phism ofV such thaflo J = Jo T let T be its complexification. It is easy to see
that the the holomorphic and the anti-holomorphic subspac&s-adre invariant
by TC; moreover, we have the following commutative diagrams:

T T

Vv — V V — V
(1.3.13) oy | =wy | =|woly
Vb —— v Ve —— Ve

TC TC



1.3. COMPLEXIFICATION AND REAL FORMS 17

It follows from Proposition 1.3.17 that the vertical arrows in the diagram on the left
areC-linear isomorphisms f/, J) with VY and the vertical arrows in the diagram
on the right areC-linear isomorphisms ofV, —J) in V°.

Let now (b;)7_, be a complex basis dfV, /) and let(b;, J(b;))7_, be the
corresponding real basis &f adapted taJ. The latter is also a complex basis for
VC (see Example 1.3.7). By Proposition 1.3.17, the vectgrs; defined by:

bj —iJ(b;) _ b +1iJ(bj)
J 5 1/ Vh, uj = J 5 J
form a complex basis ofV, J). If T is represented by the matrix = A + B,
with A, B real matrices, in the basi$;)7_, of VC (hence it is represented by the
matrix (1.2.6) with respect to the real basisiof, then it follows from (1.3.13) that
the matrix representation @i with respect to the basis;, ﬂj)?zl of VCis given

by:

Z 0
(1.3.15) ¢ ~ < " 7 ) .

(1.3.14) w; = eve, j=1,...,n

On the other hand, the matrix representatior7’6fwith respect to the basis
(bj, J(bs))}—, is again (1.2.6) (see Example 1.3.12). This shows in particular that
the matrices in (1.2.6) and in (1.3.15) aguivalent(or conjugate i.e., represent-
ing the same operator in different bases).

We summarize the above observations into the following:

1.3.20. ROPOSITION LetV be areal vector space anfla complex structure
in V. If T'is aC-linear endomorphism dfV, .J), then:

e thetraceof T' as an operator otV is twice the real part of the trace af
as an operator orfV, .J);

e thedeterminanf T' as an operator orl/ is equal to the square of the
absolute value of the determinantBfas an operator orfV, .J).

More explicitly, if A, B and realn x n matrices,”Z = A+ B i andC is the matrix
given in(1.2.6) then we have the following identities:

tr(C) = 2R(tr(2)), det(C) = |det(2)[?,

wheretr(U), det(U) denote respectively the trace and the determinant of the ma-
trix U, andR(A), |\| denote respectively the real part and the absolute value of the
complex numbek. O

1.3.21. EMARK. Suppose thaV is endowed with a positive definite inner
productg and that/ : V' — V is a complex structure which gganti-symmetric,
Then, we have/#g = g, i.e., J is g-orthogonal. The operataf® on VC will
then be anti-Hermitian (and unitary) with respect to the Hermitian progitict
in VC (see Remark 1.3.16). It is easy to see that the holomorphic and the anti-
holomorphic subspaces dfareorthogonalwith respect tg;®:

¢“(v,w) =0, veV) weVve
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Usingg and.J, we can also define a Hermitian prodygin V' by setting:
g9s(v,w) = g(v,w) +ig(v, Jw), v,w e V.

Actually, this is theuniqgueHermitian form in(V, J) that hag as its real part.
We have the following relations:

S 'l), w ) a a S ’l), w
o (w0 ), ) = 200 (e o) = 200y e v
they imply, in particular, that itbj)?:1 is an orthonormal complex basis @f, .J)

with respect tays, then the vectors/2 u;, v2i;, j = 1,...,n, (see (1.3.14)) form

an orthonormal real basis & with respect tgs. Also the vectors; and.J (b;),
j=1,...,n, form an orthonormal real basis bf with respect tq;, and therefore
they form a complex orthonormal basis 6f with respect tay®. We conclude
thenthatifZ = A+ Bi (A, B real matrices), then the matrices in formulas (1.2.6)
and (1.3.15) aranitarily equivalenti.e., they represent the same complex operator
in different orthonormal bases.

1.4. Symplectic Forms

In this section we will study the symplectic vector spaces. We define the notion
of symplectomorphism, which is the equivalence in the category of symplectic
vector spaces, and we show that symplectic vector spaces of the same dimension
are equivalent.

1.4.1. DEFINITION. LetV be areal vector spacesgmplectic fornonV is an
anti-symmetric nondegenerate bilinear farm V' x V' — IR. We say thatV,w)
is asymplectic vector space

1.4.2. REMARK. If w € Ba_sym (V) is @ possibly degenerate anti-symmetric
bilinear form onV/, thenw defines an anti-symmetric bilinear forfmon the quo-
tientV/Ker(w); it is easy to see that is nondegenerate, hentg/Ker(w), ) is
a symplectic space.

We start by giving a canonical form for the anti-symmetric bilinear forms; the
proof is similar to the proof of Theorem 1.1.14.

1.4.3. THEOREM. LetV be ap-dimensional vector space ande B, _qym (V)
an anti-symmetric bilinear form ol. Then, there exists a basis Bfwith respect
to which the matrix ofo (as a bilinear form) is given by:

On I’Vl OTLXT
(141) W ~ _In On 0n><1‘ )
O'I‘X'I‘L O'I‘Xn 07‘
wherer = dim(Ker(w)), p = 2n + r, and0,x 3, 0, andI, denote respectively
the zeron x (3 matrix, the zero square matrix x « and the identityx x a matrix.

PrROOEF In first place, it is clear that, if a basis as in the thesis is found, then
the lastr vectors of this basis will be a basis fier(w), from which we get- =
dim(Ker(w)) andp = 2n + r.
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For the proof, we need to exhibit a basis)?_, of V' such that:
(142) w(bi, bn+l) = —w(bn+i7 bl) = 1, 1= 1, BN S

andw(b;, b;) = 0 otherwise. We use induction gn if p < 1 then necessarily
w = 0 and the result is trivial.

Let's assume > 1 and that the result is true for all vector spaces of dimension
less tharp. If w = 0 the result is trivial; let's assume then thatv € V' are chosen
in such a way thab (v, w) # 0, for instancew(v,w) = 1. Then, it is easy to see
thatw is nondegenerate when restricted to the two-dimensional plane generated by
v andw; from Proposition 1.1.10 it follows that:

V = (Rv + Rw) ® (IRv + Rw)™*.

We now use the induction hypothesis to the restrictiow ¢6 the (p — 2)-dimen-
sional vector spac@Rv + IRw)~*, and we obtain a basis, . . . , by, byt2; - - -, by)

of (IRv + IRw)* in which w takes the canonical form. This means that equality
(1.4.2) holds fori = 2,...,n, andw(b;, b;) = 0 otherwise. The desired basis for
V' is then obtained by setting = v andb,, 11 = w. O

1.4.4. @ROLLARY. If (V,w) is a symplectic space, thdn is even dimen-
sional, and there exists a basis;)?", of V with respect to which the matrix af
as a bilinear form is given by:

(1.4.3) W ~ (_? (I) > )

where0 andI denote respectively the zero and the identity n matrices.

1.4.5. DEFINITION. We say thatb;)#", is asymplectic basisf (V,w) if the
matrix of w as a bilinear form in this basis is given by (1.4.3).

Observe that the matrix of the linear operator V' — V* is given by the
transposeof (1.4.3), i.e., it coincides with the matrix given in (1.2.2).

Corollary 1.4.4 tells us that every symplectic space admits a symplectic basis.
We now definesub-objectandmorphismsn the category of symplectic spaces.

1.4.6. EFINITION. Let(V,w) be a symplectic space; We say tlsais asym-
plectic subspaci# S C V is a subspace and the restrictioly « s is nondegenerate.
Hence,(S,w|sxs) is @ symplectic space.

Let (V1,w1) and(V2,w2) be symplectic spaces; a linear operatorV; — V5
is asymplectic magf 77 (wy) = w1, i.e., if

wo(T(v), T(w)) =wi(v,w), Yv,wée V.

We say thatl’ is a symplectomorphisnii 1" is an isomorphism and a symplectic
map.

A symplectomorphism takes symplectic bases in symplectic bases; conversely,
if T:V, — Vhis alinear map that takes some symplectic basig;ahto some
symplectic basis o5, thenT is a symplectomorphism.
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In terms of the linear operatots; € Lin(Vi, V)*) andws € Lin(V2, V5), a
map7T € Lin(V4, V3) is symplectic if and only if:

(1.4.4) T owyoT = wy.

1.4.7. EMARK. Observe that the right hand side of equality (1.4.4) is an iso-
morphism, from which it follows thagvery symplectomorphisifiis an injective
map In particular, the imagé'(V;) is always a symplectic subspacelof

1.4.8. EXAMPLE. We define a symplectic form if?" by setting:

(1.4.5) w((’ul,wl), (Uz,wg)) = (v1, wa) — (wi,va2),

for vy, ve, w1, we € IR™, where(-,-) denotes the canonical inner productiBf'.
We say that (1.4.5) is theanonical symplectic form dR?"; the canonical basis
of IR?" is a symplectic basis fav, hence the matrix ab (as a bilinear map) with
respect to the canonical basisiBP" is (1.4.3).

The existence of a symplectic basis for a symplectic space (Corollary 1.4.4)
implies that every symplectic space admits a symplectomorphism(iitt, w),
hence the proof of every theorem concerning symplectic spaces can be reduced to
the case of R?", w).

We can also define a canonical symplectic forndif ¢ IR™* by setting:

w((vl, 041), (Ug, 042)) = 052(1)1) — a1(v2),

wherevy, vy € IR™ anday, as € IR™. Again, the canonical basis @&" ¢ R™*
is a symplectic basis for the canonical symplectic forn#f @ IR™*.

1.4.9. REMARK. Denoting by(dqy, .. .,dq,,dp1,...,dp,) the canonical ba-
sis of IR*™* (dual of the canonical basis @2"), the canonical symplectic form of
IR?" is given by:

n
w = Z dg; A dp;.

=1
It follows easily:

n(n—1)

W'=wA. . Aw=(=1)"2 dp A...Adg, Adp1 A ... Adpy.
Hencew™ is avolume formin IR?"; for all symplectomorphisri’ of (IR?*", w) we

therefore have:

T#(W") = w" = det(T) W™,
from which it follows det(7)) = 1. In general, not every linear map with
det(T) = 1is a symplectomorphism ¢fR>", w); whenn = 1 the symplectic form
w is a volume form, henc® is a symplectomorphism if and onlydet(7") = 1.

The symplectomorphisms of a symplectic spéev) form a group by com-
position.

1.4.10. CEFINITION. Let (V,w) be a symplectic space; tlsgmplectic group
of (V,w) is the group of all symplectomorphisms @f, w), denoted bySp(V, w).
We denote byp(2n, IR) the symplectic group alz>" endowed with the canonical
symplectic form.
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Using a symplectic basis dV,w), a mapT € Lin(V) is a symplectomor-
phism if and only if the matrix\/ that represent®’ in such basis satisfies:

(1.4.6) M*wM = w,
wherew is the matrix given in (1.4.3). Writing

A B
(1.4.7) T ~ < - D),

then (1.4.6) is equivalent to the following relations:
(1.4.8) D*A— B*C =1, A*CandB*D are symmetric

whereA, B,C, D aren x n matrices] is then x n identity matrix, and® means
transpose (see Exercise 1.10). A matrix of the form (1.4.7) satisfying (1.4.8) will
be called asymplectic matrix

We define direct sum of symplectic spaces.

1.4.11. CEFINITION. Given symplectic spacgd/,w;) and(V2,ws), we de-
fine a symplectic fornv = wy; @ we OoNV; & V5 by setting:

w((vl,vg), (wl,wg)) = wl(vl,wl) +(.L)2(U2,w2), U1, W1 € Vl, V2, Wy € Vg.

The spacdV; @ V2,w1 @ wo) is called thedirect sum of the symplectic spaces
(Vi,w1), (Va,w2).

If (V,w) is a symplectic space, two subspadgssS, C V are said to bev-
orthogonalif w(vy,ve) =0forallv, € S;,7=1,2. If V= S; & Sy with S; and
So w-orthogonal, then it is easy to see that b8ttand.S; are symplectic subspaces
of (V,w); in this case we say thaf is the symplectic direct sum of the subspaces
S1 andSs.

Observe that the notion of direct sum for symplectic spacestisneant as a
sum in acategorical sensa.e., it is not true that a symplectic map on a direct sum
V1 & Vs is determined by its restriction g, and V5 (see Exercise 1.15).

1.4.12. &XAMPLE. If T; : V; — V/, i = 1,2, are symplectic maps, then the
mapT =T, & Ty : Vi & Vo — V] & V; defined by:

T(’Ul,’Ug) = (Tl(vl),Tg(Ug)), V; € ‘/i, 1=1,2,

is also symplectic. If boti; andT;, are symplectomorphisms, then algds a
symplectomorphism.

One needs to be careful with the notion of direct sum of symplectic spaces
when working with symplectic bases; more explicitly, the concatenation of a sym-
plectic basigb;)?", of V; and a symplectic bas(ég)?ﬁl of V4 is nota symplectic

basis ofV; @ V5. In order to obtain a symplectic basis Bf ® V5, we need to
rearrange the vectors as follows:

/ / / /
(bla"‘7bn7b1)‘"’bmabn+1)'"7b2’n7bm+17"" Qm)

Similar problems are encountered when dealing with symplectic matrices: the sim-
ple juxtaposition of along the diagonal of an elemern$pf2n, IR) and an element
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of Sp(2m, IR) does noproduce an element 6§ (2(n+m), IR); in order to obtain
a symplectic matrix it is necessary to perform a suitable permutation of the rows
and the columns of such juxtaposition.

1.4.1. Isotropic and Lagrangian subspacesln this subsection we consider
a fixed symplectic spadd’, w), with dim (V') = 2n.

1.4.13. DEFINITION. A subspaceé C V is said to basotropicif w|gxs = 0.

Observe thafS is isotropic if and only if it is contained in its orthogonai-
with respect tav; from Proposition 1.1.8 we have:

(1.4.9) dim(S) 4 dim(S+) = 2n,

from which it follows that the dimension of an isotropic subspace is at most
Observe that the notion of isotropic subspace is, roughly speaking, opposite to
the notion of symplectic subspace; for, by Proposition 1.15185 a symplectic
subspace ifs N S+ = {0}.

We have the following:

1.4.14. lEMMA. Let L C V be a subspace; the following statements are
equivalent:

e [ ismaximal isotropi¢i.e., L is isotropic and it is not properly contained
in any other isotropic subspace of,

o L =1+

e [ is isotropic anddim(L) = n.

PROOF If L is maximal isotropic, thed, ¢ L+ and forv € L' the subspace
L + IRv is isotropic and it containg. It follows that . = L + IRv, hence
ve LandL = L. If L = L, thenL is isotropic, and from (1.4.9) it follows
thatdim(L) = n. Finally, if L is isotropic andlim(L) = n, thenL is maximal
isotropic, because the dimension of an isotropic subspace is atimost O

1.4.15. CEFINITION. A subspacd. C V is said to bd.agrangian subspacié
it satisfies one (hence all) of the statements in Lemma 1.4.14.

1.4.16. XAMPLE. The subspacef)} ¢ R" andR" & {0} are Lagrangian
subspaces aR?" endowed with the canonical symplectic structure. Given a linear
map7 € Lin(/R"), then itsgraph Graph(T) = {v +T(v) : v € R"} is a
Lagrangian subspace @?" endowed with the canonical symplectic structure if
and only if T is symmetric with respect to the canonical inner produdi&t

1.4.17. XaMPLE. If S C V is an isotropic subspace, then the kernel of the
restriction ofw to S is the subspacéS+)+ N S+ = S (see Corollary 1.1.9). It
follows thatw defines by passing to the quotient a symplectic farrim S+ /S
(Remark 1.4.2).

In the following definition we relate symplectic forms and complex structures
onvV:
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1.4.18. DEFINITION. A complex structure/ : V' — V' is said to becompatible
with the symplectic formw if w(-, J-) is aninner productin V, i.e., a symmetric,
positive definite bilinear form ofir. More explicitly, J is compatible withw if:

—w(Jv,w) =w(v, Jw), Vv,weV,
and ifw(Jv,v) > 0 forall v # 0.

1.4.19. XAMPLE. The canonical complex structure B>" (Example 1.2.2)
is compatible with the canonical symplectic structureif*. The inner product
w(-, J-) is simply the canonical inner product @>". It follows that every sym-
plectic space admits a complex structure compatible with the symplectic form: it
is enough to defind by the matrix (1.2.2) with respect to any fixed symplectic ba-
sis. Such basis will then be amthonormal basisvith respect to the inner product
w(-,J).

Let's assume that is a given complex structure ovi which is compatible
with w, and let's denote by the inner product (-, J-); J is a symplectomorphism
of (V,w) (see Exercise 1.16) and the following identity holds:

g(J ) = w.
A compatible complex structutécan be used to construct a Lagrangian which
is complementary to a given Lagrangian:

1.4.20. LEMMA. If L C V is a Lagrangian subspace andl is a complex
structure compatible wittv, thenV = L @ J(L).

PROOEF It suffices to observe thdt and.J(L) are orthogonal subspaces with
respect to the inner produgt O

1.4.21. WROLLARY. Every Lagrangian subspace admits a complementary
Lagrangian subspace.

PROOF It follows from Lemma 1.4.20, observing thd{ L) is Lagrangian,
sinceJ is a symplectomorphism (Exercise 1.16). O

We can define a complex valued sesquilinear fogrtsee Definition 1.3.14) in
the complex spac@V, J) by setting:

(1.4.10) gs(v,w) = g(v,w) —iw(v,w).

It is easy to see that is a positive Hermitian product iV, J).

Recall from Remark 1.3.16 that@linear endomorphism igs-unitary when
g9s(T-,T-) = gs; in this situation we also say thdt preserveg;. We have the
following:

1.4.22. ROPOSITION LetT € Lin(V) be aniR-linear map; the following
statements are equivalent:

e T isC-linearin (V, J) and gs-unitary;
e T is orthogonal with respect tg and7" € Sp(V, w).
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PrROOF If T is C-linear andgs-unitary, therl” preservegs, hence it preserves
separately its real part, which s and its imaginary part, which isw. HenceT'
is an orthogonal symplectomorphism.

Conversely, ifl" is an orthogonal symplectomorphism, then the following iden-
tities hold:

T ogoT =g, TFowoT =w, w=gol,

consideringg andw as linear operators ihin(V, V*) (see Example 1.1.3)). It
follows easily that/ o T'= T o J, i.e.,T is C-linear. Sincel’ preserves both the
real and the imaginary part gf, we conclude thdl is gs-unitary. O

1.4.23. XAMPLE. The canonical complex structure of IR?>" (see Exam-
ple 1.4.8) is compatible with its canonical symplectic structure (Example 1.2.2),
and the inner produgt corresponds to the canonical inner productiof. If we
identify (IR?",.J) with C* (Example 1.2.2), the Hermitian produgt coincides
with the canonical Hermitian product 6f* given in (1.3.10).

1.4.24. EMARK. Observe that ifV, J) is a complex space endowed with a
Hermitian producys, then the real part gf; is a positive inner produgton V" and
the imaginary part ofs is a symplectic form ofV’; moreover, defining as minus
the imaginary part ofs, it follows that.J is compatible withv andg = w(-, J-).

1.4.25. EMARK. If V is a real vector space, is a positive inner product
onV andJ is a complex structure which ig-anti-symmetric (or, equivalently,
g-orthogonal), then we get a symplectic form Bnby settingw = ¢g(J-,-). The
complex structure/ will then be compatible witlv, andg = w(-, J-). Again, we
also get a Hermitian produgt in (V, J) defined by (1.4.10).

We have the following relation between Lagrangian subspaces and the Hermit-
ian productys:

1.4.26. LEMMA. A subspacd. C V is Lagrangian if and only if it is a real
form which ispreserved by, i.e.,V = L& J(L) andgs(L x L) C IR,

PrROOF It follows from Lemma 1.4.20 and the observation that the imaginary
part of g, equals—w. O

As a corollary, we now prove that the group @funitary isomorphisms of
(V, J) acttransitivelyon the set of Lagrangian subspace$gfw):

1.4.27. @ROLLARY. Given any pair of Lagrangian subspacés, L. of V,
there exists &-linear isomorphisn” of (V, J) which isgs-unitary and such that
T(Ly1) = Lo.

PROOF. Let (b;)7_, be an orthonormal basis df; with respect to the inner
productg; sinceL, is a real form of(V, J), it follows that (b;)_; is a complex
basis of(V, J) (see Example 1.3.7). Moreover, singeis real onL;, it follows
that (b;)7_, is an orthonormal basis dfV/, J) with respect togs. Similarly, we
consider a basi$b;.);?:1 of Ly which is orthonormal with respect t@ and we
obtain that(b})}_; is ags-orthonormal basis ofV, J). It follows that theC-linear
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isomorphisnil” defined byI'(b;) = b, forall j = 1,...,n, is unitary and satisfies
T(Ly) = Lo. O

It follows that also the symplectic group acts transitively on the set of La-
grangian subspaces:

1.4.28. ®ROLLARY. Given any pairLy, Lo of Lagrangian subspaces of the
symplectic spac@/, w), there exists a symplectomorphigie Sp(V, w) such that
T(Ly) = Lo.

PrROOF It follows from Corollary 1.4.27, observing that evejytunitary map
is a symplectomorphism (Proposition 1.4.22). O

1.4.29. EMARK. For later use, we will mention a mild refinement of the
result of Corollary 1.4.27. Given Lagrangian subspakesl., C V and chosen
orientations®; andO, respectively on the spacés and Lo, it is possible to find
a C-linear andgs-unitary endomorphisni” of (V, J) such thatl'(L,) = L. and
such thatl'|, : L1 — Lo is positively oriented. To see this, it suffices to choose
in the proof of Corollary 1.4.27 thg-orthonormal base@;);_, and(b;);?zl of Ly
and L, respectively in such a way that they are positively oriented.

1.4.30. EMARK. Given a Lagrangian subspaég C V, then it is always
possible to find a bas(ﬁg)?il of V which is at the same time symplectic, adapted
to J, and such thatb;)7_, is a basis ofLy. For, if (b;)7_, is a g-orthonormal
basis ofLg, then the basis defined in (1.2.5) satisfies the required properties; more-
over, such basis ig-orthonormal and the complex basis)?_, of (V,J) is gs-
orthonormal. We therefore obtain a basis that puts simultaneously all the objects

(V,w, J, g, gs, Lo) in their canonical forms.

In the spirit of Remark 1.4.24 and Remark 1.4.25, one can ask himself whether
given a real spack endowed with a symplectic formand a positive inner product
g, itis possible to construct a complex structurand a Hermitian produgt which
are naturally associated gpandw. If one requires the conditiom = g(J-, ),
then this is clearly impossible in general, because there exists a unique operator
H € Lin(V) such thatw = g(H-,-), and suchH does not in general satisfy
H? = —1d.

We conclude the subsection with a result in this direction:

1.4.31. RRoPOSITION Let(V,w) be a symplectic space agd positive inner
product inV. Then there exists a unique complex structiiia V' which isg-anti-
symmetric (or, equivalently-orthogonal) and compatible with.

PrROOFE The unigueness is the hard part of the thesis, which we now prove.
Suppose thaf is a giveng-anti-symmetric complex structure In which is com-
patible withw, and letH € Lin(V') be the unique operator such that= g(H-, ).
Then, H is ag-anti-symmetric isomorphism df.

The compatibility ofJ with w is equivalent to the condition thatH J-, -) be a
symmetric bilinear form o which isnegative definiteBy the usual identification
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of linear and bilinear maps, we see that thanti-symmetry property off and.J,
together with thej-symmetry of H J are expressed by the following relations:

goJ=—-J0g, goH=-H"og, goHoJ=J"0H"og,

from which it follows easily thatd o J = J o H.
We now consider the complexification& , HC € Lin(V®) and the unique
sesquilinear extensiogts of g to VC; clearly, ¢ is a positive Hermitian product
in VC, with respect to whicliH® andJC are anti-Hermitian operators (see Exam-
ple 1.3.15 and Remark 1.3.16); moreovéf; o J© = J® o H® and(J®)? = —1d.
SinceHC is ¢Cs-anti-Hermitian, therd© can be diagonalized in g"s-ortho-
normal basis of’* (see Exercise 1.18); its eigenvalues are pure imaginary (non
zero, becausél® is invertible), and sincéZ© commutes with the conjugation, it
follows that eigenspaces df* corresponding to two conjugate eigenvalues are
mutually conjugate (see Lemma 1.3.11). We can then wrifesaorthogonal de-
composition:

T T
VE=PZir, e P Z-in
j=1 Jj=1

where); > 0 for all j, Z; \ the eigenspace diC corresponding to the eigenvalue
iA; also,Z_;, is the conjugate ofF; ).

SinceJ® commutes withi C, it follows that the eigenspaces Hi® are invari-
ant by JC. The restriction of/€ to eachz;,; is an anti-Hermitian operator whose
square is-Id, from which it follows that such restriction is diagonalizable, and its
possible eigenvalues aiand—i. The restriction of“(J“o H® -,-) to Z;, , that
coincides with the restriction af\; g% (J%-,-)) must be Hermitian and negative
definite, from which it follows that the unique eigenvalue of the restrictioti‘of
to Z;, must be equal to.

We conclude that the restriction df to Z;, s the operator of multiplication
by i, and the restriction off to Z_;», is the operator of multiplication by-i;
such conditions determing®, which shows the uniqueness.bf

For the existence, simply consider the unique complex structorel” whose
holomorphic space coincides wi@j Ziy; (see Proposition 1.3.19). O

1.4.2. Lagrangian decompositions of a symplectic spacén this subsection
we study the properties of Lagrangian decompositions of a symplectic space, that
will be fundamental in the study of the Lagrangian Grassmannian in Section 2.5.
Throughout this subsection we will fix a symplectic sp&gew), with dim(V) =
2n. We start with a definition:

1.4.32. CEFINITION. A Lagrangian decompositioof (V,w) is a pair(Lg, L)
of Lagrangian subspaces Bfwith V- = Lo ® L.

1.4.33. XAMPLE. The pair([R" ¢ {0}, {0} & IR") is a Lagrangian decom-
position of IR?" endowed with the canonical symplectic structure. More generally,
if L. C V is a Lagrangian subspace asds a complex structure ol compatible
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with w, then(L, J(L)) is a Lagrangian decomposition @f, w) (see Lemma 1.4.20
and the proof of Corollary 1.4.21).

Given a Lagrangian decompositi¢hg, L;) of (V,w), we define a a map:

pL07L1 : Ll — sz]

by setting
(1-4-11) PLo,L; (’U) = w(va ')|L0
forallv € Ly; itis easy to see that, 1, is an isomorphism (see Exercise 1.19).

1.4.34. REMARK. The isomorphisnpz, 1, gives us an identification of
with the dual spacéd;, but the reader should be careful when using this identifi-
cation for the following reason. The isomorphigi, 7, induces an isomorphism

(Pro.r,)* + Ly ~ Lo — L7; however,(pr, 1,)* doesnot coincide withpr,, 1,
but with its opposite:

(1.4.12) (pL07L1)* = —PL1,Lo-
If L C V is a Lagrangian subspace, we also define an isomorphism:
pr:V/L — L*,

by settingor, (v + L) = w(v,-)|L.
Given a Lagrangian decompositiohg, L) of (V,w), we have the following
commutative diagram of isomorphisms:

(1.4.13) 14
W:Ll
q L;
PLg
V/Ly

whereg is the restriction td_; of the quotient mapy” — V/ L.
An application of the isomorphismy,, 1, is given in the following:

1.4.35. LEMMA. If Ly C V is a Lagrangian subspace, then every bdsj$;" ,
of Ly extends to a symplectic bagis)?", of V; moreover, given any Lagrangian
Ly which is complementary tby, one can choose the bagis)?", in such a way
that (b;)2",, ., is a basis ofL;.

PrOOFE Observe first that the Lagrangidn, admits a complementary La-
grangianL, (see Corollary 1.4.21); given one such Lagrandianwe define:
bn"ri:_pZOl’Ll(b;()? 7’: 17"'7”7
where(b})"_, is the basis of.§ which is dual to(b;)?"_,. O
1.4.36. ®ROLLARY. Given any Lagrangian decompositiofis), L;) and(Lg, L} )|

of V' then every isomorphism froh, to Lj, extends to a symplectomorphism
T:V — Vsuchthatl'(L) = Lj.
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PROOF Let (b;)!_, be a basis o, and let(¥})"_, be the basis of;, which
corresponds tdb;);* ; by the given isomorphism. Using Lemma 1.4.35 we can
find symplectic base&;)?", and (b])?"; of V in such a way thatb;)?", , and
(b;)?gn+1 are bases of.; and L) respectively; to conclude the proof one simply
choosed  such thatl'(b;) = b},i =1,...,2n. O

1.4.37. @ROLLARY. If Ly C V is a Lagrangian subspace, then every iso-
morphism ofLy extends to a symplectomorphismiaf

PrROOF Choose a Lagrangialy complementary td.o (see Corollary 1.4.21)
and apply Corollary 1.4.36. O

The technique of extending bases of Lagrangians to symplectic bases of the
symplectic space may be used to give an alternative proof of Corollary 1.4.28.
Roughly speaking, Corollary 1.4.28 tells us that Lagrangian subspaces are “indis-
tinguishable” from the viewpoint of the symplectic structure; our next Proposition
tells us that the only invariant of jpair (Lo, L1) of Lagrangian subspaces is the
dimension of their intersectiohy N L:

1.4.38. ROPOSITION Given three Lagrangian subspackg, L, L’ C V with
dim(Lo N L) = dim(Ly N L"), there exists a symplectomorphighof (V,w) such
thatT'(Lg) = Lo andT(L) = L'.

PROOF. By Corollary 1.4.37, there exists a symplectomorphisr(ilotv) that
takesL into itself andLy N L onto Ly N L'; we can therefore assume without loss
of generality thatLo "L = Lo N L.

SetS = LoNL = LynN L'; clearly S is isotropic andLq, L, L' ¢ S*+. We
have a symplectic formw in S+ /.S obtained fromw by passing to the quotient (see
Example 1.4.17).

Denote byg : S+ — S+/S the quotient map; it is easy to see thdL),
q(L) andg(L') are Lagrangian subspaces(6f-/S,w); moreover,(q(Lo), ¢(L))
and(q(Lo), q(L')) are both Lagrangian decompositions%f/S and hence there
exists a symplectomorphisti of (S*/S,w) such thatl'(¢(Lo)) = ¢(Lo) and
T(q(L)) = q(L’) (see Corollary 1.4.28). The required symplectomorphisra
Sp(V,w) is obtained from the following Lemma. O

1.4.39. LEMMA. Let Ly C V be a Lagrangian subspace and I8t C L
be any subspace. Consider the quotient symplectic foon S+ /S; then, given
any symplectomorphisffi of (S+/S,w) with T(q(Lo)) = q(Lo), there exists a
symplectomorphisri of (V,w) such thatT'(S) = S (hence alsd@’(S+) = S4),
T(Lg) = Ly, and such that the following diagram commutes

T‘sl_
SJ_ - s SJ_

| Jo

§4/S —=S*/s

whereq : S+ — S+ /S denotes the quotient map.
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PROOF. Write Lo = S @ R; henceLj = S° ® R°, whereS° andR° are the
annihilators ofS and R respectively. Let.; be any complementary Lagrangian to
Lo in V (Corollary 1.4.21). We have:

Ly = pp, 1, (8%) @ ppy 1, (RO).
We obtain a direct sum decompositibh= 17 & V4 into w-orthogonal subspaces
given by:
Vi=S®pp, ., (R, Va=R&pp (5,
from which it follows thatV’ is direct sum of the symplectic spacésandVs.
Observe thas+ = 15, @ S, hence the quotient maprestricts to a symplec-
tomorphism ofl; into S+ /.5; therefore, we have a unique symplectomorphigm
of V5 such that the diagram:

T/

Va Va
Q|v2i J{fﬂ\@
1 1
S+/S *{ S+/S

commutes. Sincé preservesg(Ly) it follows thatT’ preserves?; we then define
T by settingT'|y, = Id andT|y, = T’ (see Example 1.4.12). O

1.4.40. EMARK. We claim that one can actually choose the symplectomor-
phismT in the thesis of Proposition 1.4.38 in such a way thagstricts to gosi-
tively orientedisomorphism ofLy; namely, ifdim(Lo N L) = dim(Ly N L) =0
then this claim follows directly from Corollary 1.4.36. For the general case, we
observe that in the last part of the proof of Lemma 1.4.39 one can dEfipeo
be any symplectomorphism &f which preserves (while T'|y, = 7" is kept un-
changed); sincé'is Lagrangian iy, using Corollary 1.4.37, we get th&{s can
be choosen to be any isomorphishof S givena priori (and7’|r does not depend
on A). Sincedim(S) > 1, this freedom in the choice of can be used tadjust
the orientation ofl’| .

Exercises for Chapter 1

EXERCISE1.1. Show that the isomorphism between the spadegV, W*)
andB(V, W) given in (1.1.1) is natural in the sense that it givesaural iso-
morphism of the functorkin(-,-) andB(-, -) from the category of pairs of vector
spaces to the category of vector spaces.

EXERCISEL.2. Prove thaB(V) = Bgym(V) @ Ba—sym (V).

ExXErRcISE1.3. Prove Lemma 1.2.3.

EXeERcISEL.4. Prove Proposition 1.2.6.
ExXeERcISEL.5. Prove Proposition 1.3.3.

EXERCISEL.6. Prove Corollary 1.3.4.
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ExXERcCISE1.7. Prove Lemma 1.3.9.

EXERCISE 1.8. Generalize the results of Section 1.3, in particular Proposi-
tion 1.3.3, Lemma 1.3.10 and Lemma 1.3.11, to the case of anti-linear, multi-linear
and sesquilinear operators.

EXeERcISEL.9. Prove that i’ is a non trivial complex vector space, then there
exists naC-bilinear form on) which is positive definite.

EXERCISE 1.10. Prove thaf” € Lin(V) is a symplectomorphism afV, w)
if and only if its matrix representation with respect to a symplectic bas{¥ab)
satisfies the relations (1.4.8).

ExXeRrRcISeEl.11. Consider the symplectic spa¥ ¢ IR™* endowed with its
canonical symplectic structure. Prove that to each Lagrangian subspiese
corresponds a unique pdiP, S), whereP C IR"™ is a subspace anl: P x P —
IR is a symmetric bilinear form o#, such that:

L={(v,a) e R"®R" :veP, alp+S(v,") =0}.
More generally, if(Lg, L;) is a Lagrangian decomposition of the symplectic space
(V,w), there exists a bijection between the Lagrangian subspaces’” and the

pairs (P, S), whereP C L, is any subspace anfl € By, (P) is a symmetric
bilinear form onP, so that (recall formula (1.4.11)):

(1.4.14) L={v+w:veP we Lo, pr,r,(w)|p+ S(v,-) =0}.

EXERCISEL.12. LetT = <é g) be an element iSp(2n, IR) (recall for-
mula (1.4.8)) and lef,, = {0} @ IR™*. Prove that the following two statements
are equivalent:

(@) T'(Ly) is transverse td.;

(b) B isinvertible.
Prove also that, in this case, thex n matricesDB~!, B~'AandC — DB~ A —
B~! are symmetric.

EXERCISEL.13. Prove that the transpose of a symplectic matrBoifen, IR)
is again symplectic.
EXERCISEL.14. Every invertible matrix/ can be written irpolar form
M =PO, P=(MM"2, O=P'M,

whereP is symmetric and positive definite aitlis orthogonal. Such decomposi-
tion is unique and it depends continuously fah
Prove thatM € Sp(2n, IR) if and only if both P andO are inSp(2n, IR).

ExXeERcISEL.15. Prove that the direct sum of symplectic spaces is not categor-
ical, i.e., itis not true in general that if a linear map V; & Vo — W is such that
its restrictionsI'|y, andT'|y, are symplectic, theft is symplectic.

EXERCISE1.16. Prove that a complex structure on a symplectic space which
is compatible with the symplectic form is a symplectomorphism.
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EXERCISE1.17. LetV be a real vector space apd positive inner product.
Prove that a complex structugein V' is g-anti-symmetric iff it isg-orthogonal.

EXERCISE1.18. LetV be a complex space;, a positive Hermitian product
inY and7 € Lin(V) a gs-normal operator. Show th&t is diagonalizable in a
gs-orthonormal basis op.

EXERCISEL.19. Given a Lagrangian decompositidiy, L) of a symplectic
space(V,w), prove that the mapy,, 1, : L1 — L defined in (1.4.11) page 27 is
an isomorphism.

EXERCISE1.20. Let(V,w) be a symplectic spacé, C V an isotropic sub-
space, and consider the quotient symplectic sg&ce/ S, ) defined in Exam-
ple 1.4.17. Prove that if. C V is a Lagrangian subspace @f,w), thenw(L) is
Lagrangian in(S+/S, ), wherer : S+ — S+ /S is the projection.



CHAPTER 2

The Geometry of Grassmannians

2.1. Differentiable Manifolds and Lie Groups

In this section we give the basic definitions and we fix some notations concern-
ing calculus on manifolds. In this text, the term “manifold” will always mean a real,
finite dimensional differentiable manifold whose topology satisfies the Hausdorff
property and the second countability axiom, i.e., it admits a countable basis of
open sets. The term “differentiable” will always mean “of class”; we will de-
scribe below the terminology used in the construction of a differentiable manifold
structure.

Let M be a set; @hartin M is a bijection:
¢:U — (7,

whereU C M is any subset andl is an open set in some Euclidean sp#te in
some situation, with a slight abuse of terminology, we will allow thdte an open
subset of some arbitrary real finite dimensional vector space.

We say that two chart$ : U — U and+) : V — V in M arecompatibleif
UNV =0orif ¢(UNV)andy(U NV) are both open sets and thransition
function

Yop lip(UNV) —p(UNV)

is a differentiable diffeomorphism. differentiable atlasA in M is a set of charts

in M that are pairwise compatible and whose domains form a coveridg.of

chart is said to beompatible with a differentiable atlakit is compatible with all

the charts of the atlas; it is easy to see that two charts that are compatible with an
atlas are compatible with each other. Hence, every differentiable 4tiascon-
tained in aunique maximal differentiable atlaghich is obtained as the collection

of all the charts inM that are compatible withl.

A differentiable atlas4 induces on\/ a unique topology such that each chart
of A is ahomeomorphisrdefined in an open subset @/, 7); such topologyr is
defined as the set of parts C M such thatp(A N U) is an open subset af for
every charp : U — U in A.

A (differentiable) manifolds then defined as a pain/, .A), whereM is a set
and. A is a maximal differentiable atlas ih/ whose corresponding topologyis
Hausdorff and second countablesteaart, or acoordinate systenin a differentiable
manifold (M, A) is a chart that belongs td.

32
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2.1.1. EmMARK. Observe that some authors replace the assumption of second
countability for a differentiable manifold with the assumptiorpafacompactness
In Exercise 2.1 the reader is asked to show that such assumption is “weaker”, but
indeed “not so much weaker”.

_ Let M be a manifold andV C M be a subset; we say that a chart U —
U c IR" is asubmanifold chartor N if ¢(U N N) is equal to the intersection of
U with a vector subspacg of IR™. We then say that:

¢’UQN:UQN—>ﬁﬂS

is thechart in IV induced byy. The subselV is said to be ammbedded subman-
ifold of M if for all z € N there exists a submanifold chart fdf whose domain
containse. The inclusion : N — M will then be arembeddingf N in M, i.e.,a
differentiable immersion which is a homeomorphism onto its image endowed with
the relative topology.

An immersed submanifol®/ in M is a manifoldV such that\V is a subset of
M and such that the inclusian N — M is a differentiable immersion. Observe
that a subselV C M may admitseveraldifferentiable structures that make it into
an immersed submanifold; however, if we fix a topologyNn then there exists
at most one differentiable structure i compatible with such topology and for
which N is an immersed submanifold aff (see Exercise 2.3).

In general, if N and M are any two manifolds, and jf : N — M is aninjec-
tive differentiable immersion, then there exists a unique differentiable structure on
f(N) that makesf into a differentiable diffeomorphism ontft( V); hence,f (V)
is an immersed submanifold éf . If f is an embedding, then it follows from the
local form of immersions that (V) is an embedded submanifold bf.

From now on, unless otherwise stated, by “submanifold” we will always mean
“embedded submanifold”.

2.1.2. REMARK. If P and M are two manifoldsN C M is an embedded
submanifold andf : P — M is a differentiable map such th#{P) c N, then
there exists a unique map : P — N such that the following diagram commutes:

(2.1.1) M

.
1
P T N
wherei denotes the inclusion. We say thAt is obtained fromf by change of
counterdomainand we will often use the same symbpffor fy; the mapf, is
differentiable. The same resullses nothold in general ifN is only an immersed
submanifold; it holds under the assumption of continuity fip(see Exercise 2.2).
Immersed submanifoldy C M for which the differentiability off in (2.1.1)
implies the differentiability offy are known aglmost embedded submanifolofs
M ; examples of such submanifolds améegral submanifolds of involutive distrib-
utions or immersed submanifolds that angbgroups of Lie groups
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2.1.3. EmMARK. If f: M — N is a differentiable submersion, then it follows
from the local form of the submersions that for alle Im(f) and for allz €
f~1(y) € M there exists #ocal differentiable sectionf f that takes; into z, i.e.,
there exists a differentiable map: U — M defined in an open neighborhoéd
of y in N such thats(y) = x and such thaf (s(z)) = zforall z € U.

The existence of local differentiable sections allows to prove that differentiable
submersions that are surjective have guetient property this means that iff :

M — N is a surjective submersion agd M — P is a differentiable map, and if
there exists amap: N — P such that the following diagram commutes:

TN

N——P
g

then alsqj is differentiable.

In particular, ifM is a manifold andf : M — N is a surjective map, then there
exists at most one differentiable structure @rthat makesf into a differentiable
submersion; such structure is calledwotient differentiable structure induced by

f.

2.1.1. Classical Lie Groups and Lie Algebras.n this subsection we give a
short description and we introduce the notations for the classical Lie groups and
Lie algebras that will be used in the text.

A Lie groupis a groupG endowed with a differentiable structure such that the
mapG x G 3 (x,y) — zy~! € G is differentiable; the unit ofy will be denoted
byl e G.

A Lie group homomorphisnvill always means a group homomorphism which
is also continuous; then, it will be automatically differentiable (see for instance
[47, Theorem 2.11.2] andiB, Theorem 3.39]).

Forg € G, we denote by, andr, respectively the diffeomorphisms ¢f
given by theleft-translation/,(x) = gx and by theright-translationr,(z) = xg;
byZ, =1l40 rg_l we denote théner automorphisnof G associated tg. If g € G
andv € T, G is a tangent vector t&, we write:

gv =dlg(x) -v, wvg=drg(z)-v;
for all X € T1G we define vector field&X“ and X ¥ in G by setting:
(2.1.2) XHg)=gX, X"(9)=Xg,

forall g € G. We say thafX ” (respectively,X ¥) is theleft-invariant (respectively,
theright-invariant) vector field inX associated t&X < T, G.

The Lie algebracorresponding td@~, denoted by, is defined as the tangent
space afl of the manifoldG: g = T1G; the Lie bracket or commutator in g
is obtained as the restriction of the Lie brackets of vector field§ where we
identify eachX < g with the left-invariant vector field(”.
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We denote byxp : g — G theexponential mapf G, defined in such a way
that, for eachX € g, the map:

(2.1.3) R>t— exp(tX) e G

is a Lie group homomorphism whose derivative at 0 is equal toX. Then, the
curve (2.1.3) is an integral curve of the vector fieki§ and X, that is:

(2.1.4) %exp(tX) = XF(exp(tX)) = XR(exp(tX)),
forall ¢t € IR (see B8, Theorem 3.31)).

A Lie subgroupof G is an immersed submanifold which is also a subgroup
of G; then, H is also a Lie group with the group and the differentiable structure
inherited from those ofr (see Remark 2.1.2). A Lie subgroudp C G will be an
embedded submanifold if and only H is closed inG (see 7, Theorem 2.5.4]
and |8, Theorem 3.21]); moreover, every closed subgroup of a Lie group is a Lie
subgroup of7 (see 47, Theorem 2.12.6] and!B, Theorem 3.42]).

If H C G is a Lie subgroup, then the differential of the inclusion map allows
to identify the Lie algebrd of H with a Lie subalgebra of (see #8, Proposi-
tion 3.33)); explicitly, we have:

(2.1.5) h={X cg:exp(tX) e H, Vt € R}.

Observe that everdiscretesubgroupH C G is an embedded (and closed) Lie
subgroup of with dim(H) = 0; in this casey = {0}.

If G° denotes the connected componentbtontaining the identity (which
is also an arc-connected component), then it is easy to se& thit a normal
subgroup ofGG which is closed and open. Actually, every open subgroup of
is also closed, as its complementary is union of cosets of this subgroup, that are
open. It follows that every open subgroup@fis the union of some connected
components of5, and the Lie algebra of an open subgrou-0f identified with
the Lie algebra of;.

2.1.4. EMARK. If G'is aLie group and is a subspace @f, then there exists a
uniqueleft-invariant distributionD” and a uniqueight-invariant distributionD?
in G such thatb” (1) = DE(1) = h. We have thaD*, or D, isinvolutiveif and
only if h is a Lie subalgebra gf. In this case, the maximal connected integral sub-
manifold of DL, or of D, passing through € G is a (connected) Lie subgroup
of G whose Lie algebra i§; moreover, ifH C G is any Lie subgroup whose Lie
algebra ish, then H? is the maximal connected integral submanifold¥f, or of
DR passing through € G. The other maximal connected integral submanifolds
of DL (respectively, ofD%) are the left cosetsH (respectively, the right cosets
Hyg) of H. A proof of these facts can be found id7 Theorem 2.5.2] and4B,
Corollary (b), Theorem 3.19]; for the basic notions of involutive distributions, in-
tegral submanifolds and tH&obenius Theorerthe reader may use, for instance,
[47, Section 1.3] or48, pages 41-49].
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From the above observations we obtain that a carve~(t) € G of classC!
has image contained in some left cosefbif and only if

V()T (1) € b,
for all ¢; similarly, it has image in some right coset &fif and only if:

Y () () e,
for all ¢.

We will now present a short list of the classical Lie groups that will be encoun-
tered in this text, and we will describe their Lie algebras. All these groups and
algebras are formed by real or complex matrices, or by linear operators on real or
complex vector spaces. The group multiplication will always be the multiplication
of matrices, or the operator composition, and the Lie bracket will always be given
by:

(X, Y] =XY -YX;
finally, the exponential map will always be:
o0
X’n
exp(X) =
n=0
Typically, we will use capital letters to denote Lie groups and the corresponding
small letters to denote their Lie algebras; all the vector spaces below will be meant
to be finite dimensional.

nl’

e The general linear group.Let V' be a real or a complex vector space; we
denote byGL(V') the group of all linear automorphisms of, its Lie algebra
gl(V') coincides with the space of all linear endomorphidms V') of V. We
call GL(V') thegeneral linear group of/.

We write GL(IR") = GL(n, R), gl(IR") = gl(n, R), GL(C") = GL(n,C)
andgl(C™) = gl(n,C); obviously, we can identif{GL(n, IR) (respectively,
GL(n, C)) with the group of invertible real (respectively, complexx n ma-
trices, andzl(n, IR) (resp.,gl(n, C)) with the algebra of all real (resp., com-
plex)n x n matrices.

Observe that ifl” is a real space and is a complex structure olf, so
that(V, J) is identified with a complex space, thelL(V, J) (resp.gl(V, J))
can be seen as the subgroup (resp., the subalgebtd)(@f) (resp., ofgl(1))
consisting of those operators that commute wit{see Lemma 1.2.3).

In this way we obtain an inclusion @L(n,C) into GL(2n, IR) and of
gl(n, C) into gl(2n, IR) (see Example 1.2.2 and Remark 1.2.9).

e The special linear group.

If V' is a real or complex vector space, we denoteShyV') the special
linear group ofV/, given by the closed subgroup @f.(1") consisting of those
endomorphisms with determinant equallto Its Lie algebrasl(V) is given
by the set of endomorphisms bf with null trace. We also writ6L(/R") =
SL(n, R), SL(C™) = SL(n,C), sl(IR") = sl(n, IR) andsl(C") = sl(n,C).
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We identifySL(n, IR) (resp.,SL(n, C)) with the group of real (resp., complex)
n x n matrices with determinant equaltpandsl(n, IR) (resp.sl(n, C)) with
the algebra of real (resp., complex)x n matrices with null trace.

As in the case of the general linear group, we have inclusi®hg&z, C) C
SL(2n, IR) andsl(n,C) C sl(2n, IR).

e The orthogonal and the special orthogonal groups.

If V' is a real vector space endowed with a positive inner progluge de-
note byOQ(V, ¢g) theorthogonal group of V, ¢), which is the closed subgroup
of GL(V') consisting of they-orthogonal operators. Thepecial orthogonal
group of(V, g) is defined by:

SO(V,g) = O(V,g) N SL(V).

The Lie algebras of)(V,g) and of SO(V, g) coincide, and they are both
denoted byso(V, g); this is the subalgebra afl(V') consisting ofg-anti-
symmetric operators.

If V = IR™ andg is the canonical inner product, then we wriy¢R", g) =
O(n), SO(IR", g) = SO(n) andso(IR", g) = so(n); O(n) is identified with
the group ofr x n orthogonal matriceg¢a matrix is orthogonal if its transpose
coincides with its inverseO(n) is the subgroup of)(n) consisting of those
matrices with determinant equaltpandso(n) is the Lie algebra of real x n
anti-symmetric matrices.

e The unitary and the special unitary groupget V be a complex vector space
endowed with a positive Hermitian produgt Theunitary groupof (V, gs),
denoted byu(V, gs), is the closed subgroup @#L (V) consisting of they,-
unitary operators oW; the special unitary groupf (V, g5) is defined by:

SU(V,gs) = UV, gs) NSL(V).

The Lie algebrai(V, g5) of U(V, gs) is the subalgebra @fl()’) consisting of
the gs-anti-Hermitian operators, and the Lie algebud)), g) of SU(V, gs) is
the subalgebra of(), gs) consisting of operators with null trace.

If V' is a real space and is a complex structure if¥’ in such a way
that (V, J) is identified with a complex vector spat® then given a Hermit-
ian productys in (V, J) we also writeU(V, gs) = U(V, J, gs), SUV, gs) =
SU(V, J,gs),u(V, gs) = u(V, J, gs) andsu(V, gs) = su(V, J, gs).

If V = C" andgs is the canonical Hermitian product i@, then we
write U(C",gs) = U(n), SU(C", ¢g5) = SU(n), u(C" gs) = u(n) and
su(C", gs) = su(n); thenU(n) is the group of complex x n unitary ma-
trices (a matrix is unitary if its conjugate transpose is equal to its inverse),
SU(n) is the subgroup o€ (n) consisting of matrices with determinant equal
to 1, u(n) is the Lie algebra of all complex x n anti-Hermitian matrices
(a matrix is anti-Hermitian if its conjugate transpose equals its opposite), and
su(n) is the subalgebra of(n) consisting of matrices with null trace.

e The symplectic group.
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Let (V,w) be a symplectic space; in Definition 1.4.10 we have introduced
the symplectic groufp(V,w). We have thatp(V, w) is a closed subgroup of
GL(V); its Lie algebra consists of those linear endomorphisisf 1 such
thatw(X-, -) is a symmetric bilinear form, that is:

(2.1.6) w(X (), w) =w(X(w),v), v,weV.

In terms of the linear operater: V' — V*, formula (2.1.6) is equivalent to
the identity:

(2.1.7) woX =-X"ouw.

If w is the canonical symplectic form dR?", then we writeSp(IR*", w) =
Sp(2n, IR) andsp(IR*",w) = sp(2n, IR). The matrix representations of ele-
ments ofSp(V, w) with respect to a symplectic basis are described in formulas
(1.4.7) and (1.4.8). Using (2.1.7) it is easy to see that the matrix representation
of elements ofp(V, w) in a symplectic basis is of the form:

A B .
< O _A* ), B, C symmetric,

whereA* denotes the transpose 4f

2.1.2. Actions of Lie Groups and Homogeneous Manifoldsln this subsec-
tion we state some results concerning actions of Lie groups on manifolds and we
study thehomogeneous manifoldghat are manifolds obtained as quotients of Lie
groups.

If G is a group and is a set, gleft) actionof G on M is a map:

(2.1.8) GxM>(gm)—g-meM

such thaty; - (g2 - m) = (g192) - m and1 - m = m for all g1, g» € G and for all
m € M, wherel is the unit ofG. Given an action oz on M, we get a map

(2.1.9) Bm :G— M
given byg,,(g) = g - m, and for allg € G we get a bijection:
Yg: M — M

of M given byy,(m) = g-m; the mapg — 7, is a group homomorphism frod
to the group of bijections a#/.
For allm € M, we define therbit of m relative to the action ofr by:

G(m) = {g-m:geG};
the orbits of the action of; form a partition of M/; we also define thésotropy
groupof the elemenin € M by:
Gm={9€G:g9g-m=m}.

It is easy to see that,, is a subgroup of-.
We say that the action @¥ on M is transitiveif G(m) = M for some, hence
for all, m € M; we say that the action fsee, or without fixed pointsif G,,, = {1}
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for all m € M. The action iseffectiveif the homomorphisny — +, is injective,
i.e., if(,,car Gm = {1}.

If H is a subgroup of7, we will denote byG/H the set ofeft cosetof H in
G:

G/H = {gH : g € G},

wheregH = {gh : h € H} is the left coset off € G. We have a natural action of
G onG/H given by:
(2.1.10) G x G/H > (g1,92H) — (q192)H € G/H;

this action is calledhction by left translatiorof G in the left cosets off. The
action (2.1.10) is always transitive.

If G acts onM andG,, is the isotropy group of the elemenmt € M, then the
mapS,, of (2.1.9) passes to the quotient and defines a bijection:

(2.1.11) B : G/Gr — G(m)

given by 3,.(9Gm) = g - m. We therefore have the following commutative dia-

gram:
|
q

G)Gp —— M
Bm

whereq: G — G/G,, denotes the quotient map.

2.1.5. DEFINITION. Given actions of the grou@’ on setsM and N, we say
thata mapy : M — N is G-equivariantif the following identity holds:

¢(g-m) =g-p(m),

forallg € Gand allm € M. If ¢ is an equivariant bijection, we say thais an
equivariant isomorphispin this casep—! is automatically equivariant.

The bijection (2.1.11) is an equivariant isomorphism when we consider the
action ofG on G/ G, by left translation and the action 6f on G(m) obtained by
the restriction of the action @ on M.

2.1.6. REMARK. ltis possible to define alsorgght action of a groupG on a
setM as a map:

(2.1.12) MxG>3(m,g)—m-geM

that satisfiegm - g1) - g2 = m - (g192) andm - 1 = m for all g1,92 € G and all

m € M. A theory totally analogous to the theory of left actions can be developed
for right actions; as a matter of facts, every right action (2.1.12) defines a left action
by (g,m) — m - g~!. Observe that in the theory of right actions, in order to define
properly the bijections,, in formula (2.1.11), the symbda¥/ H has to be meant as
the set ofright cosetf H.
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Let's assume now thdt is a Lie group and that/ is a manifold; in this context
we will always assume that the map (2.1.8) is differentiable, and we will say that
G acts differentiably onV/. If H is a closed subgroup @, then there exists a
unique differentiable structure in the s&f H such that the quotient map:

q:G— G/H

is a differentiable submersion (see Remark 2.1.3). The kernel of the differential
dq(1) is precisely the Lie algebrigof H, so that the tangent space® H at the
point 1H may be identified with the quotient spaggh. Observe that, sinceis
open and surjective, it follows th&t/H has thequotient topologyinduced byg
from the topology ofG.

By continuity, for allm € M, the isotropy groug=,, is a closed subgroup of
G, hence we get a differentiable structure@yG,,,; it can be shown that the map
9G., — g - mis a differentiable immersion, from which we obtain the following:

2.1.7. RRoPOSITION If G is a Lie group that acts differentiably on the mani-
fold M, then for allm € M the orbitG(m) has a unique differentiable structure
that makeg2.1.11)into a differentiable diffeomorphism; with such struct@émn)
is an immersed submanifold 81, and the tangent spacg,,G(m) coincides with
the image of the map:

dgn(1) :g — T, M,
whereg,, is the map defined i(2.1.9)

O

2.1.8. REMARK. If we choose a different point’ € G(m), so thatG(m') =
G(m), then it is easy to see that the differentiable structure induced(om) by
B coincides with that induced by, .

We also have the following:

2.1.9. @ROLLARY. If G acts transitively onV/, then for allm € M the map
(2.1.11)is a differentiable diffeomorphism @f/G,,, onto M; in particular, the
map S, of (2.1.9)is a surjective submersion. O

In the case of transitive actions, when we identifyG,,, with M by the dif-
feomorphism (2.1.11), we will say that is the base pointor such identification;
we then say that/ (or G/G,,,) is ahomogeneous manifald

2.1.10. ®ROLLARY. Let M, N be manifolds and le€; be a Lie group that
acts differentiably on botid/ and N. If the action ofG on M is transitive, then
every equivariant map : M — N is differentiable.

PROOF Choosen € M; the equivariance property gfgives us the following
commutative diagram:
G

Bo(m
BmJ/ w )

M?N

and the conclusion follows from Corollary 2.1.9 and Remark 2.1.3. O
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In some situations we will need to know if a given orbit of the action of a Lie
group is an embedded submanifold. Let us give the following definition:

2.1.11. DEFINITION. Let X be a topological space; a subsetC X is said to
belocally closedif S is given by the intersection of an open and a closed subset of
X. Equivalently,S is locally closed when it is open in the relative topology of its
closureS.

Exercise 2.4 is dedicated to the notion of locally closed subsets.
We have the following:

2.1.12. THEOREM. LetG be a Lie group acting differentiably on the manifold
M. Givenm € M, the orbitG(m) is an embedded submanifold &f if and only
if G(m) is locally closed in)/.

PROOF See 7, Theorem 2.9.7]. O

We conclude the subsection with a result that relates the notiofisrafion
and homogeneous manifold.

2.1.13. EFINITION. Given manifoldsF’, E and B and a differentiable map
p: E — B, we say thap is adifferentiable fibration with typical fibeF" if for all
b € B there exists a diffeomorphism:
a:p I (U)—UxF

such thatr; o o = p|,-1(17), whereU C B is an open neighborhood 6fin B and
m : U x F' — U is the projection onto the first factor. In this case, we say dhat
is alocal trivialization of p aroundb.

2.1.14. THEOREM. Let G be a Lie group andd, K closed subgroups aff
with K C H; then the map:

p:G/K — G/H
defined by (gK) = gH is a differentiable fibration with typical fibel / K.

PrRoOEF It follows from Remark 2.1.3 that is differentiable. GiveryH €
G/H, lets : U — G be alocal section of the submersipn G — G/H defined
in an open neighborhodd C G/H of gH; it follows thatq o s is the inclusion of
U in G/H. We define a local trivialization qf:

a:p Y(U)—UxH/K

by settinga(zK) = (zH, s(xH)™! K). The conclusion follows. O
2.1.15. ®ROLLARY. Under the assumptions of Corollary 2.1.9, the nizp
given in(2.1.9)is a differentiable fibration with typical fibe,, . O

2.1.16. @WROLLARY. Let f: G — G’ be a Lie group homomorphism and let
H C G, H' C G’ be closed subgroups such th&tH) ¢ H'; consider the map:

f:G/H — G'/H'
induced fromf by passage to the quotient, i.é(gH) = f(g)H forall g € G. If
f is surjective, thery is a differentiable fibration with typical fibef ' (H')/H.
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PrROOF. Consider the action aff on G’/ H’ given by
GxG'[H > (9.9'H) — (f(9)d)H € G'/H'.

The orbit of the elementH’ € G’/H’ is the image off, and its isotropy group
is f~Y(H'); since f is surjective, it follows from Corollary 2.1.9 that the map
f: G/f~Y(H') — G'/H' induced fromf by passage to the quotient is a diffeo-
morphism. We have the following commutative diagram:

G/f~HH') F G'/H

wherep is induced from the identity aff by passage to the quotient; it follows from
Theorem 2.1.14 that is a differentiable fibration with typical fibef~'(H’)/H.
This concludes the proof. O

A differentiable coverings a differentiable fibering whose fiber isdiscrete
manifold (i.e., zero dimensional). We have the following:

2.1.17. ®ROLLARY. Under the assumptions of Corollary 2.1.16,Hf and
f~1(H’) have the same dimension, thgis a differentiable covering. O

2.1.18. EMARK. Given a differentiable fibratiop : £ — B with typical
fiber F', then every curve : [a,b] — B of classC¥, 0 < k < +o00, admits dift
7 : [a,b] — E (i.e.,p o7 = ~) which is of classC*:

E

-7
4 -

la, b]r — B

The proof of this fact is left to the reader in Exercise 2.9.

2.1.3. Linearization of the Action of a Lie Group on a Manifold. In this
subsection we will consider a Lie grodpwith a differentiable (left) action on the
manifold M ; we show that such action defines a anti-homomorphism of the Lie
algebrag of G to the Lie algebra of the differentiable vector fields &ah

Given X € g, we define a differentiable vector fiekd* on M by setting:

X*(m) =dBn(1)- X, me M,

whereg,, is the map defined in (2.1.9).
Recall that iff : Ny — N is a differentiable map, the vector fieldfs andY>
on Ny and NV, respectively are said to berelatedif:

Ya2(f(n)) = dfn(Y1(n)), Vn € N
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2.1.19. EMARK. If Y7, Z; are differentiable vector fields on the manifald
that aref-related respectively with the field$, Z, on the manifoldV,, then the
Lie bracket[Y7, Z;] is f-related to the Lie bracké¥s, Zs].

Observe that, for aly € G and allm € M, we have

Bgm = fm o Tg,

hence
(2.1.13) dBgm(1) = dBm(g) o dry(1).

If X7 denotes the right invariant vector field éhcorresponding to the element
X € g, then, using (2.1.13), we have:

(2.1.14) X*(g-m)=dBm(g) - XT(g9), VYm e M.

The identity (2.1.14) tells us that, for alt € M, the fieldX™ in M is (,,-related
with the field X ® in G.

2.1.20. REMARK. Let us denote byX” the left invariant vector field o
corresponding taX € g; if G acts on the left onV/, then in general it is not
possible to construct a vector field M which is 3,,-related toX ”. Observe also
that, in general, the field ™ is notinvariant by the action of7 in A; actually, it
is not possible in general to construct a vector fieldidnwhich is invariant by the
action of G and whose value at a given point is given.

As a corollary of (2.1.14) we get the following:
2.1.21. RoPOSITION GivenX,Y € g, then we have:
(X, YT = —[X% Y7,

where the bracket on the left of the equality is the Lie produgtamd the bracket
on the right denotes the Lie bracket of vector fieldd4n

ProOE Choosemn € M; since the vector fieldX* andY™ are 3,,-related
respectively to the right invariant vector fields" andY #, it follows from Re-
mark 2.1.19 thatX ™, Y*] is 3,,-related to[ X, Y %]. To conclude the proof, we
will show that:

(2.1.15) (X7 yH = —[X,Y]%,

observe now that from (2.1.15) it will follow that botX*, Y*] and—[X, Y]* are
B -related to X, Y F], hence they must coincide dm(3,,) = G(m). Sincem
is arbitrary, the proof of Proposition 2.1.21 will follow.

In order to show (2.1.15), consider the inversion nap: G — G given by
inv(g) = g% we have thatl(inv)(1) = —Id. Then, it is easy to see thaf?
is inv-related to the left invariant field X *, and, by Remark 2.1.19X % Y F] is
inv-related to X, Y*] = [X, Y]¥; also,— [ X, Y]® is inv-related to X, Y]*. The
conclusion now follows from the fact thatv is surjective. O

The mapX — X* is called thdinearization of the action of7 in M; Proposi-

tion 2.1.21 tells us that this map isaati-homomorphisrof the Lie algebra into
the Lie algebra of differentiable vector fields oh.
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2.1.22. EMARK. From (2.1.14) it follows easily that, for aih € M, the map
t — exp(tX) - mis an integral curve oi *.

More generally, given any map > ¢ — X(t) € g defined in an interval
I C IR, we obtain &ime-dependent right invariant vector figlld G given by:

(2.1.16) IxG>3(tg)— Xt (9) = X(t)g € T,G;
we also have a time-dependent vector fielddrby setting:
(2.1.17) Ix M3 (t,m)— X()(m) e TnM.

From (2.1.14) it follows also that, for any. € M, the maps,, takes integral
curves of (2.1.16) into integral curves of (2.1.17); more explicitly,+4f ~(t) € G
satisfies

for all ¢ then: 1
(@) -m) = X()"(+(t) - m).

2.2. Grassmannians and Their Differentiable Structure

In this section we will study the geometry of the set offallimensional sub-
spaces of a Euclidean space.

Let n, k be fixed integers, witm > 0 and0 < k& < n; we will denote by
Gr(n) the set of allk-dimensional vector subspacesBf*; G (n) is called the
Grassmannian of-dimensional subspaces &{".

Our goal is to describe a differentiable atlas €&r(n), and the main idea is to
view the points of7 (n) asgraphsof linear maps defined on a fixé¢ddimensional
subspace ofR™ and taking values in another fixéd — k)-dimensional subspace
of IR™, where these two fixed subspaces are transversal.

To this aim, we consider a direct sum decompositieh = W, & Wy, where
dim(Wy) = k (and obviouslydim(WW;) = n — k). For every linear operator
T : Wy — Wh, thegraphof T given by:

Gr(T)={v+T(v):ve Wy}
is an element irG,(n). Moreover, an elemeri¥ € Gi(n) is of the formGr(T')
if and only if it is transversal téV7, i.e., iff it belongs to the set:
Gg(n, Wl) = {W S Gk(n) W nNnW; = {0} } C Gk(n)
In this situation, the operatdF is uniquely determined b{l’. We can therefore
define a bijection:
(2.2.1) bwows + Gi(n, W1) — Lin(Wo, W),

by settingpw, w, (W) = T whenW = Gr(T).

More concretely, ifrg andm; denote respectively the projections oty and
Wy in the decompositiod?” = Wy & Wy, then the operatdf’ = ¢y, w, (W) is
given by:

T = (mi|w) o (molw) "
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Observe that the condition thHt be transversal tdl; is equivalent to the condi-
tion that the restrictiom|y, be an isomorphism ontid/;,.

We will now show that the collection of the chatsy, w,, when(Wy, W)
run over the set of all direct sum decomposition®f with dim(Wy) = k, is a
differentiable atlas fo&;(n). To this aim, we need to study the transition functions
between these charts. Let us give the following:

2.2.1. DEFINITION. Given subspacel/y, W) C IR" and given a common
complementary subspa®®, C IR" of theirs, i.e.,R" = Wy & W, = W) @& Wy,
then we have an isomorphism:

W- . /
n= nWévWé. Wy — Wy,

obtained by the restriction td/, of the projection ontdV{ relative to the decom-

position R" = W & W;. We say thatr;vméclJ W IS theisomorphism ofV and Wy
VYo

determined by the common complementary subspace

The inverse ony”[% w1 simplyn
»WVo

diagram of isomorphisms:

Wi

Wé,Wo; we have the following commutative

R"/W,

W ‘\%

Wo W}

Two.wy

whereq : IR" — IR" /W, is the quotient map.

Let us consider chartgw,,w, and ¢y, w, in Gx(n), with k& = dim(Wo) =
dim(Wj); observe that they hatbe same domairin this case it is easy to obtain
the following formula for the transition function:

_ W
(222) by o (Gwown) (D) = (W lwo +T) oyt v

where 7} denotes the projection onfid; relative to the decompositiofR” =
Wi e Wh.

Let us now consider decompositiofi®” = Wy & Wy = Wy @& W, with
dim(Wp) = k, and let us look at the transition functiafy, 1 o (dw,w,) " In

first place, we observe that its domain consists of those opef@terkin (1, ;)
such thatGr(T) € GY(n, Wy); itis easy to see that this condition is equivalent to
theinvertibility of the map:

Id + (mglw,) o T,

where 7, denotes the projection onfid, relative to the decompositiolR” =
Wy @ W] andId is the identity operator ofiy. We have the following formula

for g, wr © (Bwo.wy)
1

(22.3)  dwywp © (Swows) H(T) =y o T o (Id + (mplws) 0 T) .
We have therefore proven the following:
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2.2.2. RROPOSITION The set of all chart®y, w, in Gi(n), where the pair
(Wo, W1) run over the set of all direct sum decompositiong&fwith dim(Wp) =
k, is a differentiable atlas foGx(n).

PROOF Since every subspace #t" admits one complementary subspace, it
follows that the domains of the chawtgy, 1, coverGy(n). The transition func-
tions (2.2.2) and (2.2.3) are differentiable maps defined in open subsets of the vec-
tor spaceLin(Wy, W1). The general case of compatibility between chais v,
andgyy; y; follows from transitivity. O

2.2.3. REMARK. As to the argument of transitivity mentioned in the proof of
Proposition 2.2.2, we observe that in general the property of the compatibility of
charts isnot transitive. However, the following weaker transitivity property holds,
and that applies to the case of Proposition 2.2.3}ify»; and, are charts on a
set such that)y is compatible withy, 41 is compatible withy, and the domain
of vy coincideswith the domain ofy)q, theny, is compatible withs.

2.2.4. EMARK. Formulas (2.2.2) and (2.2.3) show indeed that the charts
ow,,w, form areal analyticatlas forG(n).

2.2.5. EMARK. Given a finite collectionl, ..., V, of k-dimensional sub-
spaces oflR", it is possible to find a subspa&€ which is complementary to all
of the V;’s. For, if & < n, we can choose a vectof € R" \ |J;_, V;. Letus
now consider the subspaces = V; & IR v, of dimensionk + 1; by repeating the
construction to thé’/’s, we determine inductively vectois, . . ., v, that form
a basis for a common complementary to . This argument shows that every
finite subset of+;(n) belongs to the domain of some chayi;, 1, . In Exercise 2.6
the reader is asked to show that the same holdsdontablesubsets o7y (n).

We finally prove thatG,(n) is a manifold:

2.2.6. THEOREM. The differentiable atlas in Proposition 2.2.2 makég(n)
into a differentiable manifold of dimensidfnin — k).

PROOF If dim(Wy) = k anddim (W) = n — k, thendim(Lin(Wp, W1)) =
k(n — k). It remains to prove that the topology defined by the atlas is Hausdorff
and second countable. The Hausdorff property follows from the fact that every
pair of points ofG(n) belongs to the domain of a chart. The second countability
property follows from the fact that, if we consider the finite set of cligyt 11, ,
where bothily andW; are generated by elements of the canonical basiBaf
we obtain a finite differentiable atlas f6f; (n). O

2.2.7. EMARK. It follows immediately from the definition of topology in-
duced by a differentiable atlas that the subgg{¢n, W) C Gj(n) are open;
moreover, since the chartsy, i, are surjective, it follows thaG?(n, W;) is
homeomorphic (and diffeomorphic) to the vector sphog Wy, W1).

2.2.8. XAMPLE. The Grassmannia@;(n) of all the lines through the ori-
gin in IR™ is also known as theeal projective spacdRP"~!. By takingW, =
{0}t @ IR andW; = R"! @ {0}, the chartpy, w, gives us what is usually
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known in projective geometry as themogeneous coordinatebhe spacé? P!
can also be described as the quotient of the sp&ré obtained by identifying
the antipodal points.

The real projective linelRP" is diffeomorphic to the circles'; in fact, con-
sideringS! C C, the mapz — 22 is a two-fold covering ofS! over itself that
identifies antipodal points.

2.2.9. EMARK. The theory of this section can be repeatetbatimto define
a manifold structure in the Grassmannian oftatlimensional complex subspaces
of C"™. Formulas (2.2.2) and (2.2.3) anelomorphi¢ which says that such Grass-
mannian is &omplex manifoldwhose complex dimension i§n — k).

2.3. The tangent Space to a Grassmannian

In this section we give a concrete description of the tangent Spac&y. (n)
for W € Gi(n), by showing that it can be naturally identified with the space
Lin(W, IR"/W). This identification will allow to compute in a simple way the
derivative of a curve it (n).

We start with an informal approach. Suppose that we are given a differentiable
curvet — W(t) in Gi(n), i.e., for all instantg we havek-dimensional subspace
W (t) of IR". How can we think of the derivativel’’'(to) in an intuitive way?
Consider a curve of vectots— w(t) € IR", with v(t) € W(t) for all ¢; in some
sense, the derivative (t,) mustencodepart of the information contained in the
derivativeW’ (¢y). We now try to formalize these ideas.

For all ¢, write W (t) = Ker(A(t)), whereA(t) € Lin(IR", IR"~*); differen-
tiating the identityA(t)w(t) = 0 in t = to we get:

Al(to)w(to) + A(to)w' (to) = 0.

This identity shows that the value af (¢¢) is totally determined byu(¢y) up to
elements ofV (¢y). More precisely, to altvy € W (ty), we can associate a class
w) + Wi(tg) € IR"/W(tog) by settingw), = w'(ty), wheret — w(t) is any
differentiable curve inR"™ with w(t) € W(t) for all ¢ andw(0) = wp. Using the
above identity it is easy to see that such map is well defined, i.e., it does not depend
on the choice of the curve(t). The mapwy — wy + W (ty) is a linear operator
from W (to) to IR"™/W (o), and we can look at it as thaerivative of the curve of
subspace$l/ (t) in t = to.

We can now prove the existence of a canonical isomorphism of the tangent
spacely G(n) with Lin(W, IR™/W); in the following proposition we will use
the abstract formalism concerning the fundta(-, -) introduced in Remark 1.1.1.

2.3.1. RROPOSITION LetW € G (n) andW; be a complementary subspace
of W in IR". Denote byg; : W7 — IR™/W the restriction of the quotient map
onto IR"/W. We have an isomorphism:

(2.3.1) Lin(Id, ¢1) o dpw,w, (W) : Ty G (n) — Lin(W, R" /W),
where
(2.3.2) Lin(Id, ¢1): Lin(W, W;) — Lin(W, R" /W)
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is the operator of composition on the 18ft— ¢, o T (recall formulas(1.1.2)and
(1.1.3).

The isomorphisni2.3.1) does notiepend on the choice of the complementary
subspacél/;.

PROOF Sinceq; is an isomorphism angyyy, is a chart aroundV’, obvi-
ously (2.3.1) is an isomorphism. The only non trivial fact in the statement is
the independence of (2.3.1) from the choice of the subspidce To prove this
fact, consider a different complementary subspdgeof W in IR™; observe that
oww, (W) = ¢WW{(W) = 0. By differentiating the transition function (2.2.3) in
T = 0 we see that the following diagram commutes:

TwGr(n
dd’wy W
Lin(W, W) Lin(W, W7).

Lin (Id7 nW wi

The conclusion now follows easily from the observation that also the diagram

w
77W1,W{
(2.3.3) 4% Wi
N
R" /W

is commutative, wherg; denotes the restriction td/] of the quotient map onto
R™/W. O

2.3.2. EMARK. Observe that, from a functorial point of view, the conclu-
sion of Proposition 2.3.1 follows by applying the funcian (¥, -) to the diagram
(2.3.3).

Keeping in mind Proposition 2.3.1, we will henceforth identify the spaces
TwGr(n) andLin(W, IR™ /WW). Our next proposition will provide a justification
for the informal reasons of such identification given at the beginning of the section:

2.3.3. RROPOSITION LetW : I — Gg(n) andw : I — IR™ be curves
defined in an interval containingtg, both differentiable at = ¢,. Suppose that
w(t) € W(t) forall t € I. Then, the following identity holds:

W (to) - w(to) = w'(to) + W(to) € IR™ /W (to),
where we identify’(¢y) with an element irLin(W, IR™ /W (ty)) using the iso-
morphism(2.3.1)

PROOF SetWW, = W (tp) and choose a complementary subspdgeof W)
in R™. SetT = ¢w, w, o W, so that, for allt € I sufficiently close ta, we
haveW (t) = Gr(7(t)). Denoting byr, the projection ontdV, relative to the
decompositionR™ = Wy & Wy, we setu = my o w.
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Sincew(t) € W(t), we have:

(2.3.4) w(t) =u(t) +T(t) -u(t), tel.

Using the isomorphism (2.3.1) we see thiét(to) € Ty, Gr(n) is identified with:
Lin(Id, ¢1) o dewy, w, (Wo) - W'(to) = q1 0 T'(to) € Lin(Wo, IR"/Wy),

whereg; andLin(Id, ¢;) are defined as in the statement of Proposition 2.3.1.
Hence, it remains to show that:

q1 © T/(to) . U}(to) == ’w,(to) + Wo S Bn/WU

Differentiating (2.3.4) int = ¢y and observing thaf'(tp) = 0, u(to) = w(to), we
obtain:

w,(to) = ’u,/(to) + T/(to) . w(t()),
whereu’(ty) € Wp. The conclusion follows. O

2.3.4. REMARK. Given a curvelW : I — Gg(n), to € I and a vector
wy € Wy = Wi(ty), we can always find a curve — w(t) € IR" defined in
a neighborhood ofy in I, with w(t) € W(t) for all ¢, with w(ty) = wp and
such thatw has thesame regularity ad¥. Indeed, fort nearty, we write W
in the form W (¢) = Gr(7'(t)) using a local chartyy, w,; then we can define
w(t) =wo + T(t) - wp.

This implies that Proposition 2.3.3 caiwaysbe used to compute differentials
of functions defined on, or taking values in, Grassmannian manifolds. Indeed, the
computation of differentials may always be reduced to the computation of tangent
vectors to curves, and to this aim we can always use Proposition 2.3.3 (see for
instance the proofs of Lemma 2.3.5, Proposition 2.4.11 and Proposition 2.4.12).

We now compute the differential of a chafy, 1, at a pointi?” of its domain
using the identificatioyy G (n) ~ Lin(W, R™/W):

2.3.5. LEMMA. Consider a direct sum decompositid®l* = Wy & Wy, with
dim(Wy) = k, and letW € GY(n, W;); then the differential of the chatgy, w,
at W is the operator:

Lin(njy! y,qp ") : Lin(W, R" /W) — Lin(Wo, W1),
that is:
dowow, (W) -Z =q; 0 Zo n%;,w’ Z € Lin(W, R" /W) = Ty Gi(n),
whereq; denotes the restriction td’; of the quotient map ont&™ /W andn“f‘vféw

is the isomorphism dfi/y onto W determined by the common complementféty
(cf. Definition 2.2.1).

PrROOEF ltis a direct application of the technique described in Remark 2.3.4.
Lett — 20(¢) be a differentiable curve it (n) with 25(0) = W, 20’(0) =
Z; write T'(t) = ow,w, (20(t)), so that?(t) = Gr(T'(¢)) for all ¢; observe that
T'(0) = dowo,w, (W) - Z.



50 2. GRASSMANNIANS

Letw € W; sinceW = Gr(T'(0)), we can writew = wg + T'(0) - wo with
wp € Wy. Thent — w(t) = wo + T'(t) - wo is a curve inR™ with w(t) € 20(t)
for all t andw(0) = w. By Proposition 2.3.3 we have:

W) w=Z w=w(0)+W=T(0) wy+W € R"/W.
Observing thatvy = va‘ljlwo (w), we conclude that
Z =q1oT'(0) onyy,-
The conclusion follows. O

2.4. The Grassmannian as a Homogeneous Space

In this section we will show that the natural action of the general linear group
of IR" on Gi(n) is differentiable. This action is transitive, even when restricted to
the special orthogonal group; it will follow that the Grassmannian is a quotient of
this group, and therefore it is@mpact and connectadanifold.

Each linear isomorphisml € GL(n, IR) defines a bijection of7;(n) that
associates to eadlv € Gy (n) its imageA(W); with a slight abuse of notation,
this bijection will be denoted by the same symbhl We therefore have a (left)
action of GL(n, IR) on G (n), that will be called thenatural actionof GL(n, IR)
onGg(n) .

We start by proving the differentiability of this action:

2.4.1. RRoPOSITION The natural actionGL(n, IR) X Gi(n) — Gg(n) is
differentiable.

PROOF We simply compute the representation of this action in local charts.

Let A € GL(n, R) andW, € Gi(n) be fixed. LetlV; be a common comple-
mentary forlVy and A(Wy); hence g, w, is a chart whose domain contains both
Wy and A(Wy). We computepyy, w, (B(W)) for B in a neighborhood ofl and
W in a neighborhood ofVy; writing 7' = ¢w, w, (W) we have:

(2.4.1) dwo.wy (B(W)) = (Bio 4+ Bi1 o T) o (Boo + Bor o T) 71,

whereB;; denotes the componenf o (B\Wj) of B andr;, i = 0,1, denotes the
projection ontolV; relative to the decompositiol®R™ = W, @ W;. Obviously,
(2.4.1) is a differentiable function of the paiB, T'). O

The action ofGL(n, IR) onGy(n) is transitive; actually, we have the following
stronger result:

2.4.2. RROPOSITION The natural action 080(n) in Gi(n), obtained by re-
striction of the natural action oL (n, IR), is transitive.

PROOF LetW, W' € Gi(n) be fixed; we can find orthonormal bagés)}_,
and(b;)_, of IR" such that(b;)"_, is a basis o#¥" and (v})*_, is a basis of¥".
By possibly replacing; with —b;, we can assume that the two bases define the
same orientation of?". We can therefore findl € SO(n) such thatA(b;) = b}
forall j =1,...,n, hence in particulad (W) = W"'. O
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2.4.3. MROLLARY. The Grassmannialr;(n) is diffeomorphic to the quo-
tients:
o(n) i 50(n)
O(k) x O(n — k) S(0(k) x O(n — k))
whereS(O(k) x O(n — k)) denotes the intersection:
SO(n) N (O(k) x O(n — k)).
It follows in particular thatGy(n) is a compact and connected manifold.

PROOF. The isotropy of the poini?* @ {0}"~* by the action oD (n) is given
by the group of orthogonal operators that leave the subspRées {0}"~* and
{0}* @ IR™* invariant; this group is clearly isomorphic ©(k) x O(n — k).
A similar argument applies to the case of the actior5Of(n). The conclusion
follows from Corollary 2.1.9 and Proposition 2.4.2. O

2.4.4. REMARK. Obviously, we could have added to the statement of Corol-
lary 2.4.3 a representation 6f;(n) as a quotient ofzL(n, IR). Observe that in
this case the isotropy dR* & {0}"* isnotGL (k) x GL(n— k) (see Exercise 2.7).

2.4.5. REMARK. As a matter of facts, formula (2.4.1) shows that the natural
action of GL(n, IR) on Gi(n) is real analytic In the case of a complex Grass-
mannian, the natural action of the linear gradp(n,C) on C" is holomorphic.

An obvious generalization of Proposition 2.4.2 shows that the action of the special
unitary groupSU(n) on the complex Grassmannian is transitive. Analogously to
the result of Corollary 2.4.3, we conclude that the complex Grassmannian is com-
pact, connected and isomorphic to the quotiants)/(U(k) x U(n — k)) and
SU(n)/S(U(k) x U(n — k)), whereS(U(k) x U(n — k)) denotes the intersection
SU(n) N (U(k) x U(n — k)).

We have two more interesting corollaries of the representatic#),6f.) as the
guotient of a Lie group.

2.4.6. RROPOSITION In an open neighborhood of any point ofG(n) we
can define a differentiable map : ¢/ — GL(n, IR) such that

AW)(RF @ {0} ") =W
forall W e U.

PrRoOOEF It follows from Propositions 2.4.1, 2.4.2 and from Corollary 2.1.9 that
the map:
GL(n,R) > B — B(IRF @ {0}"*) € Gy(n)
is a submersion; the required map is simply a local differentiable section of this
submersion (see Remark 2.1.3). O

2.4.7. ®ROLLARY. In an open neighborhood of any point ofGy(n) there
exist differentiable maps:

Zyer: U — Lin(IR", R" %) and Z,:U — Lin(IR*, R™)
such thatlV = Ker (Zyer(W)) = Im(Zim(W)) forall W e U.
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PrROOF. Define A as in Proposition 2.4.6 and tak&., = = o A(W)~! and
Zim = A(W) o4, wherei : IRF — IR" is the inclusion in the firsk-coordinates
andr : IR"® — IR™* is the projection onto the last— k coordinates. O

2.4.8. @ROLLARY. LetS C IR™ be any subspace and lete Z be a non
negative integer; then, the set of subspaddés Gy (n) such thadim(WWN.S) < r
is open inG(n).

PROOF Let W, € Gi(n) be fixed and letZy., be a map as in the statement
of Corollary 2.4.7 defined in an open neighborha@édf Wy in Gi(n). For all
W € U we have:

W NS =Ker(Zyee(W)ls),

from which we get thatlim (17 N .S) < r if and only if the operatoZy.,(W)|s €
Lin(S, IR"*) has rank greater or equal #m(S) — r; this condition defines an
open subset dfin(S, IR"~*), and the conclusion follows. O

We now consider the action of the product of Lie groGs(n, IR) x GL(m, IR)
on the vector spackin(/R", IR™) given by:

(2.4.2) (A,B,T)— BoT oA

for A € GL(n,IR), B € GL(m,R) andT € Lin(IR",R™). An elementary
linear algebra argument shows that the orbits of the action (2.3.4) are the sets:

Lin"(R", R™) = {T € Lin(R", R™) : T is a matrix of rankr},
wherer = 1,...,min{n, m}. Itis also easy to see that the sets:
JLin'(R",R™) and [ JLin'(RR", R™)
P> i<r

are respectively an open and a closed subsktfR™, IR™); it follows that each
Lin"(R"™, IR™) is locally closed irLin(R", IR™).
Thus, we have the following:

2.4.9. LEMMA. Foreachr = 1,...,min{n, m}, the sefLin” (IR", IR™) is an
embedded submanifold bfn(R"™, IR™).

ProokE It follows from Theorem 2.1.12. O

We also obtain directly the following:

2.4.10. RROPOSITION Given non negative integers,n and r, with r <
min{n, m}, then the maps:

(2.4.3) Lin"(R",R™) > T +— Im(T) € G,(m)
(2.4.4) Lin"(R",R") 5T — Ker(T) € Gp,—-(n)

are differentiable.
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PROOF The productGL(n, R) x GL(m, IR) acts transitively on the orbit
Lin"(R™, IR™), and it also acts transitively ofi,(m), by considering the action
for which GL(n, IR) acts trivially andGL(m, IR) acts onG,(m) with its nat-
ural action. The map (2.4.3) is equivariant, hence its differentiability follows from
Corollary 2.1.10 and Proposition 2.4.1.

The differentiability of (2.4.4) follows similarly. O

In the next two propositions we compute the differential of the natural action
of GL(n, IR) on Gk (n).

2.4.11. RoOPOSITION For A € GL(n,IR), let us consider the diffeomor-
phism ofG(n), also denoted by, given bylW — A(W). For W € Gi(n), the
differentiald A(W) of A at the pointlV is the operator:

Lin((Alw) ™", A): Lin(W, R"/W) — Lin(A(W), R"/A(W))
given byZ +— Ao Z o (Alw)~!, where
A: R"/W — IR"/A(W)
is induced fromA by passing to the quotient.

PrROOEF ltis a direct application of the technique described in Remark 2.3.4.
Lett — W (t) a differentiable curve iid7(n) with W(0) = W andW’(0) =
Z; lett — w(t) be a differentiable curve ifR"™ with w(t) € W (¢) for all ¢. It
follows thatt — A(w(t)) is a differentiable curve ilR™ with A(w(t)) € A(W(t))
for all t; by Proposition 2.3.3 we have:

(2.4.5) (Ao W) (0) - A(w(0)) = A(w'(0)) + A(W) € R"JA(W).
Using again Proposition 2.3.3, we get:
(2.4.6) W'(0) - w(0) = w'(0) + W € R"/W.
The conclusion follows from (2.4.5) and (2.4.6). O

2.4.12. RROPOSITION For W € Gi(n), the differential of the map:

Bw: GL(n, R) — Gg(n)
given bysy (A) = A(W) is:
dBw(A) - X =qo X o A 4y,

forall A € GL(n, R), X € Lin(IR"), whereq: R™ — IR"/A(W) is the quotient
map.

PrROOF We use again the technique described in Remark 2.3.4.

Lett — A(t) be a differentiable curve iG:L(n, R) with A(0) = A and
A'(0) = X; fix wg € W. It follows thatt — A(t)(wyp) is a differentiable curve in
IR™ with A(t)(wo) € Bw (A(t)) for all t. Using Proposition 2.3.3 we get:

(Bw o A)'(0) - A(wo) = X (wo) + A(W) € IR"/A(W).
The conclusion follows.
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2.5. The Lagrangian Grassmannian

In this section we will show that the sdt of all Lagrangian subspaces of a
2n-dimensional symplectic spa¢¥, w) is a submanifold of the Grassmannian of
all n-dimensional subspaces Bt We will call A the Lagrangian Grassmannian of
(V,w). We will study in detail the charts d¥, its tangent space and the action of the
symplectic grougp(V,w) on A; we will show that, like the total Grassmannian,
the Lagrangian Grassmannian is a homogeneous manifold.

We will make systematic use of the results concerning the Grassmannian man-
ifolds presented in Sections 2.2, 2.3 and 2.4, as well as the results concerning the
symplectic spaces presented in Section 1.4, and especially in Subsection 1.4.2.

We start with the observation that the theory of Grassmannians of subspaces of
IR™ developed in Sections 2.2, 2.3 and 2.4 can be generalized in an obvious way if
we replacelR™ with any other arbitrary finite dimensional real vector spcdet
us briefly mention the changes in the notation that will be used in order to consider
Grassmannians of subspaces of an arbitrary space

We will denote byG, (V') the set of alk-dimensional subspacesdf with 0 <
kE < dim(V); this set has a differentiable structure of dimengigdim(V) — k),
with charts described in Section 2.2.1if; C V is a subspace of codimensién
we will denote byGY(V, W1) (or more simply byG9(W;) when the spac® will
be clear from the context) the subset(®f(1") consisting of those subspaces that
are transversal to;

GOV, W) = GO(Wy) = {W cGLV):V=Wa Wl}.

If Wo € G(W1), thenG2 (W) is the domain of the chattyy, w, -
ForWW € Gi(V), we will always consider the following identification of the
tangent spacéyy G (V):

TwGr(V) = Lin(W, V/W),

that is constructed precisely as in Section 2.3. In Section 2.4 we must replace the
general linear grou:L(n, IR) of IR™ by the general linear grou@L(V) of V;

in Proposition 2.4.2 and in Corollary 2.4.3 the orthogonal and the special orthog-
onal groupO(n) andSO(n) of IR™ must be replaced by the corresponding group
0(V, g) andSO(V, g) associated to an arbitrary choice of an inner progunotV'.

Let now be fixed for the rest of this section a symplectic spd¢ev) with
dim(V) = 2n. We denote byA(V,w), or more simply byA, the set of all La-
grangian subspaces @f, w):

AV,w)=A= {L €Gn(V):Lis Lagrangiar}.

We say that\ is theLagrangian Grassmanniaof the symplectic spacg/,w).
We start with a description of submanifold charts for
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2.5.1. LEMMA. Let (Lo, L1) be a Lagrangian decomposition &f; then a
subspacd. € GY(L,) is Lagrangian if and only if the bilinear form:
(2.5.1) PLo,Iy © OLo,1, (L) € Lin(Lo, Lj) ~ B(Lo)
is symmetric.

PROOF Sincedim(L) = n, thenL is Lagrangian if and only if it is isotropic.
LetT = ¢, (L), so thatl" € Lin(Ly, L1) andL = Gr(T'); we have:

(v + T(v),w + T(w)) = w(T(v),w) - w(T(w), v).

The conclusion follows by observing that the bilinear form (2.5.1) coincides with
W(T'v')|L0><L0' g

If L; C V is a Lagrangian subspace, we denote{ L) the set of all
Lagrangian subspaces bfthat are transversal tb;:

(2.5.2) A%(Ly) = ANGY(Ly).

It follows from Lemma 2.5.1 that, associated to each Lagrangian decomposition
(Lo, L1) of V we have a bijection:

(253) $Lo,L1 * AO(Ll) - BSym(LO)
given by, ., (L) = pro.1, © ¢1,., (L). We therefore have the following:

2.5.2. @ROLLARY. The Grassmannian Lagrangiah is an embedded sub-
manifold ofG,,(V') with dimensiondim(A) = 3n(n + 1); the chartspr, 1, de-
fined in(2.5.3)form a differentiable atlas foA as(Lg, L) runs over the set of all
Lagrangian decompositions &f.

PROOFE Given a Lagrangian decompositi@iy, ;) of V, it follows from
Lemma 2.5.1 that the chart:

(2.5.4) G (L1) 2 W — prg 1y © G100, (W) € Lin(Lo, Lj) =~ B(Lo)

of G,,(V') is a submanifold chart fak, that induces the chart (2.5.3) &f More-

over, dim(Bgym(Lo)) = in(n + 1). The conclusion follows from the fact that,
since every Lagrangian admits a complementary Lagrangian (Corollary 1.4.21),

the domains of the charts (2.4.5) coveras(Lg, L1) runs over the set of all La-
grangian decompositions &f. O

2.5.3. REMARK. It follows from formula (2.5.2) and Remark 2.2.7 that the
subsetA’(L;) is open inA; moreover, since the chart (2.5.3) is surjective, we
have thatA°(L;) is homeomorphic (and diffeomorphic) to the Euclidean space
Bsym(LO)-

It is sometimes useful to have an explicit formula for the transition functions
between the charts (2.5.3) of the Lagrangian Grassmannian; we have the following:

2.5.4. LEMMA. Given Lagrangian decompositiori€, L,) and (L, L) of
V then:

(2.5.5) YLy,Ly © (SOLO,L1>_1(B) = ‘PL(),Ll(LO) + (ni&LO)#(B) € Bsym(Lé)),
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for everyB € Bgym(Lo), Wherenfé Lo denotes the isomorphism 6f, onto Ly

determined by the common complementiaryrecall Definitions 1.1.2 and2.2.1);
if (Lo, L)) is also a Lagrangian decomposition &f then the following identity
holds:

1

(2.5.6)  @re.1; © (Prory)  (B) = Bo (Id+ (m|r,) 0 ppy 0 B)

forall B € ¢r,1,(A°(L})) C Bsym(Lo), wherer, denotes the projection onto
L relative to the decompositioli = Ly @ L.
Observe that the following identity holds:

(2.5.7) (ml2,) © i 1, = (PLoia)# (011,10 (L))
PROOF Using (2.2.2) it is easy to see that:
(2.5.8) ¥YL,,Ly ° (@LO,L1)_1(B) = PLy,L1 ° (7r/1’L0 + ng,Ll 0 B) © 77557[,0’

wherer] denotes the projection onf, relative to the decompositiori = L{, &
Lq; itis also easy to prove that:

— L * * *

PLy Ly © PLoty = (7} 1,)" Lo — Lo

and substituting in (2.5.8) we obtain (see also (1.1.4)):
- L L #
(2.5.9) YL,,L, © (‘:DL07L1) I(B) = PLy,L, ° (WHLO) o ULé,LO + (ﬁLé,LO) (B).
SettingB = 0 in (2.5.9) we conclude that
L
oy, (Lo) = pry,ry © (Thle) ©1f) 1o

which completes the proof of (2.5.5).
Now, using (2.2.3) it is easy to see that:

PLoiy © (PLo.Ly) " (B) =
PLo,L, © nfiL,l o pZOl7L1 oBo (Id + (Wé‘Ll) o PZS,Ll o B)—l;
and it is also easy to prove that:
PLoL, Onf?,Lg OPZOl,Ll =1d: Ly — Ly,
and this concludes the proof. O

In our next Lemma we show an interesting formula that involves the charts
(2.5.3).

2.5.5. LEMMA. Let Ly, L; and L be Lagrangian subspaces bf that are
pairwise complementary; the following identities hold:

(2510) @Lo,lq(L) = _QOLO,L(Ll)v
(2.5.11) 0Lo,L, (L) = —(pr1,00) (Pr110(L)7Y);
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PROOF. LetT = ¢r, 1, (L); thenT € Lin(Lg, L1) andL = Gr(T). Observe
thatKer(T) = Lo N L = {0} and soT is invertible; hence:

Li={v+(—v—T()):v € Ly}
and therefore:
¢ro.(L1): Lo v+— —v—T(v) € L.
For allv, w € Ly, we now compute, :
(pLo,L(Ll) : (’U,’LU) - w(—v - T(U)vw) - _W(T(U)v w) = —¥Lo,L: (L) ’ (Ua w),
which completes the proof of (2.5.10). To show (2.5.11) observeihat, (L) =
T then:
¥L1,Lo (L) = PL1,Lo ° T717 ¥Lo,Ly (L) = PLy,Ly © T,
from which we get:
¥Lo,L1 (L) = PLo,L1 © PL1,Lo (L)il O PLy,Lo-
The conclusion follows from (1.4.12) and (1.1.4). O

We will now study the tangent spa@g A of the Lagrangian Grassmannian.

2.5.6. ROPOSITION Let L € A be fixed; then the isomorphism:
(2.5.12) Lin(Id, pr) : Lin(L,V/L) — Lin(L, L*) ~ B(L)

given byZ — pr, o Z takesT A C T1,G,(V) ~ Lin(L, V/L) onto the subspace
Bgym (L) C B(L).

PROOF Let L, be aLagrangian complementarylioAs in the proof of Corol-
lary 2.5.2, the chart:

(2.5.13) GY(L1) > W v+ prp, o br.1,(W) € B(L)

of G, (V) is a submanifold chart foA that induces the chatty, 1, of A; hence,
the differential of (2.5.13) at the poirt is an isomorphism that takég, A onto
Bgym(L). By Lemma 2.3.5, the differential af;, ,, at the pointZ is Lin(Id, ¢; ),
wheregq; denotes the restriction th, of the quotient map ontd’/L; it follows
from the diagram (1.4.13) that the differential of (2.5.13).atoincides with the
isomorphism (2.5.12). O

Using the result of Proposition 2.5.%4/e will henceforth identify the tangent
spacel’r, A with Bgyr, (L). We will now prove versions of Lemma 2.3.5 and Propo-
sitions 2.4.11 and 2.4.12 for the Lagrangian Grassmannian; in these proofs we must
keep in mind the isomorphism (2.5.12) that identifiés\ andBgym (L).

2.5.7. LEMMA. Consider a Lagrangian decompositiofg, L;) of V and let
L € A°(Ly) be fixed; then, the differential of the chast,, ., at the pointL is the
push-forward operator:

(nﬁ,lLo)# : BSym(L) B Bsym(LO),

WherenflL0 denotes the isomorphism &fonto Ly determined by the common
complementary.; (see Definition 2.2.1).
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PROOF By differentiating the equality:

SDLO,Ll = Lln(lda pLo,L1) S (Z)Lo,Ll
at the pointZ and keeping in mind the identificatidfy A ~ Bgym (L), we obtain:

dere.r, (L) = Lin(nfé,p PrLoL, ©q o prt) Baym (L) : Bsym(L) — Bsym(Lo),

wheregq; denotes the restriction tb; of the quotient map ontd’/ L. On the other
hand, it is easy to see that:

—1 -1 _ L1 *
PLo,L1 ©41 ©° P = (77L0,L) :

This concludes the proof. O

Clearly, the natural action d&L(1") on the Grassmannia@,, (1) restricts to
an action of the symplectic grolgp(V,w) on the Lagrangian Grassmannian
we have the following:

2.5.8. RROPOSITION The natural action ofp(V,w) on A is differentiable.

PROOEF It follows directly from Proposition 2.4.1. O

Let us now compute the differential of the actionSpf(V, w) on A:

2.5.9. RRopPOSITION For A € Sp(V,w), consider the diffeomorphism, also
denoted byA, of A given byL — A(L). For L € A, the differentiald A(L) is the
push-forward operator:

(Al)# : Bsym(L) — Boym(A(L)).

PrROOF Using Proposition 2.4.11 and keeping in mind the identifications of
the tangent spacel§, A >~ By (L) andT'y()A ~ Bsym(A(L)), we see that the
differentiald A(L) is obtained by the restriction .., (L) of the mapd defined
by the following commutative diagram:

B(L) ° B(A(L))
Lin(Id,pL)T TLin (IdvﬂA(L))
Lin(L, V/L) Lin(A(L), V/A(L))

Lin((Alz)~1,4)
whereA : V/L — V/A(L) is induced fromA by passing to the quotient, hence:
o= Lin((A|L)_1, PA(L) © Ao pzl).
It is easy to see that:

pay o Aoppt = (AlL) "
This concludes the proof. O
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2.5.10. RROPOSITION For L € A, the differential of the map:
Br: Sp(V,w) — A
given bySr(A) = A(L) is:
dBr(A) - X =w(X 0o A" ) awmyxaw),
forall A € Sp(V,w), X € T4Sp(V,w) =sp(V,w) - A.

PROOF It follows easily from Proposition 2.4.11, keeping in mind the iden-
tification T'4()A ~ Bsym(A(L)) obtained by the restriction of the isomorphism
Lin(Id, ;OA(L))- O

We will now show that the Lagrangian Grassmannian can be obtained as a quo-
tient of the unitary group. Lef be a complex structure ii which is compatible
with the symplectic fornw; consider the corresponding inner prodyget w(-, J-)
onV and the Hermitian produgt in (V, J) defined in (1.4.10). Using the notation
introduced in Subsection 2.1.1, Proposition 1.4.22 tells us that

U(V, J,gs) = O(V,g) N Sp(V, w).

Let us now fix a Lagrangiaiy, C V; by Lemma 1.4.26/ is a real form in
(V,J) wheregs is real. It follows thatgs is the unique sesquilinear extension
of the inner producy|r,xz, in Lo. SinceLg is a real form in(V,.J), we have
that(V, J) is a complexification ofq, from which it follows that everyR-linear
endomorphismil’ € Lin(L) extends uniquely to &-linear endomorphism of
(V,J). From Remark 1.3.16 it follows th&t € Lin(Ly) is g-orthogonal if and
only if TC is gs-unitary; we therefore have an injective homomorphism of Lie
groups:

(2.5.14) O(Lo,glroxro) 2 T+— TC € U(V, J, gs)

whose image consists precisely of the elements(iWi, J, gs) that leaveL invari-
ant (see Lemma 1.3.11). Corollary 1.4.27 tells us that the subgrdip.J, g)

of Sp(V,w) acts transitively om\; from Corollary 2.1.9 we therefore obtain the
following:

2.5.11. ROPOSITION Fix Ly € A and a complex structuré on V' which is
compatible withv; the map:

UV, J,gs) 2 Ar— A(Lg) € A
induces a diffeomorphism
U(V> J7 gs)/O (L079|L0><L0) = A>

whereQ (Lo, g|1,x 1L, ) is identified with a closed subgroup of V, J, gs) through
(2.5.14) O

Obviously, the choice of a symplectic basislininduces an isomorphism be-
tween the Lagrangian Grassmannian Bfw) and the Lagrangian Grassmannian
of IR?>" endowed with the canonical symplectic structure. Hence we have the fol-
lowing:
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2.5.12. ®ROLLARY. The Lagrangian Grassmanniah is isomorphic to the
quotientUU(n)/O(n); in particular, A is a compact and connect manifold.

2.5.1. The submanifoldsA*(Lg). In this subsection we will consider a fixed
symplectic spacéV, w), with dim(V') = 2n, and a Lagrangian subspatg C V.
Fork = 0,...,n we define the following subsets &f

A¥(Lo) = {L € A : dim(L N Lo) = k}.
Observe that, fok = 0, the above definition is compatible with the definition of
A%(Lg) given in (2.5.2). Our goal is to show that eath(L) is a submanifold of
A and to compute its tangent space; we will also showAH&L ) has codimension
1in A, and that it admits a canonical transverse orientatiah. in

Let us denote byp(V,w, L) the closed subgroup &fp(V,w) consisting of
those symplectomorphisms that presebye

(2.5.15) Sp(V,w, Lo) = {A € Sp(V,w) : A(Ly) = Lo}.

It is easy to see that the Lie algebs®V, w, Lo) of Sp(V,w, L) is given by (see
formula (2.1.5)):

sp(V,w, Lo) = {X € sp(V,w) : X(Lo) C Lo}.
In the next Lemma we compute more explicitly this algebra:

2.5.13. LEMMA. The Lie algebrasp(V,w, L) consists of those linear endo-
morphismsX € Lin(V') such thatv(X-, -) is asymmetricbilinear form that van-
ishes onlg.

ProOOF It follows from the characterization of the algebs®V,w) given in
Subsection 2.1.1, observing thatX -, -)|,xr, = 0 if and only if X (Lg) is con-
tained in thew-orthogonal complements of Ly. But L is Lagrangian, hence
Ly = Lo. O

Itis clear that the action &fp(V, w) on A leaves each subsat (L) invariant;
moreover, by Proposition 1.4.38, it follows th/a‘t(LO) is an orbit of the action of
Sp(V,w, Lo). The strategy then is to use Theorem 2.1.12 to concludeih@ty)
is an embedded submanifold 4f to this aim, we need to show that'(L) is
locally closed inA.

For eacht = 0,...,n we define:

n k
AZF(Lo) = | J A (Lo),  ASF(Lo) = | A'(Lo).
i=k =0

We have the following:

2.5.14. LIEMMA. For all k = 0,...,n, the subset\=¥(L,) is open and the
subset\Z¥ (L) is closed inA.

PROOF It follows from Corollary 2.4.8 that the set of spadds € G, (V)
such thadim(W N Lg) < k is open inG,,(V); sinceA has the topology induced
by that of G,,(V), it follows that A<*(L) is open inA. SinceAZ¥(Lg) is the
complementary oA=*~1(Lg), the conclusion follows. a
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2.5.15. ®ROLLARY. Forall k = 0,...,n, the subsed” (L) is locally closed
in A.

PROOF. Simply observe that*(Lo) = AZF(Lg) N ASF(Ly). O
As a corollary, we obtain the main result of the subsection:

2.5.16. THEOREM. For eachk = 0,...,n, A¥(Lg) is an embedded submani-
fold of A with codimensior k(k + 1); its tangent space is given by:

(2.5.16) TpA*(Lo) = {B € Beym(L) : Bl(1onp)x(ronr) = 0}
forall L € A*(Lo).

PROOF. It follows from Proposition 1.4.38 that* (L) is an orbit of the action
of Sp(V,w, Ly) on A. From Theorem 2.1.12 and Corollary 2.5.15 it follows that
AF(Lp) is an embedded submanifold af It remains to prove the identity in
(2.5.16), because then it will follow that

(2-5-17) T A = Bsym(L> 5> Br— B’(LoﬂL)X(LoﬂL) € Bsym(LO N L)

is a surjective linear operator whose kernel’js\¥ (L), which implies the claim
on the codimension at*(L).
Using Propositions 2.1.7, 2.5.10 and Lemma 2.5.13, we have that:

T AR (Lo) = {Blrxr : B € Bsym(V), Blroxro =0},

for all L € AF(Ly). It remains to prove that every symmetric bilinear fofne
Bsym (L) that vanishes on vectors i L, can be extended to a symmetric bilinear
form onV that vanishes oi,y. This fact is left to the reader in Exercise 2.8.0]

2.5.17. REMARK. One can actually prove that the manifolts( L) are con-
nected; namely, Remark 1.4.40 implies that the grSpp(V,w, Ly) of symplec-
tomorphisms of” which restrict to gositiveisomorphism ofL acts transitively
on A¥(Lg). The connectedness af' (L) then follows from the conectedness of
Sp4 (V,w, Ly) (see Example 3.2.36).

2.5.18. REMARK. It follows from Theorem 2.5.16 that®(L,) is a dense open
subset of\; indeed, its complemert=!(L,) is a finite union of positive codimen-
sion submanifolds, all of which have therefarell measure It follows that given
any sequencéL;)c v of Lagrangian subspaces ©f then the set

(N A°(Li) ={LeA:LNL;={0}, Vic IN}

ieIN
is dense iM\, because its complement is a countable union of sets of null measure.
The same conclusion can be obtained by using Baire’s Lemma instead of the “null
measure argument”.

We are now able to define a transverse orientationAfqi) in A. Recall
that if V is a submanifold ofA/, then atransverse orientatiofior N in M is
an orientation for theormal bundlei*(TM)/T N, wherei : N — M denotes
the inclusion; more explicitly, a transverse orientation/fom M is a choice of an
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orientation for the quotient spa@g M /T, N that dependsontinuouslyonn € IN.
The continuous dependencé the choice of an orientation has to be meant in the
following sense: given any, € N there exists an open neighborhoodc N

of ng and there existontinuousfunctionsX; : U — TM,i7 = 1,...,r, such
that(X;(n) + T,,N)]_, is a positively oriented basis @M /T, N foralln € U.

It follows that, if such continuous map’s; exist, then we can replace them with
differentiable mapsX; that satisfy the same condition.

Observe that, for each € A*(L), the map (2.5.17) passes to the quotient
and defines an isomorphism:

(2.5.18) TrA/TpAF(Lo) —— Bgym(Lo N L).

2.5.19. DEFINITION. For eachL € A'(Lg) we define an orientation in the
quotientT, A /T A' (L) in the following way:
e we give an orientation to the unidimensional sp&:g., (Lo N L) by
requiring that an elemenB € By, (Lo N L) is a positively oriented
basis if B(v,v) > 0 for some (hence for ally € Ly N L with v # 0;
e we consider the unique orientationdia A /T, A'(Lo) that makes the iso-
morphism (2.5.18) positively oriented.

2.5.20. RROPOSITION The orientation chosen in Definition 2.5.19 for the
spaceTA/TA'(Ly) makesA!(Ly) into a transversally oriented submanifold
of A; this transverse orientation is invariant by the actionSef(V, w, Ly), i.e., for
all A € Sp(V,w, Lo) and for all L € A'(Ly) the isomorphism:

Ty A /TN (Lo) — TapyA/Tacry A (Lo)
induced fromlA(L) by passage to the quotient is positively oriented.

PrRoOOEF It follows from Proposition 2.5.9 that the differenti&li (L) coincides
with the push-forwardd.; hence we have the following commutative diagram:

A
(2.5.19) T A A Ta(ryA

| |

Bsym (L N Lo) Bsym (A(L) N Lo)

(Alznrg)#

where the vertical arrows are the operators of restriction of bilinear forms. Then,
the orientation given in Definition 2.5.19 % (V, w, Lg)-invariant.

The continuous dependence biof such orientation now follows from the fact
that the action o8p(V, w, Lg) on Al (L) is transitive! O

The required transverse orientation can be seen as a séttibthe (Z.-principal) fiber bun-
dle overA*(Lo) whose fiber at the poink € A'(Lo) is the set consisting of the two possible
orientations ofT, A/TrA'(Lo). Under this viewpoint, th&p(V,w, Lo)-invariance of this trans-
verse orientation means that the m@gs Sp(V, w, Lo)-equivariant, and the differentiability &
follows then from Corollary 2.1.10.
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2.5.21. EMARK. If A € Sp(V,w) is a symplectomorphism wit(Ly) =
L{, then, as in the proof of Proposition 2.5.20, it follows that the isomorphism:

TpA /TN (Lo) — TagyA/Tacry A (L)

induced by the differential A(L) by passage to the quotient is positively oriented
forall L € A'(Ly). To see this, simply repladg, by L;, in the right column of the
diagram (2.5.19).

Exercises for Chapter 2

EXERCISE2.1. LetX be alocally compact Hausdorff topological space. Show
that if X is second countable theti is paracompact; conversely, show thakifis
paracompact, connected and locally second countableXhersecond countable.

EXERCISE 2.2. Suppose thaP, M are manifolds,N C M is an immersed
submanifold andf : P — M is a differentiable map. Suppose th&tP) C N;
prove that if fy : P — N is continuous fj is defined by the diagram (2.1.1))
when N is endowed with the topology induced by its differentiable atlas, then
fo : P — N is differentiable.

EXERCISE2.3. LetM be a manifold/N C M a subset ana a topology for
N. Prove that there exists at most one differentiable structur® dhat induces
the topologyr and that make®’ an immersed submanifold af .

EXERCISE 2.4. Prove that every locally compact subspace of a Hausdorff
space is locally closed and, conversely, that in a locally compact Hausdorff space
every locally closed subset is locally compact in the induced topology.

EXERCISE 2.5. LetG be a Lie group acting differentiably on the manifold
M;let X € gand letX* be the vector field given by (2.1.14). Prove thiat is
completen M, i.e., its maximal integral lines are defined over the whole real line.

EXERCISE2.6. Show that, given any countable fam{ly;}>°, of k-dimen-
sional subspaces dR", with k£ < n, then there exist & — k)-dimensional sub-
spacel/ C IR™ which is complementary to all thig’s.

EXERCISE2.7. Determine the isotropy of the elemdRt © {0}~ % € G(n)
with respect to the natural action 6fL.(n, IR) on G (n).

EXERCISE 2.8. Let(V,w) be a (finite dimensional) symplectic space and
L, Ly be Lagrangian subspaces6f Suppose thaB € By (L) is a symmet-
ric bilinear form onL that vanishes itk N L. Prove thatB extends to a symmetric
bilinear form onV that vanishes iy},

EXERCISE 2.9. Prove that ifP : £ — B is a differentiable fibration, then
every curve of clas€*, v : [a,b] — B, admits a lifty : [a,b] — B of classC*,
0 <k < +oo (see Remark 2.1.18).
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EXERCISE2.10. Show that the map
Lin(IR",IR™) > T — Gr(T) € Gp(n +m)
is a diffeomorphism onto an open set and compute its differential.

EXERCISE2.11. Prove that a map : [a,b] — Gk(n) is of classC? if and
only if there exist map¥7, ..., Yy : [a,b] — IR™ of classC? such thatY;(t))%_,
is a basis ofD(¢) for all t.

EXERCISE2.12. TheGrassmannian of orientek-dimensional subspaces of
IR" is the setG; (n) of all pairs (W,0) whereW C IR" is ak-dimensional
subspace an@ is an orientation if¥V. Define an action 06&L(n, IR) in G} (n)
and show that its restriction t80(n) is transitive ifk < n. Conclude that, if
k < n, G{ (n) has a natural structure of homogeneous manifold which is compact
and connected.

EXERCISE2.13. Given a Lagrangiah, of a symplectic spacg/,w), denote
by Fixr, the subgroup ofp(V,w) consisting of those symplectomorphisfis
such thatl'|;, = Id, i.e., such thaf'(v) = v for all v € Ly. Prove thatfixy,
is a Lie subgroup ofp(V,w), and that it acts freely and transitively o¥(Ly).
Conclude thaFix;, is diffeomorphic toA°(Ly).

EXERCISE2.14. In the notations of Exercise 2.13, prove fhad;,, is isomor-
phic as a Lie group to the additive grouprof n real symmetric matrices.

EXERCISE2.15. GivenLy, L € Awith LN Ly = {0} andB € Byym(Lo) a
nondegenerate symmetric bilinear form.bg prove that there exists; € A with
LN Ly = {0} and such thapy, 1, (L) = B.



CHAPTER 3

Topics of Algebraic Topology

3.1. The Fundamental Groupoid and Group

In this section we will give a short summary of the definition and of the main
properties of the fundamental groupoid and group of a topological sgacé/e
will denote byI the unit closed intervdD, 1] and byC?(Y, Z) the set of continuous
mapsf : Y — Z between any two topological spacésandZ.

Let us begin with a general definition:

3.1.1. DeFINITION. If Y andZ are topological spaces, we say that two maps
f,g € C°(Y, Z) arehomotopiovhen there exists a continuous function:

H:IxY —Z7

such thatH (0,y) = f(y) andH(1,y) = g(y) for everyy € Y. We then say that
H is ahomotopybetweenf andg and we writeH : f = g. Fors € I, we denote
by Hy : Y — Z the mapH,(y) = H(s,y).

Intuitively, a homotopyH : f = ¢ is a one-parameter familyf Hy)sc; in
CO(Y, Z) thatdeforms continuousl{fy = f into H; = g.
In our context, the following notion of homotopy is more interesting:

3.1.2. DEFINITION. Let~, u : [a,b] — X be continuous curves in a topolog-
ical spaceX; we say thaty is homotopic tqu with fixed endpoint§ there exists
a homotopyH : v = p such thatd (s,a) = v(a) = p(a) andH (s,b) = v(b) =
w(b) for everys € I. In this case, we say thaf is ahomotopy with fixed endpoints
betweeny and .

Clearly, two curvesy, i : [a,b] — X can only be homotopic with fixed end-
points if they have the same endpoints, i.e.y(f) = p(a) and~y(b) = wu(d);
given a homotopy with fixed endpoinf$ the stagedd, are curves with the same
endpoints as and .

It is easy to see that the “homotopy” and the “homotopy with fixed endpoints”
are equivalence relations @’ (Y, Z) and inC°([a, b], X) respectively.

For this section we will fix a topological spaééand we will denote by2(X)
the set of all continuous curves: I — X:

Q(X) = C(1, X).

Fory € Q(X), we denote byy] the equivalence class of all curves homotopic
to v with fixed endpoints; we also denote By X) the set of such classes:

2(x) = {7y e ) }.

65
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If v, € Q(X) are such that(1) = 1(0), we define theoncatenation of and ;1
to be the curvey - 11 in Q(X) defined by:

1
(- () = {“2“’ ‘e il

In this way, the mag~, 1) — ~ - u defines gpartial binary operationin the set
Q(X). Fory € Q(X), we definey™! € Q(X) by setting:
vty =~ —1t), tel.
For each point: € X we denote by, € Q(X) the constant curve equal i0
0,(t) =z, tel.
It is not hard to prove that, (1) = x(0), [y] = [y1] and[u] = [p1], then:
bod=meml, =D
These identities show that the operatignsy) — ~ - p andy — ~~! pass to the

quotientand they define operations in the $8tX); we then define:

M-W=0h-u, b =0""
The homotopy clas| of a curvey is invariant by reparameterizations:

3.1.3. LEMMA. Lety € Q(X) be a continuous curve and considerepara-
meterizatiorry o o of v, whereo : I — [ is a continuous map. ¥(0) = 0 and
o(1) = 1, then[y] = [y o o]; if ¢(0) = o(1), theny o o is homotopic with fixed
endpoints to a constant curve, i.ey,o o] = [04(x(0))]-

PROOF. DefineH (s,t) = v((1—s)t+so(t)) to prove the first statement and
H(s,t) =~((1 - s)o(t) + sa(0)) to prove the second statement. O

3.1.4. REMARK. In some cases we may need to consider homotopy classes of
curvesy : [a,b] — X defined on an arbitrary closed interVal b]; in this case we
will denote by[v] the homotopy class with fixed endpoints of the curve:

(3.1.1) I>t—y((b—a)t+a) € X;

it follows from Lemma 3.1.3 that (3.1.1) is homotopic with fixed endpoints to every
reparameterizatiory o o of v, whereo : I — [a,b] is a continuous map with

0(0) = aando(1l) = b. Also the concatenation of curves defined on arbitrary
closed intervals should be understood in the sense of the concatenation of their
affine reparameterizations on the interyal

3.1.5. MROLLARY. Given~, u,k € Q(X) with v(1) = p(0) and (1) =
%(0), then:

(3.1.2) (O] [u]) - (51 =[] - ([u] - [])-

Moreover, fory € Q(X) we have:

(3.1.3) M- Tyl =0 oyl -1l =[]
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and also:

(3.1.4) D7 =0y, BT B = o)

PROOF The identity (3.1.2) follows from the observation thiat- 1) - < is a
reparameterization of - (n - x) by a continuous map : I — I with ¢(0) = 0
ando (1) = 1. Similarly, the identities in (3.1.3) are obtained by observing that
7 - 041y @ndo, ) - y are reparameterizations ¢foy a mapo with o(0) = 0 and
o(1) = 1. The first identity in (3.1.4) follows from the fact that- v ! = yo o
whereo : I — I satisfieso(0) = o(1) = 0; the second identity in (3.1.4) is
obtained similarly. O

The identity (3.1.2) tells us that the concatenatioasisociativen Q(X) when
all the products involved are defined; the identities in (3.1.3), roughly speaking,
say that the classds,|, * € X, act like neutral elementsor the operation of
concatenation, and the identities in (3.1.4) tell us that the ¢fas'§ acts like the
inverseof the clasg~| with respect to the concatenation.

If we fix a pointzy € X, we denote by2,,(X) the set ofloops inX with
basepointry:

Qay (X) = {7 € X) : 7(0) = ¥(1) = @0}
We also consider the image 9f,, (X) in the quotient2(X), that will be denoted
by:
m(X,20) = {[7] : 7 € Dy (X)}.
The (partially defined) binary operation of concatenatioi{iX) restricts to a

(totally defined) binary operation iy (X, z;); from Corollary 3.1.5 we obtain the
following:

3.1.6. THEOREM. The setr; (X, z¢) endowed with the concatenation opera-
tion is a group. O

This is the main definition of the section:

3.1.7. CEFINITION. The sef2(X) endowed with the (partially defined) oper-
ation of concatenation is called tfitndamental groupoidf the topological space
X. Forallzy € X, the groupm (X, z¢) (with respect to the concatenation opera-
tion) is called thdundamental group ok with basepointz.

3.1.8. REMARK. A groupoidis normally defined as amall categoryi.e., a
category whose objects form a set, whose morphisms are all isomorphisms. In this
context it will not be important to study this abstract notion of groupoid, never-
theless it is important to observe that Corollary 3.1.5 shows that the fundamental
groupoid of a topological space is indeed a groupoid in this abstract sense.

3.1.9. REMARK. If Xy C X is the arc-connected componentgfin X, then
m1 (X, zo) = m1(Xo,z0), Since every loop inX with basepoint inzy has image
contained inXy, as well as every homotopy between such loops has imagg.in

In the following lemma we describe the functoriality properties of the funda-
mental groupoid and group:
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3.1.10. LEMMA. Let f : X — Y be a continuous map; foy € Q(X), the
homotopy clas$f o 4] depends only on the homotopy clds§ of ; hence, we
have a well defined map

fe: QX)) — Q(Y)
given by f.([7]) = [f o7]. Fory,u € Q(X) with v(1) = 1(0) and for every
xo € X the following identities hold:

£ 1) = £ - (), £(B7) = £ fullowg]) = [05(a0))-

In particular, if f(z¢) = yo then f, restricts to a map
fe i m(X,m0) — T (Y, 90)
which is a group homomorphism. O
Clearly, givenf € C°(X,Y) andg € C°(Y, Z) then:

(go f)s=gsxo fs,
and that, ifid denotes the identity ok, thenld. is the identity of2(X); it follows
that, if f : X — Y is a homeomorphism, thefy is a bijection, and it induces an
isomorphism ofr; (X, zg) ontor (Y, f(zp)). The mapf. is said to benducedby
f in the fundamental groupoid or in the fundamental group.
The following proposition relates the fundamental groups relative to different
basepoints:

3.1.11. RopPosSITION Givenzg,z1 € X and a continuous curve : I — X
with A(0) = zp andA(1) = x1, we have an isomorphism:

)\#2 7T1(X,:B0) — 7T1(X,:E1)

defined by\.([v]) = [N]7* - [7] - [A], for everyy € Q,,(X). a
3.1.12. @WROLLARY. If ¢y andz; belong to the same arc-connected compo-
nent of X, then the groups (X, z¢) andm; (X, z1) are isomorphic. O

The following commutative diagram relates the homomorphigpend A

m(X,20) —L— w1 (Y, o)

| [

(X, 21) - T (Y, y1)

wheref € CO(X,Y), zo,71 € X, yo = f(w0), 11 = f(x1) and\ € Q(X) is a
curve fromzxg to x7.

3.1.13. EMARK. In spite of the fact that; (X, z) andr; (X, z1) are isomor-
phic if zg andx; are in the same arc-connected componetX ggduch isomorphism
is not canonical; more explicitly, iy, Ay € Q(X) are curves fronx, to z1, then:

(A" o (Ro)g = T,

wherel = \; - Agl andZ;y denotes the operator of conjugation by the elenmgnt
in (X, zo). If (X, x0) is abelian it follows that\g) 4 = (A1), and therefore
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the fundamental groups with basepoints in the same arc-connected components can
be canonically identified (compare with Remark 3.3.34).

3.1.14. CEFINITION. We say that a topological spadeis simply connected
it is arc-connected and if; (X, zg) is the trivial group{o,, } for some (hence for
all) zp € X.

Observe that, ifX is simply connected, the| = [1] for all continuous curves
v, 1 : I — X suchthaty(0) = u(0) andy(1) = p(1); for, in this casely]-[u] =1 =
[0,]-

3.1.15. XAMPLE. A subsetX C IR" is said to bestar-shapedaround the
pointzy € X if for everyx € X the segment:

[zo, 2] = {(1 —t)zo+tz:t €I}
is contained inX; we say thatX is convexif it is star-shaped at each one of its

points. If X is star-shaped aty, thenX is simply connected; indeed is clearly
arc-connected, and, given a logpe Q;,(X), we can define a homotopy:

IxI>(s,t)— (1—=s)y(t)+sxpe X
betweeny ando, .

3.1.16. EMARK. Two loopsy € Q,,(X) andu € Q,, (X) are said to be
freely homotopidf there exists a homotop¥f : v = n such that, for every € I,
the curveH; is a loop inX, i.e., H(s,0) = H(s, 1) for everys. In this situation,
if we set\(s) = H (s, 0), we have the following identity:

(3.1.5) Aw([]) = [ul.

The identity (3.1.5) follows from the fact that, since the squéare I is convex,
the homotopy class if2(I x I) of the loop that is obtained by considering the
boundary of/ x I run counterclockwise is trivial, hence so is its image iy.
Such image is precisely the difference of the terms on the two sides of the equality
in (3.1.5). In Exercise 3.3 the reader is asked to show that, conversely, any loop
is always freely homotopic ta—! - v - \, for any curve) with A(0) = ~(0).

In particular, ify, u € Q,(X) are freely homotopic, then the clas¢esand
[1] areconjugatein 71 (X, xo); it follows thaty € Q,,(X) is such thafy] = [0,,]
if and only if v is freely homotopic to a constant loop. With this argument we have
shown thatan arc-connected topological spaééis simply connected if and only
if every loop inX is freely homotopic to a constant loop

3.1.17. XAMPLE. A topological spaceX is said to becontractibleif the
identity map ofX is homotopic to a constant map, i.e., if there exists a continuous
mapH : I x X — X andzo € X such thatd(0,z) = z andH(1, z) = x for
everyr € X. Forinstance, ifX C IR" is star-shaped afy, thenX is contractible:
the required homotop# is given byH (s, z) = (1 — s)x + s .

It is easy to see that every contractible space is arc-connected (see Exercise 3.1).
Moreover, if X is contractible therX is simply connected; indeed, H : 1d = z
is a homotopy and € Q(X) is a loop, then the maf, t) — H(s,~(t)) is a free
homotopy between and the constant loop,, (see Remark 3.1.16).
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3.1.1. Stability of the homotopy class of a curveln this subsection we show
that, under reasonable assumptions on the topology of the &pae continuous
curves inX that aresufficiently closéelong to the same homotopy class. We begin
with a definition of “proximity” for continuous maps:

3.1.18. DEFINITION. LetY, Z be topological spaces; fdf C Y compact and
U C Z open, we define:

V(IGU)={feC'(Y.Z): f(K)CU}.

The compact-open topologin C°(Y, Z) is the topology generated by the sets
V(K;U) with K C Y compact and/ C Z open; more explicitly, an open set
in the compact-open topology is union of intersections of the form:

V(KU N NV (KR Uy)
with eachK; C Y compact and eadti; C Z open,i =1,...,n.

3.1.19. EMARK. When the topology of the counterdomaihis metrizable,
i.e., it is induced by a metrid, the compact-open topology ifi(Y, Z) is also
called thetopology of the uniform convergence on compattahis case it is not
too hard to prove that, fof € C°(Y, Z), a fundamental systems of open neighbor-
hood of f is obtained by considering the sets:

V(fiK,e) = {g € COY, 2) : sup d(£(), 9(v) < e}
yeK
whereK C Y is an arbitrary compact set aad> 0. In this topology, a sequence
(or a net) f,, converges tof if and only if f,, converges uniformly tgf on each
compact subset df .

In the context of differential topology, i¥ and Z are manifolds (possibly
with boundary), the compact-open topologyGfi(Y, Z) is also known as th€”-
topologyor as theC?-weak Whitney topology

3.1.20. EMARK. Toeach map : X x Y — Z which is continuous in the
second variable there corresponds a map:

fi X — %Y, 2).
An interesting property of the compact-open topology Y, 7) is that, ifY is
Hausdorff, the continuity of is equivalent to the continuity of| x x x for every
compactK C Y (see P2, Proposi@o 21,88, Captulo 9]). In particular, ifY

is Hausdorff and locally compact, the continuity pfand the continuity off are
equivalent.

We will now introduce suitable conditions on the topological spaEdhat will
allow to prove the stability of the homotopy class of curves.

3.1.21. DEFINITION. We say that the topological spadeis locally arc-con-
nectedif every point of X has a fundamental system of open neighborhoods con-
sisting of arc-connected subsets, i.e., if for everg X and every neighborhood
V of z in X there exists an open arc-connected subset X withx € U C V.



3.1. THE FUNDAMENTAL GROUPOID AND GROUP 71

We say thatX is semi-locally simply connectéfeveryx € X has a neighbor-
hoodV such that every loop ol is contractible inX, i.e., giverry € Q(X) with
~v(0) = v(1) andIm(y) C V, then~ is homotopic (inX) with fixed endpoints to
a constant curve.

3.1.22. XAMPLE. If every point ofX has a simply connected neighborhood,
thenX is semi-locally simply connected; in particular, every differentiable (or even
topological) manifold is locally arc-connected and semi-locally simply connected.

This is the main result of the subsection:

3.1.23. HEOREM. Let X be a locally arc-connected and semi-locally simply
connected topological space; given a cutve (X)), there exists a neighborhood
U of v in the space”®(I, X') endowed with the compact-open topology such that
for everyu € U, if 41(0) = ~(0) and (1) = (1) then[u] = [7].

PROOF Write X = (J,4 U, Where eaclU, C X is open and such that
every lace inl, is contractible inX. Then, the inverse images ! (U, ), o € A,
form an open covering of the compact spdcewhich has a_ebesgue number
0 > 0, i.e., every subset af whose diameter is less thans contained in some
7 H(Ua).

LetO =ty < t; < --- < tx = 1 be a partition off with ¢, — ¢, < § and let
a, € Abesuchthay([t,,t,+1]) C U,, foreveryr =0,...,k—1. For each, the
pointy(t,) € U,,_, N U,, has an open arc-connected neighborhtpdontained
in the intersectiort/,,,_, N U,, ; define the neighborhodd of v in C°(1, X) by:

k—1 k-1
U= (N V(ltr tr1];Us,) 0 () V) V2).
r=0 r=1
Clearly,y € U. Let nowpu € U be such that(0) = v(0) andu(1) = ~(1); we
need to show thdty] = [u].
Foreachr =1,...,k — 1 choose a curve, € Q(V;) with A,.(0) = ~(¢,) and

Ar(1) = p(tr); sethg = 04(0) @andAy = 0,(1). Forr =0,...,k — 1, we have (see
Remark 3.1.4):
(3.1.6) [ty )] = )0 D] - Pt

because the curve on the right hand side of (3.1.6) concatenated with the inverse
of the curve on the left hand side of (3.1.6) is the homotopy class of a logp,in
hence trivial inQ2(X). Moreover,

(3.1.7) (1] = [u‘[m,m]] """ [N’[tk,l,tkﬂv

V] = Dlio,e)] = W g ] )-
The conclusion now follows from (3.1.7) by concatenating the curves on both sides
of the identities (3.1.6) for =0, ...,k — 1. O

3.1.24. XAMPLE. Let S” c IR"*! be the unitz-dimensional sphere. From
the proof of Theorem 3.1.23 it follows that every curve I — S™ is homotopic
with fixed endpoints to a curve which is piecew@é. If n > 2, such curve cannot
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be surjective onto the sphere, because its image must have null meadtite in
Hence, ifn > 2 andy : I — S™ is a piecewisé&! loop, there exists € S™ such
thatIm(y) C S™\ {z}. Using the stereographic projection, we see #fat {z}

is homeomorphic tdR", therefore it is simply connected. From this argument it
follows that the spher&” is simply connected fon, > 2; the circleS! is not
simply connected (see Example 3.2.24).

We will need also a version of Theorem 3.1.23 for the case of homotopies with
free endpoints in a given set.

3.1.25. DEFINITION. LetA C X be asubsetandlet . : [a,b] — X be given
curves withvy(a), u(a),v(b), u(b) € A; we say thaty and . arehomotopic with
endpoints free iM if there exists a homotop# : v = u such thatH(a), Hy(b) €
A for everys € I; in this case we say thaf is a homotopy with free endpoints in
A betweeny and .

The relation of “homotopy with free endpoints i is an equivalence relation
in the set of curves € C°([a, b], X) such thaty(a),v(b) € A; obviously, if two
curves with endpoints il are homotopic with fixed endpoints then they will be
homotopic with free endpoints iA.

3.1.26. EMARK. If v € Q(X) is a curve with endpoints id and\ € Q(A)
is such thaty(1) = X(0), then the concatenation- A\ is homotopic toy with
free endpoints inA. Indeed, for eacls € I, denote by\; € Q(A) the curve
As(t) = A((1 = s)t). Then,H, = v - A, defines a homotopy with free endpoints
in A betweeny - A and~ - 0g); the conclusion follows from the fact thatand
7 - 0x(0) @re homotopic with fixed endpoints.

Similarly, one shows that ik € 2(A) is such that\(1) = v(0), then\ - v is
homotopic toy with free endpoints im.

We have the following version of Theorem 3.1.23 for homotopies with free
endpoints in a set:

3.1.27. HEOREM. Let X be a locally arc-connected and semi-locally simply
connected topological space; ldt C X be a locally arc-connected subspace of
X. Givenacurvey : I — X with endpoints i4, then there exists a neighborhood
U of yin C%(I, X) endowed with the compact-open topology such that, for every
1 € U with endpoints in4, the curvesy and i, are homotopic with free endpoints
in A.

ProoF We will only show how to adapt the proof of Theorem 3.1.23 to this
case. Once the open séfs, andV, are constructed, we also choose open neigh-
borhoodV, andV;, of v(tp) and~(t) respectively in such a way th&h N A and
Vi N A are arc-connected and contained respectivelyjnand inU,,_,. Then,
we define/ by setting:

k—1 k

U= (V(ltrtr1:Us,) N [ V{t}; Vi)

r=0 r=0
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Let 4 € U be a curve with endpoints iA; we must show thay and.. are homo-
topic with free endpoints imMd. The curves\y and \;, are now chosen in such a
way that\, (0) = y(t,), Ar(1) = p(tr) andIm(A,) C V., n Aforr = 0,k. The
identity (3.1.6) still holds for = 0,...,k — 1. Using the same argument of that
proof, we now obtain:

1] = o)™t - s
and the conclusion follows from Remark 3.1.26. O

3.2. The Homotopy Exact Sequence of a Fibration

In this section we will give a short exposition of the definition and the basic
properties of the (absolute and relative) homotopy groups of a topological space;
we will describe the exact sequence in homotopy of a (¥irA), and as a corol-
lary we will obtain the homotopy exact sequence of a fibratior? — B.

As in Section 3.1, we will denote by the closed unit intervdl, 1] and by
CY(Y, Z) the set of continuous maps fromto Z. We will denote byl™ the unit
n-dimensional cubeand byoI™ its boundary, that is:

o ={teI":t; € {0,1} forsomei =1,...,n}.

If n =0, we definel’ = {0} anddI® = (.
Let IR> denote the space of all sequen¢g$;>, of real numbers; we identify
I"™ with the subset ofR>°:

I”g{(tl,...,tn,0,0,...) 0<¢t; <1, izl,...,n} C IR™®
in such a way that, fon > 1, the cubel™ ! will be identified with the face of
"t {tel" t, =0} C I

we will call this face thenitial face of 1. We denote by/"~! the union of the
other faces of ™:

Jh={teI" t,=1ort; € {0,1} forsomei =1,...,n —1}.
We will henceforth fix a topological spac¥; for everyz, € X we denote by
Qp (X) the set:
Qg (X) = {¢e CO(I™, X) : ¢(0I™) C {xo} }.

If n =0, we identify a mapp : 1° — X with the point$(0) € X, so thatQ (X)
is identified with the seX (observe thaﬂg0 (X) does not actually depend agp).
The semio (X) is the loop space with basepoint introduced in Section 3.1.

We say that{ X, A) is apair of topological spaceg X is a topological space
andA C X is a subspace. IfX, A) is a pair of topological spacesy € A and
n > 1 we denote by} (X, A) the set:

01 (X, A) = { ¢ € CO™, X) : p(I" ") C A, §(J") C {o} }.
Observe that, fop € Q) (X, A), we havep(dI™) C A, also:
(3.2.1) QLX) = Q0 (X {z0}), n> 1.
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If n = 1, the cubel™ is the intervall, the initial faceI” ! is the point{0} and
Jr—1 = {1}; the set); (X, A) therefore is simply the set of continuous curves
v: 1 — X withv(0) € Aandy(1) = xo.

3.2.1. CeFINITION. If X is a topological spacey; € X andn > 0, we
say thatg,¢ € Q} (X) are homotopic in2; (X) if there exists a homotopy
H: ¢ =+ suchthatl; € Q} (X) for everys € I; the “homotopy in27 (X)" is
an equivalence relation, and for every: Q2 (X') we denote byg] its equivalence
class. The quotient set is denoted by:

(X, o) = {[¢] : ¢ € O, (X)}.

We say thaf¢] is thehomotopy class defined byin 7, (X, o).

Similarly, if (X, A) is a pair of topological spacesy, € A andn > 1, we say
thate, € Q) (X, A) arehomotopic in2; (X, A) when there exists a homotopy
H: ¢ =+ suchthati; € Q} (X, A)foreverys € I; then we have an equivalence
relation in 2} (X, A) and we also denote the equivalence classe$phy The
guotient set is denoted by:

Ta(X, A z0) = {[8] : 6 € L (X, A)}.
We say thaf¢] is thehomotopy class defined Byin 7, (X, A, zo).

Observe that the set)(X, z) does not depend on the poirg, and it is iden-
tified with the set ofarc-connected component$ X; for everyz € X, [z] will
denote then the arc-connected componenX dhat containg:.

From (3.2.1) it follows that:

(3.2.2) (X, {zo}, 20) = (X, 20), n>1.

Giveng, € Qp (X) withn > 1, or giveng, v € Q7 (X, A) withn > 2, we
define theconcatenatiorof ¢ with ) as the map - ¢ : I™ — X given by:

¢(2t17t27"')tn)5 l1 € [07 ]a
Y2t — 1,ts,...,t,), t1€[35,1],

for everyt = (t1,...,t,) € I"™. Observe that the definition (3.2.3) dasst make
sense in general faf, ¢ € QJ (X) or for ¢, € QF (X, A).

The concatenation is a binary operatioif) (X) forn > 1and inQ} (X, A)
forn > 2; it is easy to see that this binary operation passes to the quotient and it
defines operations in the sets( X, xo) andr, (X, A, zo) of the homotopy classes,
given by:

— ol

(323)  (6-9)(t) = {

9] - [¥] = [&- ¥

We generalize Theorem 3.1.6 as follows:

3.2.2. THEOREM. Forn > 1, the setr,, (X, o) is a group (with respect to the
concatenation operation) and fer > 2 also the setr,, (X, A, z¢) is a group; in
both cases, the neutral element is the clagsof the constant map,,, : I — X:

(3.2.4) 04 (t) = z9, teTm,
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and the inverse dfy] is the homotopy clagg '] of the mapy—! : I — X given
by:
d7Ht) = p(1 — ty,ta, ... t,), teI™
U

3.2.3. DEFINITION. A pointed setis a pair(C,cy) whereC' is an arbitrary
set andcy € C is an element of®. We say thaty is thedistinguished element
of (C,cp). A map of pointed setg : (C,cp) — (C’,¢) is an arbitrary map
f:C — C'such thatf(co) = ¢{; in this case we define theernelof f by:

(3.2.5) Ker(f) = f7(c)),

If Ker(f) = C we say thatf is thenull mapof (C, ¢o) in (C’, ¢;,). A pointed set
(C, ¢p) with C' = {co} will be called thenull pointed setBoth the null pointed set
and the null map of pointed sets will be denotedObyhen there is no danger of
confusion.

Given a groug=, we will always think ofG as the pointed s€t7, 1), wherel
is the identity ofG; with this convention, the group homomorphisms are maps of
pointed sets, and the definition of kernel (3.2.5) coincides with the usual definition
of kernel of a homomorphism.

3.2.4. DEFINITION. Forn > 1, the groupr, (X, zo) is called then-th (ab-
solute) homotopy groupf the spaceX with basepointzy; for n > 2, the group
(X, A, o) is called then-th relative homotopy groupof the pair(X, A) with
basepoint:y € A. We callmy(X, xzo) andmi (X, A, x¢) respectively theero-th
set of homotoppf X with basepointzy € X and thefirst set of homotopwgf the
pair (X, A) with basepoint:y € A; all the sets and groups of homotopy (absolute
or relative) will be seen as pointed sets, being the clags their distinguished
element.

3.2.5. EMARK. Arguing as in Example 3.1.9, one concludes thaffis the
arc-connected component &f containingzy, thenm, (X, zy) = m,(Xo, zo) for
everyn > 1;if 2o € A C Xy, then alsor,, (X, A, x9) = m,(Xo, 4, xo) for every
n>1 Ifzg € A C X and if Ay denotes the arc-connected componentof
containingzy, thenm, (X, A, z¢) = m,(Xo, Ao, xo) for everyn > 2.

3.2.6. XAMPLE. If X c IR?is star-shaped around the point € X, then
(X, z0) = 0 for everyn > 0; for, given¢ € Q) (X) we define a homotopy
H: ¢ = o0y, by setting:

H(s,t)=(1—-s)p(t)+sxg, sel, tel"

3.2.7. XAMPLE. Forn > 1,if ¢ € Q} (X, A) is such thalm(¢) C A4, then
[¢] = [04] IN Tn (X, A, 20); for, @ homotopyH : ¢ = o, in Q} (X, A) can be
defined by:

H(s,t) =¢(t1,....th—1,1 — (1 =s)(1 —t,)), tel, sel.
In particular, we haver,, (X, X, z¢) = 0.
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3.2.8. DEFINITION. Let X, Y be topological spaces and e € X, yp € YV
be given. Iff : X — Y is a continuous map such thatzy) = yo, we say thatf
preserves basepointand we write

[ (X, z0) — (Y, v0).
Then, forn > 0, f induces a map of pointed sets:
(3.2.6) for (X, 20) — ™ (Y, 40)
defined by. ([¢]) = [f o ¢].
Given pairs(X, A) and(Y, B) of topological spaces, themaap of pairs
f+(X,A) — (Y,B)
is a continuous map : X — Y such thatf(A) c B. If a choice of basepoints

xo € Aandyy € B is done, we say that preserves basepoints f (z¢) = o, in
which case we write:

F (X, A o) — (Y, B, yo).
Forn > 1, such a map induces a mgpof pointed sets:
(3.2.7) for (X, A, 20) — T (Y, B, y0)
defined byf.([¢]) = [f o ].

It is easy to see that the magisare well defined, i.e., they do not depend on
the choice of representatives in the homotopy classes. Given maps:

f: (X7A7:E0)—>(Y>B>y0)7 g: (KBayO)—)(Zacsz)

then(g o f). = g« o fs; if Id denotes the identity ofX, A, z¢), thenld, is the
identity of m,, (X, A, o). It follows that if f : (X, A, z9) — (Y, B,yo) is ahome-
omorphism of triplesi.e., f : X — Y is a homeomorphismf(A) = B and
f(zo) = yo, thenf, is a bijection. Similar observations can be made for the ab-
solute homotopy groups, (X, xo). We also have the following:

3.2.9. RROPOSITION Givenf : (X, z0) — (Y, o), then, forn > 1, the map
f+« given in(3.2.6)is agroup homomorphispmoreover, if

f: (Xv Aa l‘()) - (}/7 vaO)v
then forn > 2 the mapf, given in(3.2.7)is a group homomorphism. O

3.2.10. XAMPLE. If X = X; x Xy, andpr; : X — X, pry : X —
X, denote the projections, then a continuous map I™ — X is completely
determined by its coordinates:

priog=¢1: " — X', pryo¢=dy: I" — X7,
from which it is easy to see that, givan= (z1,z2) € X andn > 0, we have a
bijection:

ﬂ'n(X, x) M 7Tn(X1,$1) X Wn(XQ,xQ)
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which is also a group homomorphismrif> 1. More generally, giverd; C X,
Ay C Xg,x € A= Ay x Ay, then forn > 1 we have a bijection:

(X, A, z) M’ T (X1, A1, 21) X T (X2, A2, 22)

which is also a group homomorphisnvif> 2. Similar observations can be made
for products of an arbitrary number (possibly infinite) of topological spaces.

Give a pair(X, A) andzy € A, we have the following maps:
i: (Ayzg) — (X, 20), q: (X,{zo},z0) — (X, A, x0),

induced respectively by the inclusion dfinto X and by the identity ofX. Keep-
ing in mind (3.2.2) and Definition 3.2.8, we therefore obtain maps of pointed sets:

(328) Lyt WH(A7:EO) - 7T’VL(*X::I:‘())? Qs : ﬂ-n(X7 .’L’()) - ﬂ-n(Xa A7m0);

explicitly, we havei.([¢]) = [¢] andq.([¢]) = [¢]. Forn > 1 we define the
connection operatorelative to the triplg X, A, x¢):

(3.2.9) Os: (X, A, x0) — mn—1(A, 20)

by settingd.([¢]) = [¢]=-1]; it is easy to see thdl, is well defined, i.e., it does
not depend on the choice of a representative of the homotopy class. Mor@over,
is always a map of pointed sets, and it is a group homomorphianrif2.

3.2.11. EFINITION. A sequence of pointed sets and maps of pointed sets of
the form:

AN (Ci1, cis1) i (G, c) i (Ci1,ci1) i

is said to beexact at(C;, ¢;) if Ker(f;) = Im(fi+1); the sequence is said to be
exactif it is exact at eactliC;, ¢;) for everyi.

We can now prove one of the main results of this section:

3.2.12. HEOREM. If (X, A) is a pair of topological spaces and, € A, then
the sequence:

(3.2.10)
.. a—*>71'n(A, o) LN (X, 20) BLLEN (X, A, xg) o, Tn—1(4, xo) e,
o (X, A o) 2 mo(A, 20) —— mo(X, w0)

is exact, where for each the pointed set mags, q. andd, are given in formulas
(3.2.8)and(3.2.9)

PrRoOOFE The proof is done by considering several cases in which the homo-
topies are explicitly exhibited.
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e Exactness at, (X, z¢). The fact thaim(i.) C Ker(q.) follows from Exam-
ple 3.2.7. Letp € 1} (X) be such that there exists a homotdidy ¢ = o,
in Q (X, A). DefineK': I x I" — X by setting:

H2tn(t17-~~,tn7170)7 0§2tn§5,

Hy (bt 550), s <2t <2

ng:K@Jy:{

Itis easy to see that = K; € Q} (A) and thatK': ¢ = ¢ is a homotopy in
03, (X). Itfollows [¢] = i.([¢]).

e Exactness at,, (X, A, o).
The inclusionlm(q,) C Ker(d,) is trivial. Let¢ € QI-1(X, A) be
such that there exists a homotofly: ¢|n-1 = o4, in Q7 (A). DefineK :

I x I — X by the following formula:
HS—Qtn(t17"'7tn—1)7 0 S 2tn S S,
Oty b1, B5E), s <2 <2

Itis easy to see that = K7 € Qp (X) and that : ¢ = + is @a homotopy in
Q5 (X, A). Itfollows that[¢] = q.([¢]).

ng:K@o:{

e Exactness at,, (A, zo).
We first show thafm(9,) C Ker(i,). To this aim, letp € Q- (X, A).
DefineH: I x I — X by setting:

H(t) = H(s,t) = ¢(t,s), sel, tel
Itis easy to see thall : ¢|;» = 0., is @ homotopy i} (X), so that

(ix 0 9:)([¢]) = [0ap]-

Let nowy € Q7 (A) be such that there exists a homotalgy ¢ = oy,
in Q7 (X). Then, define:

o(t) = Kyp, (1, ty), teI™h
it follows thatg € Q21 (X, A) andd,([¢]) = [¢].

This concludes the proof. O

The exact sequence (3.2.10) is known as théahg exact homotopy sequence
of the pair(X, A) relative to the basepointy. The exactness property of (3.2.10)
atmi(X, A, zy) can be refined a bit as follows:

3.2.13. ROPOSITION The map
(3.2.11) m(X, A z0) x m (X, 20) > (W], [1]) — [v - 1] € m (X, A, z0)

defines a right action of the group, (X, x¢) on the setr; (X, A, x); the orbit
of the distinguished elemefit,,] € m1 (X, 4, zo) is the kernel of the connection
operator

Ox: mi1(X, A, x9) — mo(A, x0),
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and the isotropy group db, | is the image of the homomorphism:
e (A, o) — (X, 20);
in particular, the map
(3.2.12) qs: (X, 20) — T (X, A, x0)
induces, by passage to the quotient, a bijection between the set of right cosets
m1(X, z0)/Im(i,) and the seKer(9,).

PROOEF It is easy to see that (3.2.11) does indeed define a right action (see
Corollary 3.1.5). The other statements follow from the long exact sequence of
the pair(X, A) and from the elementary theory of actions of groups on sets, by
observing that the map of “action on the element'

Blog,]: M(X, 20) — m1 (X, A, z0)
given by, 1([1]) = [0a, - ] coincides with (3.2.12). O
We now proceed with the study of fibrations.

3.2.14. EFINITION. Let F, E, B be topological spaces; a continuous map
p: E — Bis said to be docally trivial fibration with typical fiber F' if for every
b € B there exists an open neighborhddf b in B and a homeomorphism:

(3.2.13) a:p H(U)—UxF

such thapr; o a = pl,-1(y), Wherepr, denotes the first projection of the product
U x F; we then say that is alocal trivialization of p aroundb, and we also say
that the fibratiorp is trivial on the open sdt/ C B. We call F thetotal spaceand

B thebaseof the fibrationp; for everyb € B the subsef;, = p~!(b) C E will be
called thefiber overb.

Clearly, any local trivialization op aroundb induces a homeomorphism of the
fiber £, onto the typical fibef.
We have the following:

3.2.15. LEMMA. Letp : E — B alocally trivial fibration, with typical fiber
F'; then, giverey € E, by € B with p(eg) = by, the map:

(3214) Px: Wn(E, Ebo, 60) — TI'n(B, {bo}, bo) = 7Tn(B, b())
is a bijection for every, > 1.
The proof of Lemma 3.2.15 is based on the following technical Lemma:

3.2.16. LEMMA. Letp : E — B be alocally trivial fibration with typical fiber
F; then, forn > 1, given continuous maps: I" — B and : J"~! — E with
po = | u1, there exists a continuous map I — E such thatp| jn—1 = 1
and such that the following diagram commutes:

E
;7 l
P

¢
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PROOF The proof is split into several steps.

(1) There exists aetractionr : I™ — J"~ !, i.e.,r is continuous an@| j.—1 =
Id.
Fixt = (3,...,5,—1) € IR"; for eacht € I" definer(t) as the unique
point of J”~! that belongs to the straight line throughandt.

(2) The Lemma holds if there exists a trivializati($h2.13)of p with Im(¢) C
U.
Letty: J*~! — F be such that

a(y(t)) = ((t),vo(t), te I

then, we consider:
(1) = o (9(0), wo(r(t))), tel™

(3) The Lemma holds if = 1.

Let0 = up < up < ... < up = 1 be a partition ofl such that, for =
0,...,k—1, ¢([ui, uiy1]) is contained in an open subset®fover which the
fibrationp is trivial (see the idea of the proof of Theorem 3.1.23); using step
(2), defineg on the intervalu;, u;+1] starting withi = £ — 1 and proceeding
inductively up toi = 0.

(4) The Lemma holds in general
We prove the general case by inductiomgrihe base of induction is step
(3). Suppose then that the Lemma holds for cubes of dimensions less.than
Consider a partition:

(3.2.15) O=uw<u <...<uyp=1
of the intervall; leta = (ai,...,a,_1) be such thatforeach=1,...,n—1,
the seta; is equal to one of the intervals;, u;11], j = 0,...,k — 1 of the

partition (3.2.15), or else; is equal to one of the poin{sy; },j = 1,..., k—1;
define:
Io=1Ig X - x1Iy , CI™!

If » € {0,...,n — 1} is the number of indices such thata; is an interval
(containing more than one point), we will say thatis ablock of dimension
r. The partition (3.2.15) could have been chosen in such a way that each
¢(Ia x [u;,uj11]) is contained in an open subset®bver which the fibration
is trivial (see the idea of the proof of Theorem 3.1.23). N

Using the induction hypotheses (or step (3)) we define the ¢nap the
subsetsl, x I WherejCl is a block of dimension one. We then proceed in-
ductively until wheng is defined on eacli, x I such thatl, is a block of
dimensionr < n — 2.

Fix now a in such a way thaf, is a block of dimensiom — 1; using step
(2) we define&g onig X [uj,ujy1] Starting withj = k& — 1 and continuing
inductively until j = 0. This concludes the proof.
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[l
The map&f in the statement of Lemma 3.2.16 is callelifting of ¢ relatively top.

PROOF OFLEMMA 3.2.15. Givenj¢] € m,(B,by), by Lemma 3.2.16 there
exists a |Ift|l’lg¢ I" — FE of ¢ relatively top, such tha‘rgb is constant equal to
eo on J"~1; then[¢] € m,(E, By, o) andp.([4]) = [¢]. This shows thap, is
surjective; we now show that, is injective.

Let [¢1], [tho] € mn(E, Ey,, o) be such thap, ([1h1]) = p.([1h2]); then, there
exists a homotopy

H:IxI"=1""" — B
such thatiy = po 1, Hl = pog andH, € Q{;O (B) for everys € I. Observe
that:
J'=(Ix J" U0} x I")U ({1} x I™);
we can therefore define a continuous map
v: J'— FE

by settingi(0,t) = ¥ (t), ¥(1,t) = 1o(t) fort € 1™, andiy(s,t) = eq for s € 1,
t € J*~ 1, It follows from Lemma 3.2.16 that there exists a continuous map:

H:IxI"=I""' — E

such thatp o H = H e H| = 4; it is then easy to see thal: ¢; = 1 is
a homotopy inQ¢ (E, Ey,) and thereforgi] = [12] € m,(E, Ey,, e0). This
concludes the proof. O

The idea now is to “replacer,, (E, Ey,, eo) by m,(B, bp) in the long exact
homotopy sequence of the péir, E;, ), obtaining a new exact sequence. Towards
this goal, we consider a locally trivial fibratign £ — B with typical fiber F;
choosé)y € B, fy € F, ahomeomorphisth: E,, — F and letey € Ep, be such
thath(egp) = fo. We then define maps. e J. in such a way that the following
diagrams commute:

(3.2.16) n(Eby s €0)
(F fo E 60)
(3.2.17) T (E, Ey,, 60) o Tp—1 (Ebo, eo)
p*ie elb*
ﬂn(B7b0) 7rn—1(F7 f())

wherei, is induced by inclusion, and., is the connection operator corresponding
to the triple(E, Ey,, o).
We then obtain the following:
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3.2.17. ®ROLLARY. Letp: E — B be a locally trivial fibration with typical
fiber F'; choosingby € B, fo € F, a homeomorphisth: E,, — F and taking
eo € Ey, such thath(eg) = fo we obtain an exact sequence

(3.2.18)

= 6—*>7Tn(F, fo) —= mu(E, eg) 2 mn(B, bo) LI Tn—1(F, fo) ——

* Ox Lx *
L (B, bo) 2 mo(F, fo) —— mo(E, eq) —— mo(B, bo)

where., e §, are defined respectively by the commutative diagrédrz.16)and
(3.2.17)

PROOF Everything except for the exactnessrgt F, e ) follows directly from
the long exact sequence of the p@it, £,,) and from the definitions of, andJ..
The exactness at)(F, ep) is obtained easily from Lemma 3.2.16 with= 1. O

The exact sequence (3.2.18) is known asltimg exact homotopy sequence of
the fibrationp.

3.2.18. DEFINITION. A mapp : E — B is said to be aoveringif p is a
locally trivial fibration with typical fiberF’ that is a discrete space.

We have the following:

3.2.19. ®ROLLARY. If p : E — Bis a covering, then, givepy € E and
by € B with p(eg) = by, the map:

D« - Wn(Ea 60) - ﬂn(B7 bO)
is an isomorphism for eveny > 2.

ProOOF It follows directly from the long exact homotopy sequence of the
fibration p, observing that, sincé’ is discrete, it ism,(F, fo) = 0 for every
n > 1. O

3.2.20. EMARK. Letp : E — B be a locally trivial fibration with typical
fiber F'; choosehy € B and a homeomorphisin: £, — F. Let us take a closer
look at the operatos, defined by diagram (3.2.17), in the case- 1.

For eachf € F, we denote byi{ the operator defined by diagram (3.2.17)
takingn = 1 and replacingfy by f andeg by h=1(f) in this diagram. We have the
following explicit formula:

(3:2.19) L) = [0(5(0)] € mo(F. f), 7€ (B),
wherey : I — Eis any lifting of y (i.e.,p o ¥ = ~) with (1) = b=1(f). The
existence of the liftingy follows from Lemma 3.2.16 wit = 1.

Using (3.2.19), it is easy to see thétt only depends on the arc-connected
componentf] of F' containingf; for, if f1, fo € F and\ : [ — F'is a continuous
curve withA(0) = f1 andA(1) = fo, then, given a liftingy of v with (1) =
h=L(f1), it follows thati = 7 - (h=1 o \) is a lifting of 1 = 7 o 0y, With (1) =
h~1(f2), and so

ol (1) = [b(5(0)] = [8(a(0))] = 6£2([u]) = 62 ([n]).
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Denoting bym,(F') the set of arc-connected componentsrofdisregarding the
distinguished point) we obtain a map

(3220) Wl(B,bo) X 7T0(F) — 7T0(F)

given by ([+], [f]) — 5{([7]). It follows easily from (3.2.19) that (3.2.20) defines
a left action of the group; (B, by) on the setry(F).

Let us now fix fo € F and let us setg = h~!(fo); using the long exact
sequence of the fibratignit follows that the sequence

* 6*:5{0 Lx
m(E, eq) = m(B,bo) ———— mo(F, fo) —— mo(E, eo)

is exact. This means that the orbit of the pdifaf € 7o (F') relatively to the action
(3.2.20) is equal to the kernel of and that the isotropy group 6fo] is equal to the
image ofp,; hence the operatay, induces by passing to the quotient a bijection
between the set of left cosets(B, by)/Im(p.) and the seKer(¢.).

3.2.21. XAMPLE. Letp : E — B be alocally trivial fibration with discrete
typical fiber F, i.e., p is a covering. Choosk € B, ey € Ep, and a homeomor-
phismp : Ep,, — F (actually, in the case of discrete fiber, every bijectionill be
a homeomorphism); s¢t = h(eg).

Sincen(F, fo) = 0, it follows from the long exact sequence of the fibration
that the map

ps: 1 (E, eg) — m (B, bo)
is injective; we can therefore identify (£, eg) with the image op... Observe that
the setry(F, fo) may be identified with?".

Under the assumption that is arc-connected, we havg(E,ep) = 0, and it
follows from Remark 3.2.20 that the mapinduces a bijection:

(3.2.21) m1(B,by) /71 (E,eq) — F.

Unfortunately, sincé” has no group structure, the bijection (3.2.21) does not give
any information about the group structuresfE, eg) andmy (B, by).

Let us now assume that the fibBrhas a group structure and that there exists a
continuous right action:

(3.2.22) ExF>(e,f)—eofecFE

of F on E (sinceF is discrete, continuity of (3.2.22) in this context means conti-
nuity in the second variable); let us also assume that the action (3.2.22) is free, i.e.,
without fixed points, and that its orbits are the fibergoff f; = 1 is the unit of

F and the homeomorphisi: E;, — F'is the inverse of the bijection:

Beo: F'2 fr—eqe [ € Ey,
we will show that the map
(3223) 5*: 7T1(B, bo) I 7T0(F, fo) = F

is a group homomorphism; it will then follow that(p.) ~ 71 (E, ep) is a normal
subgroup ofr; (B, by) and that the bijection (3.2.21) is an isomorphism of groups.
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Let us show that (3.2.23) is a homomorphism. To this aimylet € Q%O(B)
andlety, i : I — E be lifts of v andy respectively, withy(1) = fi(1) = ep; using
(3.2.19) and identifyingro (F, fo) with F' we obtain:

0u(IV) = 5(3(0)),  8u([ul) = b(2(0)).
Definey: I — FE by setting:

A(t) =A(t) e b(i(0)), tel

thenk = 4 - i is a lifting of K = - with £(1) = ¢ and, using again (3.2.19) we
obtain:

0x([7] - [u)) = 5(7(0)) = b(5(0)) = 6(5(0)) b (72(0)) = du([Y])) 3 ([1]);

which concludes the argument.

3.2.22. EMARK. The groupsr (X, z¢) andma (X, A, xo) may not be abelian,
in general; however, it can be shown tha{ X, =) is always abelian fop 2 and
(X, A, x0) is always abelian forn. > 3 (see for instancelB, Proposition 2.1,
Proposition 3.1, Chapter 4]).

3.2.23. EMARK. Generalizing the result of Proposition 3.1.11, givei> 1
it is possible to associate to each cutvel — X with A\(0) = zp andA(1) =
an isomorphism:

A T (X, 20) — (X, 21);
in particular, ifzg e 1 belong to the same arc-connected component dhen
(X, xo) is isomorphic tor, (X, z1). The isomorphism\ is defined by setting:

Ay ([0]) = [¥],

where is constructed using a homotopy: ¢ = « such thatH,(t) = A(t) for
everyt € 9I" and alls € I (for the details, seelB, Theorem 14.1, Chapter 4]).
Then, as in Example 3.1.17, it is possible to show thaX ifs contractible, then
(X, zo) = 0 for everyn > 0.
If Im(A\) C A C X then, givem > 1, we can also define a bijection of pointed
sets:
A (X, A, 2) — T (X, A, 21),

which is a group isomorphism far > 2 (see L8, Exercises of Chapter 4]).

3.2.1. Applications to the theory of classical Lie groupsin this subsection
we will use the long exact homotopy sequence of a fibration to compute the funda-
mental group and the connected components of the classical Lie groups introduced
in Subsection 2.1.1. All the spaces considered in this section are differentiable
manifolds, hence the notions of connectedness and of arc-connectedness will al-
ways be equivalent (see Exercise 3.2).

We will assume familiarity with the concepts and the notions introduced in
Subsections 2.1.1 and 2.1.2; in particular, without explicit mention, we will make
systematic use of the results of Theorem 2.1.14 and of Corollaries 2.1.9, 2.1.15,
2.1.16 and 2.1.17.
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The relative homotopy groups will not be used in this Section; from Section 3.2
the reader is required to keep in mind the Examples 3.2.6, 3.2.10 and 3.2.21, and,
obviously, Corollary 3.2.17.

In order to simplify the notationwe will henceforth omit the specification of
the basepointy when we refer to a homotopy group, or set( X, z¢), provided
that the choice of such basepoint is not relevant in the context (see Corollary 3.1.12
and Remark 3.2.23); therefore, we will writg (X).

We start with an easy example:

3.2.24. XAMPLE. Denote byS! c C the unit circle; then, the map: IR —
St given byp(t) = 2™ is a surjective group homomorphism whose kernel is
Ker(p) = Z. Itfollows thatp is a covering map. Moreover, the actiorZbbn IR by
translation is free, and its orbits are the fibergat follows from Example 3.2.21
that we have an isomorphism:

Sy m(SH1) — Z
given byd.([y]) = 7(0), wherey : I — IR is a lifting of v such thaty(1) = 0. In
particular, the homotopy class of the logp I — S given by:
(3.2.24) y(t) =¥ tel,
is a generator of (S!,1) ~ Z.

3.2.25. XAMPLE. Let us show that the special unitary grasig(n) is (con-
nected and) simply connected. First, observe that the canonical action of the group
SU(n + 1) onC™*! restricts to an action 3U(n + 1) on the unit spher&?"+1;
it is easy to see that this action is transitive, and that the isotropy group of the point
ent1 = (0,...,0,1) € C*! is identified withSU(n). It follows that the quo-
tientSU(n + 1)/SU(n) is diffeomorphic to the spheig®"*!; we therefore have a
fibration:

p:SU(n+1) — S¥HL

with typical fiberSU(n). Since the spher§®"*! is simply connected (see Exam-
ple 3.1.24), the long exact homotopy sequence of the fibratgives us:

(3.2.25) m(SU(n)) — mo(SU(n+1)) — 0

(3.2.26) m1(SU(n)) — m(SU(n+1)) — 0.

SinceSU(1) = {1} is clearly simply connected, from the exactness of (3.2.25) it
follows by induction om: thatSU(n) is connected. Moreover, from the exactness
of (3.2.26) it follows by induction om thatSU(n) is simply connected.

3.2.26. XAMPLE. Let us show now that the unitary groggn) is connected,
and thatry (U(n)) ~ Z for everyn > 1. Consider theleterminant map

det: U(n) — S;

we have thatlet is a surjective homomorphism of Lie groups, and therefore it is
a fibration with typical fiberKer(det) = SU(n). Keeping in mind thaBU(n)
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is simply connected (see Example 3.2.25), from the fibrafienwe obtain the
following exact sequence:

(3.2.27) 0 — mo(U(n)) — 0
(3.2.28) 0 — m(Un),1) -2 r(SL,1) — 0

From (3.2.27) we conclude that(n) is connected, and from (3.2.28) we obtain
that the map

(3.2.29) det,: m(U(n),1) — m1(S',1) = Z
is an isomorphism.

3.2.27. XaMPLE. We will now show that the special orthogonal gr&i(p(n)
is connected for > 1. The canonical action O(n + 1) on IR™™! restricts to
an action ofSO(n + 1) on the unit spheré&™; it is easy to see that this action is
transitive, and that the isotropy group of the paipt; = (0,...,0,1) € R"H!
is identified withSO(n). It follows that the quotiensO(n + 1)/SO(n) is diffeo-
morphic to the spher8™, and we obtain a fibration:

(3.2.30) p: SO(n+1) — S™,
with typical fiberSO(n); then, we have an exact sequence:
m0(S0(n)) — m(SO(n+1)) — 0

from which it follows, by induction om, thatSO(n) is connected for every,
(clearly, SO(1) = {1} is connected). The determinant map induces an isomor-
phism between the quotiedt(n)/SO(n) and the groug1, —1} ~ Zs, from which

it follows thatO(n) has precisely two connected componeBStS{n) and its com-
plementary.

3.2.28. XAMPLE. We now show that the grougL. (n, IR) is connected. If
we choose any basi®;); , of IR", it is easy to see that there exists a unique
orthonormal basigu;)!"_; of IR™ such that, for everys = 1,...,n, the vectors
(bi)F_, and (u;)¥_, are a basis of the samedimensional subspace @&" and
define thesame orientatiorof this subspace. The vectofs;);_, can be written
explicitly in terms of the(b;)!" ;; such formula is known as th@ram—-Schmidt
orthogonalization process

Given any invertible matrixA € GL(n,R), we denote by (A) the matrix
obtained fromA by an application of the Gram-Schmidt orthogonalization process
on its columns; the mapfrom GL(n, IR) ontoO(n) is differentiable (but it is not
a homomorphism). Observe thatAf € O(n), thenr(A) = A, for this we say
thatr is aretraction Denote byl the subgroup ofiL(n, IR) consisting of upper
triangular matrices with positive entries on the diagonal, i.e.,

T+ = {(aZj)an € GL(TL,]R) P Qi = 0if ¢ > ja Qg5 > 07 Za] = ]-7 cee ,’I’L}.
Then, it is easy to see that we obtain a diffeomorphism:
(3.2.31) GL(n,R) > A+ (r(A),r(A)"'4) € O(n) x T4.
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We have that (3.2.31) restricts to a diffeomorphisnGaf, (n, IR) onto SO(n) x
T,. It follows from Example 3.2.27 thakL (n, IR) is connected, and that the
general linear groufsL(n, IR) has two connected componentL, (n, IR) and
its complementary.

3.2.29. EMARK. Actually, it is possible to show tha&L, (n, IR) is con-
nected by an elementary argument, using the fact that every invertible matrix can
be written as the product of matrices correspondingléonentary row operations
Then, the map : GL(n,IR) — O(n) defined as in Example 3.2.28 gives us an
alternative proof of the connectednessSof(n).

3.2.30. ExampLE. We will now show that the groufxL(n,C) is connected
and that:
7m1(GL(n,C)) 2 Z.

We use the same idea as in Example 3.2.28; observe that it is possible to define a
Gram-Schmidt orthonormalization process also for basés*ofThen, we obtain
a diffeomorphism:

GL(n,C) 3 A+ (r(A),r(A)"'A) € U(n) x T4(C),

whereT (C) denotes the subgroup 6fL.(n, C) consisting of those upper triangu-
lar matrices having positive real entries on the diagonal:

T, (C) = {(aij)nxn € GL(n,C) : a;; =0if i > j,
a;; € Randa; >0, 1,5 =1,...,n}.
It follows from Example 3.2.26 thatL(n, C) is connected and that (GL(n, C))

is isomorphic tdZ for n > 1; more explicitly, we have that the inclusionU(n) —
GL(n, C) induces an isomorphism:

i m(U(n), 1) = m1(GL(n,C), 1).

3.2.31. EMARK. Also the connectedness 6fL(n,C) can be proven by a
simpler method, usinglementary row reductionf matrices. Then, the Gram-
Schmidt orthonormalization process gives us an alternative proof of the connect-
edness ofJ(n) (see Remark 3.2.29).

3.2.32. xAmMPLE. We will now consider the grougdl.(n, IR) andSL(n, C).
We have a Lie group isomorphism:

SL(n,R) x R" > (T,c) — ¢T € GLy(n, R),

where R = ]0,+oo[ is seen as a multiplicative group; it follows from Exam-
ple 3.2.28 thatSL(n, IR) is connected, and that the inclusionSL(n, R) —
GL4 (n, IR) induces an isomorphism:

i,: m1(SL(n, R),1) — m(GL, (n, R), 1).
The groupr; (GL4 (n, IR)) will be computed in Example 3.2.35 ahead.
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Let us look now at the complex case: fore C \ {0} we define the diagonal
matrix:

o(z) = 0 . € GL(n,C);
1

we then obtain a diffeomorphism (whichnst an isomorphism):
SL(n,C) x R™ x S* 5 (T, ¢, 2) — o(cz)T € GL(n,C).
Then, it follows from Example 3.2.30 th&8L(n, C) is connected and that:
m1(GL(n,C)) 2 Z = Z x 7 (SL(n, C)),
from which we get thaSL(n, C) is simply connected.

In order to compute the fundamental group of the special orthogonal group
SO(n) we need the following result:

3.2.33. LEMMA. If S® c IR™*! denotes the unit sphere, then, for evegyc
S™, we haver(S™, xg) = 0for0 < k < n.

PROOF. Letg € QF (S™). If ¢ is not surjective, then there exists= S™ with
Im(¢) € S™\{z}; butS™\ {z} is homeomorphic tdR" by the stereographic pro-
jection, hencég] = [o,,]. It remains to show that any € Q% (S™) is homotopic
in Q% (S™) to a map which is not surjective.

Lete > 0 be fixed; it is known that there exists a differentidtteapy: ¥ —
IR™! such that||¢(t) — ¥ (t)|| < e for everyt € I* (see R3, Teorema 10§5,
Cagtulo 7]). Leté: IR — [0, 1] be a differentiable map such théts) = 0 for
|s| < eandé(s) = 1for |s| > 2¢. Definep: R™™ — IR"*! by setting

p(z) = &(llz — wol)(z — 20) + 20, = € R

then,p is differentiable inR" !, p(z) = x¢ for |z —x¢|| < e and||p(z) —z| < 2¢
for everyz € IR™*!. It follows thatp o v: I¥ — IR"*! is a differentiable map
(p o) (OIF) C {zo} and||(p o ¥)(t) — ¢(t)|| < 3¢ for everyt € I*. Choosing
e > 0 with 3¢ < 1, then we can define a homotop§: ¢ = 6 in Q% (S™) by
setting:

_ (L=5)o(t) + s(pod)(t)
B = =500 + st w)OT
whered(t) = (po)(t)/||(por)(t)||, t € I*, is a differentiable map; sinde< n,

it follows thaté cannot be surjective, because its image has null meassfe(see
[23, §2, Captulo 6]). This concludes the proof. O

telf sel,

The differentiability of a map) defined in a non necessarily open subsdRbfmeans that the
mapty admits a differentiable extension to some open subset containing its domain.
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3.2.34. XAMPLE. The groupSO(1) is trivial, therefore it is simply con-
nected; the groupO(2) is isomorphic to the unit circl&® (see Example 3.2.27,
hence:

m1(SO(2)) = Z.
Forn > 3, Lemma 3.2.33 tells us that (S™) = 0, and so the long exact homotopy
sequence of the fibration (3.2.30) becomes:

0 — m1(SO(n), 1) == m (SO(n +1),1) — 0

wherei, is induced by the inclusion: SO(n) — SO(n + 1); it follows that
71 (SO(n)) is isomorphic tor; (SO(n + 1)). We will show next thair; (SO(3)) =
Z+, from which it will then follow that

ﬂl(SO(n)) gZQ, 7123.
Consider the inner produgtin the Lie algebrau(2) defined by
g(X,Y) =tr(XY™), X,Y €su(2),

whereY ™ denotes here the conjugate transpose of the meteaxdtr(U) denotes
the trace of the matrik/; consider theadjoint representationf SU(2):

(3.2.32) Ad: SU(2) — SO(su(2),9)

given by Ad(A) - X = AXA~!for A € SU(2), X € su(2); itis easy to see
that the linear endomorphisthd(A) of su(2) is actuallyg-orthogonal for every
A € SU(2) and that (3.2.32) is a Lie group homomorphism. Cle&®)(su(2), g)
is isomorphic tdSO(3).

An explicit calculation shows thder(Ad) = {Id, —Id}, and since the do-
main and the counterdomain of (3.2.32) have the same dimension, it follows that
the image of (3.2.32) is an open subgroubof(su(2), g); sinceSO(su(2), g) is
connected (Example 3.2.27), we conclude that (3.2.32) is surjective, and so it is
a covering map. SincBU(2) is simply connected (Example 3.2.25), it follows
from Example 3.2.21 that, (SO(3)) = Zs, keeping in mind the action df, =
{Id, —Id} on SU(2) by translation. The non trivial element of(SO(3), 1) coin-
cides with the homotopy class of any loop of the fokroy, wherey: I — SU(2)
is a curve joiningd and—Id.

3.2.35. XaMPLE. The diffeomorphism (3.2.31) shows that the inclusianh
SO(n) into GL4 (n, IR) induces an isomorphism:
(3.2.33) i,: m1(S0(n),1) — m (GL4 (n, R),1).
It follows from Example 3.2.34 that;(GL,(n, R)) is trivial for n = 1, itis
isomorphic toZ for n = 2, and it is isomorphic t&. for n > 3.

3.2.36. xamMPLE. We will now look at the symplectic groupp(2n, IR) and
we will show that it is connected for every> 1. Letw be the canonical symplec-
tic form of IR?" and letA_. be theGrassmannian of oriented Lagrangianéthe
symplectic spacélR?", w), that is:

Ay = {(L, O) : L C IR*" is Lagrangian, and is an orientation OL}.
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We have an action of the symplectic grofip(2n, IR) on the setA given by
To(L,O)=(T(L),0"), where?'is the unique orientation &f (L) that makes
T|r : L — T(L) positively oriented.

By Remark 1.4.29, we have that the restriction of this action to the unitary
groupU(n) is transitive. Consider the Lagrangidg = R™ & {0} and letO be
the orientation of.y corresponding to the canonical basidiff; then, the isotropy
group of (Lg, O) relative to the action otj(n) is SO(n). The isotropy group of
(Lo, O) relative to the action ofp(2n, IR) will be denoted bySp, (2n, IR, Lg).
In formulas (1.4.7) and (1.4.8) we have given an explicit description of the matrix
representations of the elementssef(2n, IR); using these formulas it is easy to see
thatSp_ (2n, IR, Lo) consists of matrices of the form:

A AS

(3.2.34) T = ( v

) , A€ GL4(n,R), Sn x nsymmetric matrix

whereA* denotes the transpose 4f It follows that we have a diffeomorphism:
(3.2.35) Sp,(2n, IR, Ly) > T +— (A, S) € GL4(n, IR) x Bgym(R")

whereA and S are defined by (3.2.34). We have the following commutative dia-
grams of bijections:

U(n)/SO(n) ! Sp(2n, R)/Sp, (2n, IR, Ly)
Ay

where the mapg; and 3, are induced respectively by the actionsiofr) and
of Sp(2n, IR) on A, andi is induced by the inclusioit U(n) — Sp(2n, IR) by
passage to the quotient; we have th#é a diffeomorphism. Hence, we have a
fibration:

(3.2.36)  p: Sp(2n,IR) — Sp(2n,IR)/Sp.(2n, IR, L) = U(n)/SO(n)

whose typical fiber iSp, (2n, IR, Ly) = GLy(n,R) x Bgyn(IR"). By Exam-

ple 3.2.28 this typical fiber is connected, and by Example 3.2.26 the base manifold
U(n)/SO(n) is connected. It follows now easily from the long exact homotopy se-
quence of the fibration (3.2.36) that the symplectic grpf®2n, IR) is connected.

3.2.37. XamMPLE. We will now show that the fundamental group of the sym-
plectic groupSp(2n, IR) is isomorphic tdZ. Using the exact sequence of the fibra-
tion (3.2.36) and the diffeomorphism (3.2.35), we obtain an exact sequence:

(3.2.37) m(GL4(n, R)) — m1(Sp(2n, R)) 2~ 71 (U(n)/SO(n)) — 0
where., is induced by the map: GL, (n, IR) — Sp(2n, IR) given by:

J(A) = ( ’g o > . AeGL.(n,RR).



3.3. SINGULAR HOMOLOGY GROUPS 91

We will show first that the map. is the null map; we have the following commu-
tative diagram (see (3.2.29) and (3.2.33)):

— T
(3.2.38) 71(SO(n)) m(U(n)) —— m (S

|

71 (GL4(n, IR)) — 71(Sp(2n, R))

where the unlabeled arrows are induced by includioh.simple analysis of the
diagram (3.2.38) shows that = 0.

Now, the exactness of the sequence (3.2.37) impliegthigtan isomorphism
of m1(Sp(2n, IR)) onto the groupr; (U(n)/SO(n)); let us compute this group.
Consider the quotient map:

q: U(n) — U(n)/S0(n);

we have thay is a fibration. We obtain a commutative diagram:

(32.39)  m(SO(n)) — m(U(n)) —— m (U(1)/SO(n)) — 0

= | detx
X\ l

7T1(Sl)

The upper horizontal line in (3.2.39) is a portion of the homotopy exact sequence
of the fibrationg; it follows that g, is an isomorphism. Finally, denoting hyhe
inclusion ofU(n) in Sp(2n, IR) we obtain a commutative diagram:

m1(Sp(2n, IR))

/\

[~}

T1(U( = (n)/SO(n))
from which it follows thati, is an isomorphism:

Z = m(U(n), 1) —— m(Sp(2n, R), 1).

3.3. Singular Homology Groups

In this section we will give a brief exposition of the definition and the basic
properties of the group of (relative and absolute) singular homology of a topologi-
cal spaceX ; we will describe the homology exact sequence of a pair of topological
spaces.

Forallp > 0, we will denote by(e;)Y_, the canonical basis dR? and bye, the
zero vector of[RP; by IR we will mean the trivial spac€0}. Observe that, with
this notations, we will have a small ambiguity due to the fact that, ¥ p > i,

2The inclusion ofU(n) into Sp(2n, IR) depends on the identification ofx n complex matrices
with 2n x 2n real matrices; see Remark 1.2.9.
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the symbok; will denote at the same time a vector&F and also a vector aRR?;
however, this ambiguity will be of a harmless sort and, if necessary, the reader may
consider identificationd° ¢ R' C IR?> C --- C IR*°.

Givenp > 0, thep-th standard simpleis defined as the convex hul, of the
set{e;}?_, in IRP; more explicitly:

p p »
Ap: {Zizotiei : Zi:oti =11t >0, ZZO,.-.,p}.

Observe that\ is simply the poin{0} andA; is the unit intervall = [0, 1]. Let
us fix some terminology concerning the concepts related to free abelian groups:

3.3.1. DEFINITION. If G is an abelian group, thentmsis of G is a family
(ba)aca such that every € G is written uniquely in the forny = > _ 4 naba,
where each,, is in Z andn, = 0 except for a finite number of indices € A.
If G’ is another abelian group, then a homomorphism G — G’ is uniquely
determined when we specify its values on the elements of some baSis Ah
abelian group that admits a basis is said tdrbe

If A is any set, thdéree abelian group 4 generated byA is the group of all
“almost zero” mapsV : A — Z, i.e., N(a) = 0 except for a finite number of
indicesa € A; the sum inG 4 is defined in the obvious way(N; + Ns)(«a) =
Ni(a) + Na2(a). We then identify each € A with the functionV,, € G 4 defined
by N, (o) = 1 andN,(5) = 0 for everys # a. Then,G,, is indeed a free abelian
group, and4 C G 4 is a basis of7 4.

3.3.2. EeFINITION. Forp > 0, asingularp-simplexis an arbitrary continuous

map:
T: A, — X.

We denote byS,(X) the free abelian group generated by the set of all singular
p-simplexes inX; the elements ii®, (X ) are calledsingularp-chains

If p = 0, we identify the singulap-simplexes inX with the points ofX, and
So(X) is the free abelian group generated ¥y If p < 0, our convention will be
thatS,(X) = {0}.

Each singulap-chain can be written as:

c= Z np - T,

T singular
p-simplex
whereny € Z andnp = 0 except for a finite number of singularsimplexes; the
coefficientsn are uniquely determined hy
Given a finite dimensional vector spakeand giveny,...,v, € V, we will
denote by/(vy, ..., v,) the singulap-simplex inV" defined by:

(331) E(UU,... a%})(i%@) = itivi,
1=0 =0

3An abelian group is @-module, and our definition of basis for an abelian group coincides with
the usual definition of basis for a module over a ring.
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where eachy; > 0 and>_?_,¢; = 1; observe that(vy, . .., v,) is theunique affine
function that takes; into v; for everyi =0, ..., p.
For eacty € Z, we will now define a homomorphism:

Op: 6p(X) — Gp_1(X).
If p < 0we setd, = 0. Forp > 0, sinceS,(X) is free, it suffices to defing, on

a basis 0f5,(X); we then definé, (1) whenT is a singulap-simplex in X by

setting:
p

0p(T) =Y (1) Tolleq,...,6,...,ep),
i=0
wheree; means that the term is omitted in the sequence.

For eachi = 0,...,p, the image of the singulafp — 1)-simplex in IRP
l(eo,...,€;,...,ep) Can be visualized as the face of the standard simpgx
which isoppositeto the vertexe;.

If c € &,(X) is a singulap-chain, we say thal, (c) is its boundary observe
thatif 7" : [0, 1] — X is a singular-simplex, therd; (T") = T'(1) — T°(0).

We have thus obtained a sequence of abelian groups and homomorphisms
(3.3.2) L G, (X) 2 6, () 2

The sequence (3.3.2) has the property that the composition of two consecutive
arrows vanishes:
3.3.3. LEMMA. Forall p € Z, we haved,_1 0 9, = 0.

ProOF If p <1 the resultis trivial; for the case > 2 it suffices to show that
0p—1(0p(T)) = 0 for every singulap-simplexT'. Observing that
l(vg,...,vg) 0 l(eg,... € ...,eq) =L(vo,...,0j,...,0q)
we compute as follows:
0p1(0p(T)) =Y (1) Tol(eo,....E,....6,. .. ep)
j<i
+ Y (-1 T o leg, . 6y 6y ep) =0, O
J>i
Let us give the following general definition:
3.3.4. DEFINITION. A chain complesxs a family& = (&, 6,),cz Where each

¢, is an abelian group, and eagh: ¢, — &,_; is a homomorphism such that
dp—1 © 6, = 0 for everyp € Z. For eaclp € Z we define:

Zp(€) = Ker(0p), Bp(€) = Im(dp41),

and we say tha¥, (<), B,(¢) are respectively thgroup ofp-cyclesand thegroup
of p-boundariesof the complext. Clearly, B,(¢) C Z,(<), and we can therefore
define:

Hy(€) = Z,(€)/ Bp(€);
we say that,(<) is thep-th homology groupf the complext.
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If ¢ € Z,(€) is ap-cycle, we denote by + B,(¢) its equivalence class in
H,(€); we say that + B, (€) is thehomology classletermined by:. If ¢1,¢c; €
Z,(€) determine the same homology class (that is; if c2 € B,(¢)) we say that
c1 andcy arehomologougycles.

Lemma 3.3.3 tells us thad(X) = (6,(X),0,)pez is @ chain complex; we
say thatS(X) is thesingular complexf the topological spac&’. We write:

Zp(6(X)) = Zp(X), By(6(X)) = By(X), Hp(S6(X))=Hy(X);
and we callZ,(X), B,(X) andH,(X) respectively thgroup of singulap-cycles
the group of singularp-boundariesand thep-th singular homology groupof the
topological space&.

Clearly, H,(X) = 0for p < 0 andHy(X) = &¢(X)/Bo(X).

We define a homomorphism

(3.3.3) £:69(X) —Z

by settinge(x) = 1 for every singulai0-simplexxz € X. It is easy to see that
e 0 01 = 0; for, it suffices to see that(0; (1)) = 0 for every singulad-simplexT’
in X. We therefore obtain a chain complex:

S,(X) 2 e, (x) 2L

8P+1
(3.3.4)

--8—1>60(X)L>Z—>0—>---

3.3.5. BEFINITION. The homomorphism (3.3.3) is called thegmentation
map of the singular complex5(X); the chain complex in (3.3.4), denoted by
(6(X),e) is called theaugmented singular complekthe spaceX. The groups of
p-cycles, ofp-boundaries and the-th homology group of S(X), ) are denoted
by Z,(X), B,(X) andH,(X) respectively; we say thaf,(X) is thep-th reduced
singular homology groupf X.

Clearly, forp > 1 we have:

ZP(X) = Zp(X)a BP(X) = Bp(X)u Hp(X) = HP<X>'
From now on we will no longer specify the indgxn the operatot),,, and we will
write more concisely:
Op=0, pel.

3.3.6. XAMPLE. If X = () is the empty set, then obvious, (X) = 0 for
everyp € Z, henceH,(X) = 0 for everyp, andﬁp(X) = 0 for everyp # —1; on
the other hand, we havié_; (X) = Z.

If X is non empty, then any singul@rsimplexxy € X is such that(zg) =
1, and soe is surjective; it follows thatd_,(X) = 0. Concerning the relation

betweenH,(X) and Hy(X), it is easy to see that we can identifiy(X) with a
subgroup off{y(X ), and that

Ho(X) = Ho(X)®Z- (z0 + Bo(X)) = Ho(X) & Z,

whereZ- (xo+ By(X)) is the subgroup (infinite cyclic) generated by the homology
class ofzg in Hy(X).
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3.3.7. xampPLE. If X is arc-connected and not empty , then any two singular
0-simplexesrg, 21 € X are homologous; indeed,f : [0, 1] — X is a continuous
curve fromzg to z1, thenT is a singularl-simplex andT = z1 — z¢ € By(X).

It follows that the homology class of anyy, € X generatediy(X), and since
e(xo) = 1, it follows that no non zero multiple af, is a boundary; therefore:

Ho(X)=1Z, HyX)=0.

3.3.8. XAMPLE. If X is not arc-connected, we can wrife = J 4 Xa,
where eaclX, is an arc-connected componentdf Then, every singular simplex
in X has image contained in som&, and therefore:

GP(X) - @ GP(XQ)7
acA
from which it follows that:
Hy(X) = P Hp(Xa).
acA
In particular, it follows from Example 3.3.7 that:
Hy(X) =Pz
acA
The reader should compare this fact with Remark 3.2.5.
3.3.9. XxaMPLE. Suppose thak C IR" is a star-shaped subset around the

pointw € X. For each singulap-simplex?7' in X we define a singulafp + 1)-
simplex|[T’, w] in X in such a way that the following diagram commutes:

IxA,

Apt1 —>[T,w} X
wheres andr are defined by:
o(s,t)=(1—=s)t+sepr1, 7(s,8)=(1—-95)T(t)+sw, teAy sl

geometrically, the singulaip + 1)-simplex[7’, w] coincides withT" on the face
A, C Ay, ittakes the vertex,; onw and it is affine on the segment that joins
t with e, 1 for everyt € A,,.

The mapI’ — [T, w] extends to a homomorphism:

Sp(X) 3 c— [, w] € Sppa(X).
It is easy to see that for each singutachainc € &,(X) we have:
_1\ptl1 >
(3.3.5) D, w] = {[307 w]+ (=1)P* e, p>1
E(C)’U} - ¢, p= 0,

for, it suffices to consider the case that T is a singulap-simplex, in which case
(3.3.5) follows from an elementary analysis of the definitiofTfw| and of the
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definition of the boundary operator. In particular, we haje w] = (—1)P*1cfor
everyc € Z,(X) and therefore € B,(X); we conclude that, iX is star shaped,
then i

Hy(X)=0, peZ

3.3.10. CEFINITION. Let€ = (€}, 0,), € = (&, 4,) be chain complexes; a
chain map ¢: € — ¢’ is a sequence of homomorphisms: ¢, — C;, p € Z,
such that for every the diagram

5
¢, —— ¢,

o | [ 01

commutes; in general, we will writg rather thanp,,. It is easy to see that i is
a chain map, then(Z,(¢)) C Z,(¢') and¢(B,(€)) C B,(¢'), so thatp induces

by passage to quotients a homomorphism
Gx: Hp(€) — Hp(cl)Q
we say thatp, is themap induced in homolodyy the chain map.

Clearly, if¢: € — ¢ andy: ¢ — ¢” are chain maps, then also their com-
positiony o ¢ is a chain map; moreovefy) o ¢). = 1. o ¢., and ifId is the
identity of the compleg, i.e.,1d,, is the identity of¢, for everyp, thenld, is the
identity of H,(¢) for everyp. It follows that if ¢ is achain isomorphismi.e., ¢,
is an isomorphism for every, theng, is an isomorphism between the homology
groups, andg ). = (¢.) .

If X,Y are topological spaces arfd: X — Y is a continuous map, then for
eachp we define a homomorphism:

fa 2 6p(X) — 6,p(Y)
by settingf4(T)) = f o T for every singulap-simplexT" in X. It is easy to see
that f. is a chain map; we say thd, is thechain map induced by. It is clear
that, given continuous mags X — Y, g: Y — Zthen(go f)x = g4 o fy, and
that if Id is the identity map ofX, thenId is the identity of& (X ); in particular,
if fis a homeomorphism, thefy, is a chain isomorphism, ar{d 1) = (fx)~'.
We have that the chain maf. induces a homomorphism

Je: Hp(X) - Hp(Y)

between the groups of singular homologyX6fandY’, that will be denoted simply
by f..

3.3.11. EMARK. If A is a subspace ok, then we can identify the set of
singularp-simplexes inA with a subset of the set of singularsimplexes inX;
thenS,(A) is identified with a subgroup of,(X). If i: A — X denotes the
inclusion, theri is simply the inclusion 06, (A) into &,,(X). However, observe
that the induced map in homologyis in generahot injective and there exists no
identification of 4, (A) with a subgroup of{,(X).
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Recall that X, A) is called a pair of topological spaces wh¥rnis a topological
space andd C X is a subspace. We define thimgular complexS (X, A) of the
pair (X, A) by setting:

Sp(X, A) = 6,(X)/6,(A);

the boundary operator @ (X, A) is defined using the boundary operato&(fX )
by passage to the quotient. Clea® X, A) is a chain complex; we write

H,(6(X,A)) = Hy(X, A).
We call H,(X, A) thep-th group of relative homology of the paiX, A).
If f: (X,A)— (Y, B) is amap of pairs (Definition 3.2.8) then the chain map
f4 passes to the quotient and it defines a chain map
f#:6(X,A) — &(Y, B)

that will also be denoted by.; then f. induces a homomorphism between the
groups of relative homology, that will be denoted fiy Clearly, if f: (X, A) —
(Y,B) andg: (Y, B) — (Z,C) are maps of pairs, thefy o f)x = g4 o f4 and
that if Id is the identity map ofX, thenlIdy is the identity of&(X, A); also, if

f: (X, A) — (Y, B) is ahomeomorphism of pairse., f is a homeomorphism of
X ontoY with f(A) = B, thenfy is a chain isomorphism.

3.3.12. EMARK. An intuitive way of thinking of the groups of relative ho-
mology H,,(X, A) is to consider them as the reduced homology graipeX /A)
of the spaceX /A which is obtained fromX by collapsingall the points ofA to
a single point. This idea is indeed a theorem that holds in the casd taiX is
closed and it is @eformation retracbf some open subset 6f. The proof of this
theorem requires further development of the theory, and it will be omitted in these
notes (seedl, Exercise 2§39, Chapter 4]).

3.3.13. XAMPLE. If A is the empty set, the® (X, A) = &(X), and there-
fore H,(X, A) = Hy(X) for everyp € Z; for this reason, we will not distinguish
between the spack and the paif X, ().

3.3.14. XAMPLE. The identity map ofX induces a map of pairs:
(3.3.6) q: (X,0) — (X, A);
thengy: 6(X) — &(X, A) is simply the quotient map. We define

Zy(X,4) = ;' (Z,(S(X, 4))),  By(X,A) = a; (B,(S(X, 4)));

we call Z,(X, A) and B, (X, A) respectively thgroup of relativep-cyclesand the
group of relativep-boundariesof the pair(X, A). More explicitly, we have

Zp(X,A) = {c € (X)) : c € §)-1(A)} = 07 (6,-1(A)),

By(X,A)={0c+d:ceSp(X), deSp(A)} = By(X) + S,(A);
Observe that

Z,(8(X, A)) = Z,(X, A)/G,(A),  By(S(X, A)) = By(X, A)/6,(A);



98 3. ALGEBRAIC TOPOLOGY

it follows from elementary theory of quotient of groups that:
(337)  H(X,A) = Hy(&(X, A)) = Z,(X, A)/B,(X, A).

Givenc € Z,(X, A), the equivalence class+ B, (X, A) € H,(X,A) is called
thehomology class determined byn H, (X, A); if ¢1,c2 € Z,(X, A) determine
the same homology class #f,(X, A), i.e., ifc; — c2 € B, (X, A), we say that,
andc; arehomologous ir6 (X, A).

3.3.15. XAMPLE. If X is arc-connected and # (), then arguing as in Exam-
ple 3.3.7 we conclude that any twesimplexes inX are homologous i® (X, A);
however, in this case every point dfis a singulaf-simplex which is homologous
to0in &(X, A), hence:

Hy(X,A)=0.

If X is not arc-connected, then we wrifé¢ = UaeA X., where eachX, is an
arc-connected component af; writing A, = A N X,, as in Example 3.3.8 we
obtain:

GP(Xﬂ A) - @ 6P(XOHACV)§
acA
and it follows directly that:

Hy(X, A) = @ Hy(Xa, Aa).
acA
In the case = 0, we obtain in particular that:
Hy(X,A) = P z,
acA’
where A’ is the subset of indices € A such that4,, = 0.

Our goal now is to build an exact sequence that relates the homology groups
H,(X) andH),(A) with the relative homology groupd, (X, A).

3.3.16. DEFINITION. Given chain complexes, ©, £, we say that

(3.3.8) 0—ec-p Y g0
is ashort exact sequenad chain complexes i and are chain maps and if for
everyp € Z the sequence of abelian groups and homomorphisms

0—¢, 29,8 —0

is exact.
We have the following result of Homological Algebra:

3.3.17. LEMMA (The Zig-Zag Lemma) Given a short exact sequence of chain
complexe$3.3.8) there exists an exact sequence of abelian groups and homomor-
phisms:

6* * * 5* *
(3.3.9) -+ -2 H,(€) -2 HL(®) —2 H(E) 2 H, g (€) 2 -
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whereg¢, and, are induced by) and+) respectively, and the homomorphign
is defined by:

(3.3.10) 6:(e+ Byp(€)) =c+ Bp1(€), €€ Zy(E),

wherec € €,_; is chosen in such a way thatc) = dd andd € ©, is chosen in
such a way that)(d) = e; the definition(3.3.10)does not depend on the arbitrary
choices involved.

PROOF The proof, based on an exhaustive analysis of all the cases, is elemen-
tary and it will be omitted. The details can be found®1,[§24, Chapter 3]. O

The exact sequence (3.3.9) is known as ey exact homology sequence
corresponding to the short exact sequence of chain complexes (3.3.8)

Coming back to the topological considerationg,Xf, A) is a pair of topologi-
cal spaces, we have a short exact sequence of chain complexes:

(3.3.11) 0 — &(4) - 8(X) ¥ (X, 4) — 0

whereiy is induced by the inclusioit A — X andgqy is induced by (3.3.6).
Then, it follows directly from the Zig-Zag Lemma the following:

3.3.18. ROPOSITION Given a pair of topological spacgsX, A) then there
exists an exact sequence
(3.3.12) . A
O H(A) 2 HY(X) - H (X, A) -2 Hyy(A) 2 -
wherei, is induced by the inclusioin A — X, q. is induced by3.3.6)and the
homomorphisnd, is defined by:

0. (c+ By(X, A)) = dc+ By1(A), c€ Z,(X,A);

such definition does not depend on the choices involvetl Af() we also have an
exact sequence

(3.3.13)
Ox

o L (A) 2 (X)) 22 H (X, A) -2 Hy_y(A) s -
whose arrows are obtained by restriction of the corresponding arrows in the se-
quencg3.3.12)

PrROOF The sequence (3.3.12) is obtained by applying the Zig-Zag Lemma to
the short exact sequence (3.3.11) Al (), we replaceS(A) and&(X) by the
corresponding augmented complexes; we then apply the Zig-Zag Lemma and we
obtain the sequence (3.3.13). O

The exact sequence (3.3.12) is known asltimg exact homology sequence of
the pair (X, A); the sequence (3.3.13) is called tbaeg exact reduced homology
sequence of the paiX, A).
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3.3.19. XAMPLE. If A # () is homeomorphic to a star-shaped subseltf
then H,(A) = 0 for everyp € Z (see Example 3.3.9); hence, the long exact
reduced homology sequence of the géir, A) implies that the map:

ez Hy(X) — Hy(X, A)
is an isomorphism for eveny € Z.

Now, we want to show thBomotopical invariance of the singular homolggy
more precisely, we want to show that two homotopic continuous maps induce the
same homomorphisms of the homology groups. We begin with an algebraic defin-
ition.

3.3.20. DEFINITION. Let€ = (&), d,) ande’ = (&}, 4;,) be chain complexes.
Given a chain map,: € — ¢’ then achain homotopyetweeny and is a
sequencéD,) ez of homomorphismD,,: ¢, — &, such that
(3.3.14) Op — Yp = %H oD, + Dy_1 06y,
for everyp € Z; in this case we writdD: ¢ = ¢ and we say thap and are
chain-homotopic

The following Lemma is a trivial consequence of formula (3.3.14)

3.3.21. LEmMMA. If two chain maps andv are chain-homotopic, the# and
1 induce the same homomorphisms in homology,d.e= .. O

Our next goal is to prove that jf andg are two homotopic continuous maps,
then the chain mapfgy andgy are chain-homotopic. To this aim, we consider the
maps:

(3.3.15) ix: X—>IxX, jx: X—->1IxX
defined byix (z) = (0,z) andjx(z) = (1,z) for everyx € X, wherel = [0, 1].
We will show first that the chain magsx ), and(jx ) are chain-homotopic:

3.3.22. LEMMA. For all topological spaceX there exists a chain homotopy
Dx: (ix)# = (jx)# Whereiy and jx are given in(3.3.15) moreover, the asso-
ciation X — Dx may be chosen in maturalway, i.e., in such a way that, given a
continuous mag': X — Y, then the diagram

&,(x) 2 &, (1 x X)

(3.3.16) e | | caaxnn,

&p(Y) —— &,1(IxY)
(Dy)p
commutes for every € Z, whereld x f is given by(t, z) — (t, f(x)).

PROOF For each topological spacé and eaclp € Z we must define a ho-
momorphism

(Dx)p: Gp(X) — Gpr1(I x X);
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for p < 0 we obviously se{Dy), = 0. Forp > 0 we denote byld, the iden-
tity map of the space),; thenld, is a singularp-simplex inA,, and therefore
Id, € 6,(A,). The construction oDy must be such that the diagram (3.3.16)
commutes, and this suggests the following definition:

(3.3.17) (Dx)p(T) = ((1d x T)4)p © (Da,)p(1dy),

for every singulap-simplexT': A, — X (observe thai’y(Id,) = T'); hence, we
need to find the correct definition of

(3.3.18) (Da,)p(dy) = ap € Spi1(I x Ap),

for eachp > 0. Keeping in mind the definition of chain homotopy (see (3.3.14)),
our definition ofa,, will have to be given in such a way that the identity

(3.3.19) dap = (in,)#(1dp) — (ja,)#(1dp) = (Da,)p—1 0 9(1dy)

be satisfied for every > 0 (we will omit some index to simplify the notation);
observe that (3.3.19) is equivalent to:

(3.3.20) da, = in, —Jn, — (DAp)pfl o a(Idp).

Let us begin by finding, € &1(1 x Ap) that satisfies (3.3.20), that isy must

satisfydag = ia, — ja,; We compute as follows:

e(ing — ja,) = 0.
Since Hy(I x Ag) = 0 (see Example 3.3.9) we see that it is indeed possible to
determinexg with the required property.

We now argue by induction; fix > 1. Suppose that, € &,1(I x A,) has
been found fop = 0, ..., — 1 in such a way that condition (3.3.20) be satisfied,
where(Dx), is defined in (3.3.17) for every topological spateit is then easy to
see that the diagram (3.3.16) commutes. An easy computation that uses (3.3.16),
(3.3.18) and (3.3.20) shows that:

(3.3.21) ((ix)4), = ((x)4), =00 (Dx)y + (Dx)p-1 00,

forp=0,...,r—1.
Now, we need to determing. that satisfies (3.3.20) (with = r). It follows
from (3.3.21), where we séf = A, andp = r — 1, that:
(3.3.22)
90 (Da,)r-1009(1dy)

= (in,)# © 0(d;) — (ja,)# © 0(Idy) — (Da, )r—2 0 00 0(Idy)

= 9(ia, — Jja,);
using (3.3.22) we see directly that
(3.3.23) in, —Ja, — (Da,)r—100(1d,) € Z.(I x A,;).

Since H,.(I x A,) = 0 (see Example 3.3.9) it follows that (3.3.23) is an
boundary; hence it is possible to choesesatisfying (3.3.20) (withp = r).
This concludes the proof. O

It is now easy to prove the homotopical invariance of the singular homology.
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3.3.23. RopPosITION If two continuous mapg, g : X — Y are homotopic,
then the chain mapg, and g, are homotopic.

PROOF Let H: f = ¢ be a homotopy betweefi e g; by Lemma 3.3.22
there exists a chain homoto@yx: ix = jx. Then, it is easy to see that we
obtain a chain homotopy betwe¢n andg. by considering, for each € Z, the
homomorphism

(Hy)p+1 0 (Dx)p: 6p(X) — Spya(Y). g
3.3.24. ®ROLLARY. If f,¢g: X — Y are homotopic, therf, = g..
PrROOEF It follows from Proposition 3.3.23 and from Lemma 3.3.21. O

3.3.1. The Hurewicz's homomorphism.In this subsection we will show that
the first singular homology grouff; (X) of a topological spac& can be com-
puted from its fundamental group; more preciselyXifis arc-connected, we will
show thatH; (X)) is theabelianized groupf m (X).

In the entire subsection we will assume familiarity with the notations and the
concepts introduced in Section 3.1; we will consider a fixed topological sface

Observing that the unit intervdl = [0, 1] coincides with the first standard
simplexA;, we see that every curvee Q(X) is a singular-simplex inX; then,

v € 61(X). We will say that two singulat-chainsc, d € &1(X) arehomologous
whenc — d € B;(X); this terminology will be used also in the case thaindd
are not necessarily cyclés.

We begin with some Lemmas:

3.3.25. LEMMA. Lety € Q(X) and leto : I — I be a continuous map. If
0(0) =0ando(1) = 1, theny o o is homologous te; if 0(0) = 1ando(1) =0,
then~ o ¢ is homologous te-~.

PROOF We suppose first that(0) = 0 ando (1) = 1. Consider the singular
1-simplexesr and/(0, 1) in I (recall the definition of in (3.3.1)). Clearlyﬁ(a —
£(0,1)) = 0, i.e.,0 — £(0,1) € Z1(I); sinceH;(I) = 0 (see Example 3.3.9) it
follows thato — ¢(0, 1) € B;(I). Consider the chain map

Y4 6(I) — 6(X);
we have thatyy (o — ¢(0,1)) € B1(X). But

Y4 (0 —£(0,1)) =voo — v € Bi(X),
from which it follows thaty is homologous tey o 0. The caser(0) =1,0(1) =0
is proven analogously, observing that- ¢(0,1) € Z1(1). O

3.3.26. EMARK. In some situations we will consider singuliachains given
by curvesy: [a,b] — X thatare defined on an arbitrary closed intefuab] (rather
than on the unit interval); in this case, with a slight abuse, we will denoteby
S1(X) the singular-simplexy o ¢(a,b): I — X; it follows from Lemma 3.3.25
that~y o ¢(a, b) is homologous to any reparameterizatipn o of v, whereo: I —
[a, b] is a continuous map such thaf0) = a ando (1) = b (see also Remark 3.1.4).

4Observe that a singularchainc defines a homology class i (X) onlyif c € Z1(X).
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3.3.27. LEMMA. If v, u € Q(X) are such thaty(1) = u(0), theny - i is ho-
mologous toy + 1; moreover, for every € Q(X) we have that~! is homologous
to —y and for everyry € X, o,, is homologous to zero.

ProOF We will basically use the same idea that was used in the proof of
Lemma 3.3.25. We have th&{0, 5) + ¢(3,1) — £(0,1) € Zi(I) = By(I);
considering the chain map - 1) we obtain:

(7 1) (000, 3) +€(5,1) = £(0,1)) =7 + p— 7 - p € Bi(X),

from which it follows thaty - 1 is homologous toy + ;. The fact thaty=! is
homologous to-~ follows from Lemma 3.3.25; finally, iff": A, — X denotes
the constant map with value), we obtaindT" = o, € B;(X). O

3.3.28. LEMMA. Let K : I x I — X be a continuous map; considering the
curves:

71 =K 0£((0,0),(1,0)), ~2=Ko£((1,0),(1,1)),
3 =K o0((1,1),(0,1)), ~1=Ko£((0,1),(0,0)),
we have that the singuldrchainy; + v2 + 73 + 74 is homologous to zero.
PROOF We have thafi; (I x I) = 0 (see Example 3.3.9); moreover
£((0,0),(1,0)) + £((1,0),(1,1)) +£((1,1),(0,1))
+£((0,1),(0,0)) € Z1(I x I) = By (I x I).
The conclusion follows by applying to (3.3.24). O

(3.3.24)

We now relate the homotopy class and the homology class of a eurze
Q(X).

3.3.29. ®ROLLARY. If v, u € Q(X) are homotopic with fixed endpoints, then
~ is homologous tg.

PrROOEF It suffices to apply Lemma 3.3.28 to a homotopy with fixed endpoints
K: ~ = u, keeping in mind Lemma 3.3.27. O

3.3.30. EMARK. Let A C X be a subset; iff : I — X is a continuous
curve with endpoints i, i.e.,v(0),v(1) € A4, thendy € &y(A), and therefore
v € Z1(X, A) defines a homology class+ Bi(X, A) in Hi (X, A). It follows
from Lemma 3.3.28 (keeping in mind also Lemma 3.3.27) that &nd n are
homotopic with free endpoints iA (recall Definition 3.1.25) then andu define
the same homology class Hf; (X, A).

3.3.31. EMARK. If v, u are freely homotopic loops iX (see Remark 3.1.16)
then it follows easily from Lemma 3.3.28 (keeping in mind also Lemma 3.3.27)
that~ is homologous tqu.

We define a map:
(3.3.25) 0: Q(X) — 61(X)/B1(X)
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by setting®([y]) = v + B1(X) for everyy € Q(X); it follows from Corol-
lary 3.3.29 thato is well defined, i.e., it does not depend on the choice of the
representative of the homotopy clds$ € Q(X). Then, Lemma 3.3.27 tells us
that:

(3.3.26)
O] - [u) = 0] + (1), (™) =-6(hl), ©(ox]) =0,
for everyy, u € Q(X) with v(1) = u(0) and for everyzy € X. If v € Q(X) is

aloop, theny € Z;(X); if we fix o € X, we see tha® restricts to a map (also
denoted byo):

(3327) @Z7T1(X,$0) —>H1(X)

It follows from (3.3.26) that (3.3.27) is a group homomorphism; this homomor-
phism is known as thélurewicz's homomorphismThe Hurewicz's homomor-
phism isnatural in the sense that, given a continuous mapX — Y with
f(zo) = yo, the following diagram commutes:

(X, 20) —— Hy(X)

| |

(Y, y0) — Hy(Y)

If \: I — X is a continuous curve joining, andz1, then the Hurewicz's ho-
momorphism fits well together with the isomorphism between the fundamental
groupsm (X, xg) andr1 (X, z1) (see Proposition 3.1.11); more precisely, it fol-
lows from (3.3.26) that we have a commutative diagram:

(3.3.28) m1(X, 20)

7T1<X,$ll'1)~

We are now ready to prove the main result of this subsection. We will first
recall some definitions in group theory.

3.3.32. EFINITION. If G is a group, theommutator subgroupf GG, denoted
by G, is the subgroup off generated by all the elements of the fogimy—'1h !,
with g,k € G. The commutator subgrou@’ is always a normal subgrotipf
G, and therefore the quotiedt/G’ is always a group. We say that/G’ is the
abelianized groupf G.

The groupG /G’ is always abelian; as a matter of factsffis a normal sub-
group of G, then the quotient grou@'/ H is abelian if and only ifd > G'.

5actually, the commutator subgroG of G is invariant by every automorphisof G.
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3.3.33. THEOREM. Let X be an arc-connected topological space. Then, for
everyry € X, the Hurewicz's homomorphis(8.3.27)is surjective, and its kernel
is the commutator subgroup of (X, x(); in particular, the first singular homology
group H; (X) is isomorphic to the abelianized groupof( X, ).

PROOF Since the quotient; (X, zg)/Ker(©) = Im(O) is abelian, it follows
that Ker(©) contains the commutator subgroup(X, zo)’, and therefore® de-
fines a homomorphism by passage to the quotient:

0: m (X, 20)/m1(X, 20) — H1(X);

our strategy will be to show th& is an isomorphism.
For eachz € X, choose a curve, € Q(X) such thatn,(0) = zo and
n.(1) = x; we are now going to define a homomorphism

U: G1(X) — m(X,20)/m1 (X, 20);

sincer; (X, zo)/m (X, o) is abelian and the singuldrsimplexes ofX form a
basis of&; (X)) as a free abelian groug, is well defined if we set

Y(7) = q(lnyo)] - B - [yw] ™), v € Q(X),
whereq denotes the quotient map
q: ™1 (X, x0) — m1 (X, 20)/m1 (X, 20)".

We are now going to show that; (X)) is contained in the kernel of; to this aim,
it suffices to show that)(9T) is the neutral element of; (X, zo) /71 (X, zo)’ for
every singulag-simplexT in X. We write:

(3.3.29) oT = v — 7 + 72,

whereyy = T o £(e1,e2), 71 = T o l(eg, e2) andye = T o £(eg, e1). Applying ¥
to both sides of (3.3.29) we obtain:

U(OT) = (o) ¥ (1) "W (y2)
= q([nr(en] - hol - ]~ el - nrgen] ™)-

Vr\]lriting [p] = [€(er,e2)] - [l(e2,e0)] - [€(en,e1)] € Q(A2) then (3.3.30) implies
that:

(3.3.30)

V(OT) = q([nr(en)] - Tel[o]) - Irr(en) ™)
since[p] € m1(Aqg, e1), we have thalp] = [o., ] (See Example 3.1.15), from which
it follows W(9T) = q([04,])-
Then, we conclude thaB;(X) C Ker(¥), from which we deduce tha¥
passes to the quotient and defines a homomorphism
U: &1(X)/B1(X) — m(X,30)/m1 (X, 20)".

The strategy will now be to show that the restrict@ml( x) Is an inverse fo®.
Let us comput@® o ¥; for v € Q(X) we have:

(©0)(7) = O([ny0)]) + O(I]) — Ol w)])

(3.3.31)
= Ny0) +7 — My1) + B1(X).
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Define a homomorphism: Go(X) — &1(X) by settingp(z) = n, for every
singular0-simplexz € X; then (3.3.31) implies that:

(3.3.32) QoW =po(Id—¢od),

wherep: &1(X) — 61(X)/B1(X) denotes the quotient map ahtidenotes the
identity map ofS; (X). If we restricts both sides of (3.3.32) £ (X ') and passing
to the quotient we obtain:

Let us now computd o ©; for every loopy € €,,(X) we have:

(W0 0)(a(l]) = ¥() = a([nso))a()a([neo) ™ = a(l)),
observing thair; (X, o) /71 (X, zo)" is abelian. It follows that:
(W‘Hl(X)) o) @ = Id,
which concludes the proof. O

3.3.34. EMARK. If X is arc-connected angd (X) is abelian, it follows from
Theorem 3.3.33 that the Hurewicz’s homomorphism is an isomorphisi( &f, zo )]
onto H; (X); this fact “explains” why the fundamental groups with different base-
pointsm (X, x¢) and; (X, 1) can be canonically identified when the fundamen-
tal group of the space is abelian. The reader should compare this observation with
Remark 3.1.13 and with the diagram (3.3.28).

Exercises for Chapter 3

EXERCISE3.1. Prove that every contractible space is arc-connected.

EXeERcCISE3.2. Prove that a topological spagewhich is connected and lo-
cally arc-connected is arc-connected. Deduce that a connected (topological) mani-
fold is arc-connected.

EXERCISE 3.3. Lety € Q(X) be a loop and leh € Q(X) be such that
A(0) = v(0); show that the loops andA~! - v - \ are freely homotopic.

EXERCISE3.4. Letf,g: X — Y be homotopic mapsand léf : f = g be a
homotopy fromf to g; fix 2o € X and set\(s) = Hs(xo), s € I. Show that the
following diagram commutes:

m1(Y, f(z0))

e

1 (X, zo) = | Ap

e

m (Y, g(zo))
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EXERCISE3.5. A continuous map: X — Y is said to be &aomotopy equiv-
alenceif there exists a continuous magp Y — X such thaty o f is homotopic to
the identity map ofX and f o g is homotopic to the identity map af; in this case
we say that is ahomotopy inverstor f. Show that iff is a homotopy equivalence
thenf, : m1 (X, z9) — m1(Y, f(xp)) is an isomorphism for every, € X.

EXERCISE3.6. Show thatX is contractible if and only if the map : X —
{zo} is a homotopy equivalence.

EXERCISE 3.7. Prove that a homotopy equivalence induces an isomorphism
in singular homology. Conclude that, ¥ is contractible, ther{y(X) = Z and
H,(X) = 0foreveryp > 1.

EXERCISE3.8. If Y C X, a continuous map : X — Y is said to be a
retractionif r restricts to the identity map df’; in this case we say thaf is a
retract of X. Show that ifr is a retraction them,. : 71(X,z9) — 7 (Y, z) IS
surjective for every:y € Y. Show also that it is a retract ofX then the inclusion
mapi : Y — X induces an injective homomorphism: 71 (Y, z¢) — m1 (X, z¢)
foreveryzy € Y.

EXERCISE3.9. LetG, G4 be groups and : G; — G2 a homomorphism.

Prove that the sequente— G 7, G2 — 0 is exact if and only iff is an
isomorphism.

EXeERCISE3.10. Letp : E — B be a locally injective continuous map with
E Hausdorff and letf : X — B be a continuous map defined in a connected
topologlcal spacex. leenxo € X, ep € E, show that there exists at most one
mapf: X — Ewithpo f = f andf(:co) = eg. Show that ifp is a covering map
then the hypothesis th# is Hausdorff can be dropped.

EXERCISE3.11. LetX C IR? be defined by:
X = {(z,sin(l/z)): 2 >0} U ({O} x [—1, 1])

Show thatX is connected but not arc-connected; compute the singular homology
groups ofX.

EXERCISE3.12. Prove the Zig-Zag Lemma (Lemma 3.3.17).

EXERCISE3.13. LetG be a group and leff act on a topological spacg by
homeomorphisms. We say that such actioprigperly discontinuous for every
x € X there exists a neighborhoddof = such thayU N U = () for everyg # 1,
wheregU = {g -y : y € U}. Let be given a properly discontinuous actiondfn
X and denote byX/G the set of orbits otz endowed with the quotient topology.

e Show that the quotient map: X — X/G is a covering map with typical
fiberG.

e Show that, ifX is arc-connected, there exists an exact sequence of groups
and group homomorphisms:

0 — m(X) 2= 1 (X/G) — G — 0.



108 3. ALGEBRAIC TOPOLOGY

e If X is simply connected conclude that(X/G) is isomorphic toG.

EXERCISE3.14. LetX = IR? be the Euclidean plane; for eaghhn € Z let
9gm,n D€ the homeomorphism of given by:

gmn(@,y) = ((=1)"z +m,y +n).
SetG = {gm,n : m,n € Z}. Show that:
G is a subgroup of the group of all homeomorphismsof
e show thatX /G is homeomorphic to thKlein bottle
¢ show that the natural action @f in X is properly discontinuous; con-
clude that the fundamental group of the Klein bottle is isomorphi@;to
e show that is thesemi-direct produétof two copies ofZ;

e compute the commutator subgroup@fand conclude that the first sin-
gular homology group of the Klein bottle is isomorphiciab (Z/27Z).

ExXeERcCISE3.15. Prove that i\ andY are arc-connected, théf (X xY') =
Hy(X) @ Hy(Y).

EXERCISE3.16. Compute the relative homology grodp(D, 0D), whereD
is the unit disk{(x, y) € IR? : 22 + y* < 1} anddD is its boundary.

6Recall that a groufy is the (inner) semi-direct product of two subgroupsndK if G = HK
with H N K = {1} andK normal inG.



CHAPTER 4

The Maslov Index

4.1. Index of a Symmetric Bilinear Form

In this section we will define the index and the co-index of a symmetric bilinear
form; in finite dimension, these humbers are respectively the number of negative
and of positive entries of a symmetric matrix when it is diagonalized as in the
Sylvester Inertia Theorem (Theorem 4.1.10). We will show some properties of
these numbers.

In this Section)” will always denote aeal vector space, not necessarily finite
dimensional. Recall thds,, (V') denotes the space of symmetric bilinear forms
B :V xV — IR. We start with a definition:

4.1.1. DEFINITION. Let B € Byym(V); we say thatB is:
positive definitéf B(v,v) > 0forallv € V,v # 0;
positive semi-definité B(v,v) > 0forallv € V;
negative definitef B(v,v) < Oforallv € V,v # 0;
negative semi-definiié B(v,v) < O0forallv € V.
We say that a subspad® C V is positive with respect td, or B-positive if
Blw «w Is positive definite; similarly, we say th#it’ is negative with respect tB,
or B-negativeif By« is negative definite.
Theindexof B, denoted by:_(B), is defined by:

(4.1.1) n_(B) = sup {dim(W) : W is a B-negative subspace &f}.

The index ofB can be a non negative integer,oso. Theco-indexof B, denoted
by n(B), is defined as the index ef B:

n4y(B) =n_(—B).

Obviously, the co-index o3 can be defined as the supremum of the dimensions
of all B-positive subspaces df. When at least one of the numbers(B) and
n4(B) is finite, we define theignatureof B by:

sgn(B) =n4(B) — n_(B).
If B € Bsym (V) andW C V' is a subspace, then clearly:
(412) TL_(B‘WX{/V) < TL_(B), n+(B|wa) < n+(B)

The reader should now recall the definitionkefnelof a symmetric bilinear form
B, denoted byKer(B), and oforthogonal complemermdf a subspacé C V' with
respect toB, denoted byS+. Recall also thaf3 is said to benondegeneratéf
Ker(B) = {0}.

109



110 4. THE MASLOV INDEX

Observe that in Section 1.1 we have considered only finite dimensional vector
spaces, but obviously the definitions of kernel, orthogonal complement and nonde-
generacy make sense for symmetric bilinear forms defined on an arbitrary vector
spaceV. However, many results proven in Section 1.1 makessentialuse of
the finiteness of the vector space (see Example 1.1.12). For instance, observe that
a bilinear form is nondegenerate if and only if its associated linear operator

(4.1.3) V3ov+— Bv,-) eV*
is injective; ifdim (V) = +oo, this doesotimply that (4.1.3) is an isomorphism.

4.1.2. EFINITION. GivenB € By, (V), thedegeneracyf B, denoted by
dgn(B) is the possibly infinite dimension dfer(B). We say that a subspace
W C V is nondegenerate with respect & or also thatV is B-nondegeneratéf
B|w xw is nondegenerate.

4.1.3. XxampPLE. Unlike the case of the index and the co-index (see (4.1.2)),
the degeneracy of a symmetric bilinear foBris not monotonic with respect to the
inclusion of subspaces. For instanceVif= IR? and B is the symmetric bilinear
form:

(414) B((wl, yl), (1:2, yg)) = T1T2 — Y1Y2
thendgn(B) = 0; however, ifiW is the subspace generated by the ve¢tod),
we have:
dgn(Blwxw) = 1 > 0 = dgn(B).
On the other hand, iB is defined by

B((931,y1)7 ($2,y2)) = T172
and if W is the subspaces generated(lby0), then
dgn(Blwxw) =0 < 1 =dgn(B).

4.1.4. XAMPLE. If T : V; — V5 is an isomorphism and iB € Bgym(V1),
then we can consider the push-forwardfI’y (B) € Bgym(V2). Clearly, T maps
B-positive subspaces &f; into T (B)-positive subspaces &, and B-negative
subspaces df; into 7% (B)-negative subspaces b§; moreoverKer(Ty(B)) =
T (Ker(B)). Hence we have:

ny(Ty(B)) =ny(B), n_(Tw(B)) =n_(B), dgn(Ty(B))=dgn(B).

4.1.5. REMARK. It follows from Proposition 1.1.10 and from remark 1.1.13
that if W C V is afinite dimensionalB-nondegenerate subspace, thea- W &
W+, even in the case thdtm (V) = +oo.

Recall that ifi C V is a subspace, then thedimensiorof IV in V' is defined
by:
codimy (W) = dim(V/W);
this number may be finite even wheim (W) = dim(V') = +o00. The codimen-
sion of W in V' coincides with the dimension of any complementary subspace of
WinV.
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The following Lemma and its Corollary are the basic tool for the computation
of indices of bilinear forms:

4.1.6. LEMMA. LetB € By (V); if Z C V is a subspace df on whichB
is positive semi-definite, then:

n_(B) < codim,(Z).

PROOF If B is negative definite on a subspdég theniW N Z = {0}, and so
the quotient map : V' — V/Z takesIV isomorphically onto a subspace 6f~.
Hence dim(W) < codimy (Z). O

4.1.7. ®ROLLARY. Suppose thal’ = Z & W with B positive semi-definite
on Z and negative definite oW’; thenn_(B) = dim(W).

PROOF Clearly,n_(B) > dim(W).
From Lemma 4.1.6 it follows that_(B) < codimy (Z) = dim(W). O

4.1.8. REMARK. Note that every result concerning the index of symmetric
bilinear forms, like for instance Lemma 4.1.6 and Corollary 4.1.7, admits a cor-
responding version for the co-index of forms. For shortness, we will only state
these results in the version for the index, and we will understand the version for the
co-index. Similarly, results concerning negative (semi-)definite symmetric bilinear
forms B can be translated into results for positive (semi-)definite symmetric forms
by replacingB with —B.

4.1.9. ROPOSITION If B € By (V) andV = Z @ W with B positive
definite inZ and negative definite i/, thenB is nondegenerate.

PROOF Letwv € Ker(B); write v = vy + v_ withvy € Z andv_ € W.
Then:

(4.1.5) B(v,v4) = B(v4,v4) + B(v—,vy) =0,

(4.1.6) B(v,v-) = B(v4,v-) + B(v_,v_) = 0;

from (4.1.5) we get thaB(v4,v_) < O and from (4.1.6) we geB(vy,v_) > 0,
from which it follows B(vy,v_) = 0. Then, (4.1.5) implies, = 0 and (4.1.6)
impliesv_ = 0. O

4.1.10. THEOREM (Sylvester’s Inertia Theorem)Supposelim(V) = n <
+oo and let B € Bgym (V); then, there exists a basis df with respect to which
the matrix form ofB is given by:

IP OPX(] OPXT
(417) B ~ qup _Iq Oqu 3
O1"><p 07"><q Or
where0,« 3, 0 andI, denote respectively the zefiox 3 matrix, the zerax x «
matrix and thex x « identity matrix.

The number®, ¢ andr are uniquely determined by the bilinear forBy we

have:

(4.1.8) ny(B)=p, n_(B)=gq, dgn(B)=r.



112 4. THE MASLOV INDEX

PrROOF The existence of a basi$;)!" ; with respect to whichB has the
canonical form (4.1.7) follows from Theorem 1.1.14, after suitable rescaling of the
vectors of the basis. To prove thaty andr are uniquely determined by, i.e., that
they do not depend on the choice of the basis, it is actually enough to prove (4.1.8).

To this aim, letZ be the subspace generated by the vedbrg_, U (3 a—

and W the subspace generated W}f:;fH; thenV = Z ¢ W, B is positive
semi-definite inZ and negative definite il/. It follows from Corollary 4.1.7
thatn_(B) = dim(W) = ¢. Similarly, we getn,(B) = p. Itis easy to
see thater(B) is generated by the vectofs;}; , ., and we conclude that

dgn(B) =r. O

4.1.11. ®ROLLARY. LetB € Bgym(V), withdim(V') < 4o0. If gis aninner
product inV and if T € Lin(V) is such thatB = ¢(T",-), then the index (resp.,
the co-index) ofB is equal to the sum of the multiplicities of the negative (resp.,
the positive) eigenvalues @f, the degeneracy oB is equal to the multiplicity of
the zero eigenvalue @f.

PROOF SinceT is g-symmetric, there exists @orthonormal basis that diag-
onalizesI’, and this diagonal matrix has in its diagonal entries the eigenvalugés of
repeated with multiplicity. In such basis, the bilinear foBris represented by the
same matrix. After suitable rescaling of the vectors of the bakisill be given in
the canonical form (4.1.7); this operation does not change the signs of the elements
in the diagonal of the matrix that represests The conclusion now follows from
Theorem 4.1.10 O

4.1.12. XAMPLE. The conclusion of Corollary 4.1.11 holds in the more gen-
eral case of a matriX that represents in any basis; indeed, observe that any basis
is orthonormal with respect to some inner product/of Recall that thaletermi-
nantand thetrace of a matrix are equal respectively to the product and the sum of
its eigenvalues (repeated with multiplicity); in the calsei (V') = 2 it follows that
the determinant and the trace of a matrix that representsany basis determine
uniquely the numbers_(B), n,(B) anddgn(B).

4.1.13. LEMMA. Suppose thaB € By, (V) is positive semi-definite; then
Ker(B) ={v €V : B(v,v) = 0}.
PROOF Letv € V with B(v,v) = 0 and letw € V be arbitrary; we need to
show thatB(v, w) = 0. If v andw are linearly dependent, the conclusion is trivial;

otherwise,v andw form the basis of a two-dimensional subspacé/oh which
the restriction ofB is represented by the matrix:

(4.1.9) ( 5((52)) g((zzuv)) >

It follows from Corollary 4.1.11 (see Example 4.1.12) that the determinant of
(4.1.9) is non negative, that is:

B(v, w)2 < B(v,v)B(w,w) =0,
which concludes the proof. O
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4.1.14. ROLLARY. If B € By (V) is positive semi-definite and nondegen-
erate, thenB is positive definite. O

We now prove a generalized version of t@auchy—Schwarz inequalifpr
symmetric bilinear forms:

4.1.15. ROPOSITION LetB € By, (V') and vectorsy, w € V be given. We
have:

e if v, w are linearly dependent or if, w generate aB-degenerate two-
dimensional subspace, then

B(v,w)? = B(v,v)B(w, w);
e if v, w generate aB-positive or B-negative two-dimensional subspace,
then
B(v,w)? < B(v,v)B(w,w);
¢ if v, w generate a two-dimensional subspace whereas index equal to
1, then
B(v,w)? > B(v,v)B(w, w);
the above possibilities are exhaustive and mutually exclusive.

PROOF The case that andw are linearly dependent is trivial; all the others
follow directly from Corollary 4.1.11 (see also Example 4.1.12), keeping in mind
that the matrix that represents the restrictionBofo the subspace generateddy
andw is given by (4.1.9). O

4.1.16. DEFINITION. GivenB € By (V), we say that two subspaces and
V5 of V' areorthogonal with respect t&, or B-orthogonal if B(vy,v2) = 0 for all
v1 € Vi and allvy € Vo; a direct sum = Vi @ V5, with V4 andV, B-orthogonal
will be called aB-orthogonal decompositioof V.

4.1.17. LEMMA. Let B € By (V); if V = Vi @ V4 is a B-orthogonal de-
composition ol and if B is negative definite (resp., negative semi-definitgjjin
and inVs, thenB is negative definite (resp., negative semi-definitdyin

PROOE It is obtained from the following simple computation:
B(v1 + v, v1 + v2) = B(v1,v1) + B(va,v2), v1 € V1, va € Va. U

4.1.18. DEFINITION. GivenB € By (V), we say that a subspad€ C V
is maximal negative with respect 8 if 1V is B-negative and if it is not properly
contained in any otheB-negative subspace &f. Similarly, we say that?V c V'
is maximal positive with respect t8 if W is B-positive and if it is not properly
contained in any otheB-positive subspace df.

4.1.19. ®ROLLARY. LetB € By (V) andW C V be a maximal negative
subspace with respect #. Then, ifZ C V is a subspace which iB-orthogonal
to W, it follows thatB is positive semi-definite i#.

PrROOFE By Lemma 4.1.17, the sum of any non zdBenegative subspace of
Z with W would be aB-negative subspace &f that contains properly¥’. The
conclusion follows. O
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Observe that Corollary 4.1.19 can be applied wheiB) < +o0c andV is a
B-negative subspace withm(W) = n_(B).

4.1.20. ®ROLLARY. GivenB € By, (V), then
dim(V) = n4(B) + n_(B) + dgn(B).

PROOEF If either one of the numbers_ (B) or n_(B) is infinite, the result
is trivial. Suppose then that both numbers are finitejlletC V' be aB-negative
subspace withlim(1W) = n_(B) and letZ C V be aB-positive subspace with
dim(Z) = n4(B). By Proposition 4.1.9 we have th&t is nondegenerate in
Z ® W, and it follows from Remark 4.1.5 that

V=ZoWae(ZaoW)t

By Corollary 4.1.19, we have tha? is positive semi-definite and also negative
semi-definite i Z @ W)+, henceB vanishes i Z @ W)+. It follows now that
Ker(B) = (Z @ W), which concludes the proof. O

4.1.21. ®ROLLARY. If W C V is a maximal negative subspace with respect
to B € Bgym(V), thenn_(B) = dim(W).

PrRoOOF If dim(WW) = +o0 the result is trivial; for the general case, it follows
from Remark 4.1.5 thalt = W @ W. By Corollary 4.1.19,3 is positive semi-
definite inT/+, and then the conclusion follows from Corollary 4.1.7. O

4.1.22. EMARK. We can now conclude that the “supremum” that appears in
the definition of index in (4.1.1) is in factsraaximumi.e., there always exists a
B-negative subspadd’ C V with n_(B) = dim(W). If n_(B) is finite, this
statement is trivial. lin_(B) = +oo, it follows from Corollary 4.1.21 that no
finite-dimensional subspace Bfis maximal B-negative. If there were no infinite-
dimensionalB-negative subspace 6f, we could construct a strictly increasing
sequencéV; C W, C --- of B-negative subspaces; théh = | J,,~., W, would
be an infinite-dimensionab-negative subspace, in contradiction with the hypoth-
esis.

As a matter of facts, it follows from Zorn’s Lemma that every symmetric bilin-
ear form admits a maximal negative subspace (see Exercise 4.1).

4.1.23. RROPOSITION LetB € By (V); if V = Vi @ V, is a B-orthogonal
decomposition, then:

(4.1.10) n(B) = ng(Blvixwi) + 1y (Blvaxva)
(4111) n_(B) =n_ (B‘V1><V1) +n_ (B’V2><V2),
(4112) dgn(B) = dgn(B\Vlel) + dgn(B[vzva).

PROOF The identity (4.1.12) follows from
Ker(B) = Ker(Bl|v, xv;) ® Ker(B|v,x1z)-

Let us prove (4.1.11). I3 has infinite index inl/; or in V5 the result is trivial;
suppose then that these indices are finite. gtC V; be aB-negative subspace
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with n_(B|y,xv;) = dim(W;), i = 1,2. By Remark 4.1.5 we can find B-
orthogonal decompositiol;; = Z; @ W; it follows from Corollary 4.1.19 thaB
must be positive semi-definite ify. Then:

V = (W1 D WQ) D (Zl ©® ZQ),

where, by Lemma 4.1.17 is negative definite inV; & W5 and positive semi-
definite inZ, & Z,. The identity (4.1.11) now follows from Corollary 4.1.7; the
identity (4.1.10) follows by replacingg with —B. O

4.1.24. DROLLARY. LetB € By (V) and letN C Ker(B);if W C Vis
any complementary subspaceothen the following identities hold:

ni(B) = ni (Blwxw), n-(B)=n_(Blwxw),
dgn(B) = dgn(Blwxw) + dim(N);
if N = Ker(B) thenB is nondegenerate iil/.

(4.1.13)

PROOF The identities (4.1.13) follow immediately from Proposition 4.1.23,
becausd/ = W & N is a B-orthogonal decomposition. IV = Ker(B), the
nondegeneracy a8 in W is obvious. O

4.1.25. EMARK. If N is a subspace dfer(B) then we can define by passing
to the quotient a symmetric bilinear forB € Bgyy, (V/N):

B(vi + N,va + N) = B(v1,v2), wvi,v2 € V.

If W C V is any subspace complementary{ we have an isomorphisi :

W — V/N obtained by restriction of the quotient map; moreoveis the push-
forward of Bl xw by ¢. It follows from Corollary 4.1.24 (see also Example 4.1.4)
that

ny(B) =ny(B), n_(B)=n_(B), dgn(B)=dgn(B) + dim(N);
if N = Ker(B) then it follows also thab is nondegenerate.

4.1.26. XAMPLE. Lemma 4.1.17 doesot hold if the subspaceB; and 1,
are notB-orthogonal. For instance, If = IR? and if we consider the symmetric
bilinear form B given in (4.1.4), them_(B) = n4(B) = 1, but we can write
IR? as the direct sum of the subspaces generated respectively by(0, 1) and
v = (1, 2), that are bothB-negative.

In the next proposition we generalize the result of Lemma 4.1.17 by showing
that if V' = 14 & V5, whereV; andV; are B-negative subspaces such that the
product of elements d¥; with elements ofl; is “relatively small with respect to
their lengths”, therV is B-negative.

4.1.27. ROPOSITION LetB € By, (V) and assume thdt is written as the
direct sum ofB-negative subspacds = V; ¢ Vs; if for all v; € V; andv, € V5,
with V1, V2 75 0,itis

(4.1.14) B(vi,v2)* < B(v1,v1)B(va, v2)
then B is negative definite ifv.
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PrROOFE Letv € V be non zero and write = vy + v, with v; € V4 and
vy € Vo. We need to show tha(v,v) < 0, and clearly it suffices to consider the
case that both; andwvsy are non zero. In this case, the hypothesis (4.1.14) together
with Proposition 4.1.15 imply that the two-dimensional subspace generated by
andvs is B-negative, which concludes the proof. O

4.1.28. EMARK. It can also be shown a version of Proposition 4.1.27 assum-
ing only thatB is negative semi-definite ilf; and inV5, and that

(4.1.15) B(vl,v2)2 < B(v1,v1)B(ve, v2),

for all v; € Vi, vy € Va. In this case, the conclusion is thA&tis negative semi-
definite inV" (see Exercise 4.2).

4.1.1. The evolution of the index of a one-parameter family of symmet-
ric bilinear forms. In this subsection we will study the evolution of the function
n_(B(t)), wheret — B(t) is a one parameter family of symmetric bilinear forms
on a spacé’.

We make the convention that in this subsectionill always denote dinite
dimensional real vector space

dim(V) < 4o0.

We choose an arbitrary norm in denoted by| - ||; we then define theorm of a
bilinear form B € B(V') by setting:

IB|l = sup [B(v,w)].

Observe that, sinc& andB(V') are finite dimensional, then any norm in these
spaces induces the same topology.

We will first show that the condition_(B) > k (for some fixedk) is anopen
condition.

4.1.29. LEMMA. Letk > 0 be fixed; the set of symmetric bilinear forisc
Bsym (V') such thatu_(B) > k is open inBgym (V).

PROOF Let B € Byym (V) with n_(B) > k; then, there exists &-dimen-
sional B-negative subspadd C V. Since the unit sphere &% is compact, we
have:

sup B(v,v) = ¢ < 0;

veW

[[o]l=1
it now follows directly that ifA € Bgm (V) and||A — B|| < |c|/2 thenA is
negative definite i}/, and therefore:_ (A) > k. O

4.1.30. ®ROLLARY. Letk > 0 be fixed; the set of nondegenerate symmetric
bilinear formsB € By, (V') such thain_(B) = k is open inBgym, (V).

PROOF. If B € Bgym(V) is nondegenerate and_(B) = k, thenn, (B) =
dim(V') — k (see Corollary 4.1.20); by Lemma 4.1.29, féiin a neighborhood of
B in Bgym (V') we haven_(A) > k andny(A) > dim(V) — k, from which we
getn_(A) = k anddgn(A4) = 0. O
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4.1.31. ®ROLLARY. Lett — B(t) be a continuous curve By, (V') defined
in some interval C IR; if B(t) is nondegenerate for atle I, thenn_(B(t)) and
n4(B(t)) are constant in/.

PROOF By Corollary 4.1.30, the set of instarit& / such that._(B(t)) = k
is open inI for eachk = 0, ...,dim(V) fixed. The conclusion follows from the
connectedness dt O

Corollary 4.1.31 tells us that the index (B(t¢)) and the co-index (B(t))
can only change whe®(t) becomes degenerate; in the next Theorem we show
how to compute this change wher- B(t) is of classC:

4.1.32. THEOREM. LetB: [ty,t1[ — Bgym(V') be a curve of clas¢€'!; write
N = Ker(B(to)). Suppose that the bilinear fori’ (to)|x x » is Nondegenerate;
then there exists > 0 such that fort € |to,to + ¢[ the bilinear formB(t) is
nondegenerate, and the following identities hold:

ny(B(t)) = ny(B(to)) + ns (B (to) | nxn),
n_(B(t)) = n—(B(to)) + n—(B'(to)|nxn)-
The proof of Theorem 4.1.32 will follow easily from the following:
4.1.33. LEMMA. Let B: [to,t1[ — Bgym(V) be a curve of clasg'!; write
N = Ker(B(to)). If B(to) is positive semi-definite an®’(to)|nxn IS pOSi-
tive definite, then there exists > 0 such thatB(¢) is positive definite for €
Jto, to + €l.

PROOF Let W C V be a subspace complementary\g it follows from
Corollary 4.1.24 thaB(t() is nondegenerate i/, and from Corollary 4.1.14 that
B(tp) is positive definite if1’. Choose any norm ii’; since the unit sphere 61
is compact, we have:

(4.1.16) u}g‘ﬁ/ B(to)(w,w) = co > 0;
flw]=1
similarly, sinceB’(ty) is positive definite inV we have:
(4.1.17) inf B'(to)(n,n) = ¢ > 0.
ne
In]l=1
SinceB is continuous, there exists> 0 such that
C
|B(#) = B(to)| < 5, t€lto.to+el,
and it follows from (4.1.16) that:
(4.1.18) inf B(t)(w,w) > 2 >0, te [t to+e[.
et ’

SinceB is differentiable aty; we can write:

(4.1.19)  B(t) = B(to) + (t — to)B'(to) +r(t), with thlﬁ) tT_(tio =0,
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and then, by possibly choosing a smales 0, we get:

(4.1.20) Ir@)| < %(t —to), € [to,to +e[;
from (4.1.17), (4.1.19) and (4.1.20) it follows:
(4.1.21) inf B(t)(n,n) > %(t—tg), t € ]to, to + €.
ne
Infl=1

From (4.1.18) and (4.1.21) it follows th&t(¢) is positive definite iV and in N
fort € Jto, to + ¢; takinges = || B (to)||+ 5 we obtain from (4.1.19) and (4.1.20)
that:
(4.1.22) |B(t)(w,n)| < (t —to)es, t € [to, to+¢],
provided thatv € W, n € N and||w|| = ||n|| = 1. By possibly taking a smaller
e > 0, putting together (4.1.18), (4.1.21) and (4.1.22) we obtain:

B(t)(w,n)? < (t —tg)22 < L0t —¢
(4.1.23) (t)(w, n)” < (¢ = to) 5 < == (t = to)

§B(t)(w,w)B(t)(v,v), te]tht0+5[>

forallw € W, n € N with |jw|| = ||n|| = 1; but (4.1.23) implies:

B(t)(w,n)2 < B(t)(w,w) B(t)(n,n), t € to,to+el,
forall w € W, n € N non zero. The conclusion follows now from Proposi-
tion 4.1.27. O

PROOF OFTHEOREM4.1.32. By Theorem 4.1.10 there exists a decomposi-
tionV =V, @ V_ @ N whereV, andV_ are respectively #(t,)-positive and a
B(tp)-negative subspace; similarly, we can wife= N, @& N_ whereN, is a
B'(ty)-positive andV_ is a B'(t)-negative subspace. Obviously:

ni(B(to)) = dim(Vy), n_(B(to)) = dim(V_),

ny (B'(to)|nxn) = dim(Ny), n_(B'(to)|nxn) = dim(N_);
applying Lemma 4.1.33 to the restriction Bfto V., @& N, and to the restriction
of —Bto V_ & N_ we conclude that there exists> 0 such thatB(t) is positive
definite inV,. @ N, and negative definite iv_ @& N_ for t € |ty to + ¢ [;the
conclusion now follows from Corollary 4.1.7 and from Proposition 4.1.9. O

4.1.34. ROLLARY. If t — B(t) € Bgym (V) is a curve of clas€'! defined in
a neighborhood of the instang € IR and if B'(ty)|nx~ iS nondegenerate, where
N = Ker(B(to)), then fore > 0 sufficiently small we have:

n+(B(t0 + 8)) - n+(B(t0 — 8)) = sgn(B'(to)\NxN).

ProoEF It follows from Theorem 4.1.32 that far > 0 sufficiently small we
have:

(4.1.24) n4(B(to +¢)) = n4(B(to)) + n (B'(to) [ nxn);
applying Theorem 4.1.32 to the curve~ B(—t) we obtain:
(4125) n+(B(t0 — 5)) = n+(B(tQ)) +n_ (B/(to)‘NxN)‘
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The conclusion follows by taking the difference of (4.1.24) and (4.1.25). O

We will need auniform versiorof Theorem 4.1.32 for technical reasons:

4.1.35. ROPOSITION Let X be a topological space and let be given a con-
tinuous map

X % [to,t1] > (A t) — Bx(t) = B(\,t) € Beym(V)

differentiable int, such that%—]f is also continuous i x [tg, t1].

Write Ny = Ker(B)(to)); assume thatlim(/N)) does not depend oR &
X and thatB’AO (tg) = %—?(Ao,to) is nondegenerate iiV,, for some), € X.
Then, there exists > 0 and a neighborhood! of )\ in X’ such thatB (to) is
nondegenerate oV, and such thaB)(t) is nondegenerate oW for every\ € il
and for everyt € |to, to + €.

ProoF We will show first that the general case can be reduced to the case that
N) does not depend ok € X. To this aim, lett = dim(N)), that by hypothesis
does not depend ok Since the kernel of a bilinear form coincides with the kernel
of its associated linear operator, it follows from Proposition 2.4.10 that the map
A — Ny € Gi(V) is continuous inY’; now, using Proposition 2.4.6 we find a
continuous mapl: 4 — GL(V) defined in a neighborhoadi of )\ in X such that
for all A € 4L, the isomorphismi(\) takesN), onto Ny. Define:

Ba(t) = AN*(BA(t)) = BA(t) (A(N)-, A(N) - ),

forall A € tand allt € [to,t1[. Then,Ker(Bx(to)) = Ny, for all X € ; more-
over, the magB defined int x [to, t1[ satisfies the hypotheses of the Proposition,
and the validity of the thesis fdB will imply the validity of the thesis also foB.

The above argument shows that there is no loss of generality in assuming that:

Ker(B/\(to)) = N,
for all A € X. We split the remaining of the proof into two steps.

(1) Suppose thaB,, (to) is positive semi-definite and th&, (Zo) is positive
definite inV.
Let W be a subspace complementaryan V'; then B, (to) is positive
definite inW. It follows thatB, (o) is positive definite if? and thatB (t)
is positive definite i’V for all A in a neighborhood! of A\ in X. Observe
that, by hypothesisKer(B,(tp)) = N for all A € . Then, for allA €
i1, Lemma 4.1.33 gives us the existence of a positive nuraper such that
B, (t) is positive definite for alt € |¢o, to + ¢())[; we only need to look more
closely at the estimates done in the proof of Lemma 4.1.33 to see that it is
possible to choose > 0 independently of\, when\ runs in a sufficiently
small neighborhood o, in X.
The only estimate that is delicate appears in (4.1.20). Formula (4.1.19) de-
fines now a functiom) (¢); for each\ € 4, we apply the mean value inequality
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to the functiort — o (t) = B\(t) — tB)(tp) and we obtain:

lo(t) = alto)ll = [lra®)l < (t = to) P lo” ()l

= (t —to) sup [B\(s) — Bj(to)ll
s€[to,t]

With the above estimate it is now easy to get the desired conclusion.

(2) Let us prove the general case.
Keeping in mind thatKer(B,(t9)) = N does not depend onN € X,
we repeat the proof of Theorem 4.1.32 replaci®g,) by B\ (to), B'(t9) by
By (to) and B(t) by B, (t); we use step (1) above instead of Lemma 4.1.33
and the proof is completed.

0

4.1.36. XAMPLE. Theorem 4.1.32 and its Corollary 4.1.84 not holdwith-
out the hypothesis thds’(¢y) be nondegenerate iN = Ker(B(t()); counterex-
amples are easy to produce by considering diagonal matb¢gse By (IR").
A naive analysis of the case in which the bilinear forB&) are simultaneously
diagonalizable would suggest the conjecture that wBéft,) is degenerate in
Ker(B(tp)) then it would be possible to determine the variation of the co-index
of B(t) whent passes througty by using higher order terms on the Taylor ex-
pansion ofB(t)|yxn aroundt = ty. The following example show that this ot
possible.

Consider the curveB;, By: IR — Bsym(lRQ) given by:

m=( p ) B0=(p )

we haveB;(0) = B(0) and N = Ker(B(0)) = Ker(By(0)) = {0} & RR.
Observe thaB; (t)| nxn = Ba(t)|nxn forall t € IR, so that the Taylor expansion
of By coincides with that ofB, in N; on the other hand, far > 0 sufficiently
small, we have:

ni(Bi(e)) — ny(Bi(—¢)) =1-1=0,
ni(Ba(e)) —ny(Ba(—¢)) =2 -1=1.

Our next goal is to prove that the basis provided by Sylvester’s Inertia Theorem
can be written as a differentiable function of the parametehen B(t) depends
differentiably ont. Towards this goal, we consider the action of the general linear
groupGL(V') in the spacég,, (V') given by:

(4.1.26)
GL(V) x Bgym(V) 2 (T, B) = T(B) = B(T™',T7") € Boym(V);

it follows from Sylvester’s Inertia Theorem (Theorem 4.1.10) that the orbits of this
action are the sets:

B2, (V) = {B € Bym(V) : 0 (B) = p, n_(B) = g},

sym



4.2. DEFINITION AND COMPUTATION OF THE MASLOV INDEX 121

with p + ¢ =0,1,...,dim(V). Moreover, forp andq fixed, the sets
{B € Bsym(V) : ny(B) > p, n_(B) > ¢} and
{B € Bsym(V) : n.(B) <p, n_(B) < q}

are respective an open and a closed subsBtgf(V'), by Lemma 4.1.29. It fol-
lows that the seB%;4, (V) is locally closed inBgy, (V). From these observation
we deduce the following

4.1.37. LEMMA. The setBE%, (V) is a connected embedded submanifold of
Bgsym (V) for any integerp, ¢ > 0 withp+ ¢ =0,1,...,dim(V).

PROOF The fact thaBL;%, (V) is an embedded submanifold Bfy., (V') fol-
lows from Theorem 2.1.12. The connectednesB%f,(V) follows from the fact
that the restriction of the action (4.1.26)@d.. (V) is still transitive inB;%, (V);
this last statement follows from the fact that, once an orientation has been fixed
in V, the basis(b;)!"_; given by the Sylvester’s Inertia Theorem can be chosen
positively oriented (possibly replacirig with —b1). O

4.1.38. MROLLARY. The set of nondegenerate symmetric bilinear forms in
V is an open subset dy, (1) whose (arc-)connected components are the sets

BELTF(V), k=0,1,...,n, wheren = dim(V).
PrRoOOEF It follows from Corollary 4.1.30 and Lemma 4.1.37. O
We finally obtain the desired extension of Sylvester’s Inertia Theorem:

4.1.39. ROPOSITION Given a curveB: [a, b] — Bgym(V) of classC* (0 <
k < +o0) such that the integers_(B(t)) andn (B(t)) do not depend on €
[a, b], then there exist mags: [a,b] — V of classC*, i = 1,...,n, such that for
eacht € [a, b] the vectorgb;(t))7_, form a basis o in which B(t) assumes the
canonical form(4.1.7)

PROOF Letp andq be such that (B(t)) = p, n_(B(t)) = g forall ¢t
[a,b]; keeping in mind the transitive action (4.1.26) GL(V') on BEZ,(V), it
follows from Corollary 2.1.15 that, foB, € BL;%, (V) fixed, the map

GL(V) 3 T — Tu(Bo) = Bo(T~',T7') € B2, (V)

Sym
is a differentiable fibration. It follows from Remark 2.1.18 that there exists a map
T: [a,b] — GL(V) of classC* such thatl'(t)x(By) = B(t) for all t € [a, b).
Choosing a basigh;)7_; of V' with respect to whichB, has the canonical form
(4.1.7), we definé;(t) = T'(t) - b; fori = 1,...,n andt € [a, b]. This concludes
the proof. O

4.2. Definition and Computation of the Maslov Index

In this section we will introduce the Maslov index (relative to a fixed La-
grangian subspadg)) of a curve in the Lagrangian Grassmannian of a symplectic
spacgV,w); this index is an integer number that corresponds to a sort of algebraic
count of the intersections of this curve with the subsgt(L).
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The definition of Maslov index will be given in terms of relative homology, and
we will therefore assume familiarity with the machinery introduced in Section 3.3.
We will use several properties of the Lagrangian Grassmanhidrat were dis-
cussed in Section 2.5 (especially from Subsection 2.5.1). It will be needed to com-
pute the fundamental group df, and to this aim we will use the homotopy long
exact sequence of a fibration, studied in Section 3.2. This computation follows the
same line of the examples that appear in Subsection 3.2.1; following the notations
of that subsection, we will omit for simplicity the specification of the basepoint of
the fundamental groups studied. As a matter of facts, all the fundamental groups
that will appear are abelian, so that the fundamental groups corresponding to dif-
ferent choices of basepoint can be canonically identified (see Corollary 3.1.12 and
Remarks 3.1.13 and 3.3.34). Finally, in order to relate the fundamental group of
with its first singular homology group we will use the Hurewicz's homomorphism,
presented in Subsection 3.3.1.

Throughout this section we will consider a fixed symplectic sg&te ), with
dim(V') = 2n; we will denote byA the Lagrangian Grassmannian of this sym-
plectic space. All the curves considered will be tacitly meant to be “continuous
curves”; moreover, we will often use the fact that any two Lagrangian subspaces
admit a common complementary Lagrangian subspace (see Remark 2.5.18).

We know that the Lagrangian Grassmanmais diffeomorphic to the quotient
U(n)/0O(n) (see Corollary 2.5.12). Consider the homomorphism:

d = det*: U(n) — S,

whereS! C C denotes the unit circle; ift € O(n) then clearlydet(A4) = +1,
henceO(n) C Ker(d). It follows thatd induces, by passing to the quotient, a map:

(4.2.1) d: U(n)/O(n) — St,
given byd(A - O(n)) = det?(A). We have the following:

4.2.1. RoposITION The fundamental group of the Lagrangian Grassmargian
A = U(n)/0O(n) is infinite cyclic; more explicitly, the maf@.2.1)induces an iso-
morphism:

di: T (U(n)/O(n)) — m(S") =2 Z.

PROOF. It follows from Corollary 2.1.16 thad is a fibration with typical fiber
Ker(d)/O(n). Itis easy to see that the action®(n) on Ker(d)/O(n) by left
translation is transitive, and that the isotropy group of the clas§)(n) of the
neutral element iISU(n) N O(n) = SO(n); it follows from Corollary 2.1.9 that
we have a diffeomorphism

SU(n)/SO(n) = Ker(d)/O(n)

induced by the inclusion d3U(n) in Ker(d). SinceSU(n) is simply connected
andSO(n) is connected, it follows easily from the homotopy long exact sequence
of the fibrationSU(n) — SU(n)/SO(n) thatSU(n)/SO(n) is simply connected.
Then,Ker(d)/O(n) is also simply connected, and the homotopy exact sequence



4.2. DEFINITION AND COMPUTATION OF THE MASLOV INDEX 123

of the fibrationd becomes:
0 — 71 (U(n)/0(n)) 2= m1(SY) — 0
This concludes the proof. O

4.2.2. @ROLLARY. The first singular homology grouff; (A) of A is infinite
cyclic.

PROOF SinceA is arc-connected and, (A) is abelian, it follows from Theo-
rem 3.3.33 that the Hurewicz’s homomorphism is an isomorphism:

(4.2.2) O: m(A) — Hi(A) O
4.2.3. @ROLLARY. For a fixed Lagrangiarn_y € A, the inclusion
q: (A,0) — (A, A°(Lo))
induces an isomorphism:
(4.2.3) Gx: Hi(A) —— Hi(A, A°(Lo));
in particular, H; (A, A°(Ly)) is infinite cyclic.
PrROOF It follows from Remark 2.5.3 and from Example 3.3.19. O

Let ¢ : [a,b] — A be a curve with endpoints iN°(Lg), i.e., £(a),£(b) €
A°(Ly); then, ¢ defines a relative homology class fif; (A, A°(Lg)) (see Re-
marks 3.3.30 and 3.3.26). Our goal is now to show that the transverse orientation
of A'(Lo) given in Definition 2.5.19 induces a canonical choice of a generator of
the infinite cyclic groupH; (A, A°(Lg)). Once this choice is made, we will be able
to associate an integer number to each curvk with endpoints inA%(Lg).

4.2.4. XAMPLE. If we analyze the steps that lead us to the conclusion that
Hy(A, A°(Ly)) is isomorphic toZ we can compute explicitly a generator for this
group. In first place, the curve

eit

5. 512t — At) = € U(n)

]

0
1

projects onto a closed curn(t) = A(t) - O(n) in U(n)/O(n); moreover,

(4.2.4) [Z,37] 5t — det® (A(t)) = (—1)" e

is a generator of the fundamental group of the unit ci&lelt follows from Propo-
sition 4.2.1 that4 defines a generator of the fundamental group/ef) /O(n).
Denoting byA (IR?") the Lagrangian Grassmannian of the symplectic sjfate
endowed with the canonical symplectic form, it follows from Proposition 2.5.11
that a diffeomorphismy(n)/0(n) = A(IR?*") is given explicitly by:

U(n)/0(n) 3 A~ O(n) — A(R" & {0}") € A(R™).
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The Lagrangiami(t) (IR" & {0}") is generated by the vectdrs

{e1 cos(t) + ept1 sin(t), ent2, ..., a0},
where(e;)3" | denotes the canonical basis/f".
The choice of a symplectic basﬂsj)gzl of V induces a diffeomorphism of
onto A(IR*") in an obvious way. Consider the Lagrangidn) given by:

2n
(4.2.5) ((t) = R(by cos(t) + bps sin(t)) + > Rbj;
Jj=n+2
then, the curve
(4.2.6) (2,30 5t L(t) €A

is a generator ofr; (A). By the definition of the Hurewicz’s homomorphism (see
(3.3.25)) we have that the same curve (4.2.6) defines a generatr(4f; since

the isomorphism (4.2.3) is induced by inclusion, we have that the curve (4.2.6) is
also a generator aff; (A, A°(Ly)).

4.25. LEMMA. Let A € Sp(V,w) be a symplectomorphism ¢V, w) and
consider the diffeomorphism (also denoted4jyof A induced by the action of;
then the induced homomorphism in homology:

A Hy(A) — Hpy(A)
is the identity map for alp € Z.
PROOF SinceSp(V,w) is arc-connected, there exists a curve
[0,1] 5 s — A(s) € Sp(V,w)
such that4d(0) = A andA(1) = Id. Define
[0,1] x A3 (s,L) — Hg(L) = A(s) - L € A;
thenH : A = 1dis a homotopy. The conclusion follows from Corollary 3.3.24]

4.2.6. DROLLARY. Let Ly € A be a Lagrangian subspace 0, w) and let
A € Sp(V,w, Ly) (recall (2.5.15); then the homomorphism

Ay Hi(A,A%(Lo)) — Hi(A,A%(Lg))
is the identity map.

PrROOF It follows from Lemma 4.2.5 and from the following commutative
diagram:

A.=Id
Hi(A)

q*lﬁ‘ ﬁ‘iq*
H1 (A, AO(L())) T*> Hl(A, AO(L()))
whereq, is given in (4.2.3). O

1The complex matrixA(t) must be seen as a linear endomorphisniR3f'; therefore, we need
the identification of» x n complex matrices witRn x 2n real matrices (see Remark 1.2.9).
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4.2.7. XAMPLE. Consider a Lagrangian decompositidhy, L) of V and let
L be an element in the domain of the chat, 1,, i.e., L € A°(L;). It follows
directly from the definition ofor,, 1, (see (2.5.3)) that the kernel of the symmetric
bilinear former, 1, (L) € Bsym(Lo) is Lo N L, that is:

(4.2.7) Ker(¢ro,, (L)) = Lo N L.
Then, we obtain that for eaéh= 0, ..., n the Lagrangiar. belongs ta\* (L) if
and only if the kernel ofpr,, 1, (L) has dimensiott, that is:
Lo, (A (L1) N A*(Lo)) = {B € Byym(Lo) : dgn(B) = k}.

In particular, we havd, € A°(Ly) if and only if o1, 1, (L) is nondegenerate.

4.2.8. EXAMPLE. Lett — £(t) be a curve im\ differentiable at = ¢, and let
(Lo, L) be a Lagrangian decomposition Bfwith ¢(to) € A°(Ly). Then, fort
in a neighborhood of, we also have/(t) € A°(L;) and we can therefore define

B(t) = oL, (€(t)) € Bsym(Lo). Let us determine the relation betwegftt,)
and/'(ty); by Lemma 2.5.7 we have:

B'(to) = dprg, 1, (£(t0)) - £'(t) = (s 1) - € (20)-

Sincenf(;o) 1, fixes the points of.o N {(to), we obtain in particular that the sym-
metric bilinear forms3’(to) € Beym(Lo) and ¥ (tg) € Bgym({(to)) coincide on
LoN f(to).
4.2.9. LEMMA. Let Ly € A be a fixed Lagrangian; assume given two curves
fl,fgi [CL, b] — A

with endpoints im°(Ly). Suppose that there exists a Lagrangian subsgace A
complementary td,o such thatA°(L;) contains the images of both curvés /;
if we have

(428) ny (@Lo,Ll (El (t))) =Ny (SOLO,Ll (£2(t)))’
fort = a andt = b, then the curves;, £ are homologous i1 (A, A°(Ly)).
PrRoOEF It follows from (4.2.8) and from Corollary 4.1.38 that there exist
curves:
o1,02: [0,1] — Bgym(Lo)
such thaw (t) andos(t) are nondegenerate for alk [0, 1] and also:

01(0) = ¢ro,L, (1 (a)), 01(1) = ¢ro,L, (2(a)),
02(0) = @rLo,L, (11(D)), 02(1) = ¢Lo,L, (¢2(D)).

Definem; = @Z(}Ll o0, 1 = 1,2; it follows from Example 4.2.7 thath; and
ms have image in the set’(L,) and therefore they are homologous to zero in
Hi (A, A°(Lg)). Consider the concatenatidn= m; " - ¢; - my; it follows from
Lemma 3.3.27 that; and/ are homologous i1 (A, A°(Lg)). We have that
and/, are curves im%(L;) with the same endpoints, and sint®(L, ) is homeo-
morphic to the vector spades,, (Lo) it follows that/ and/, are homotopic with
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fixed endpoints. By Corollary 3.3.29 we have thaind/, are homologous, which
concludes the proof. O

4.2.10. DEFINITION. Let/ : [a,b] — A be a curve of clas€’!. We say that
¢ intercepts transversallthe setA=!(L) at the instant = ¢, if ¢(tg) € Al(Lo)
and ?'(to) & Tyu,)A'(Lo); we say that such transverse intersectiopdsitive
(resp.,negative if the class of?’(ty) in the quotienTg(tO)A/Tz(to)Al(Lo) defines
a positively oriented (resp., a negatively oriented) basis (recall Definition 2.5.19).

From Theorem 2.5.16 it follows thétinterceptsA=! (L) transversally at the
instantt = tq if and only if £(ty) € A'(Lg) and the symmetric bilinear form
!'(tp) is non zero in the spade) N £(ty); such intersection will be positive (resp.,
negative) if¢’(ty) is positive definite (resp., negative definite)lig N £(to).

4.2.11. IEMMA. Let Ly € A be a Lagrangian subspace and let
O,y [a,b] — A

be curves of clas§'! with endpoints in\°(L,) that interceptA=' (L) only once;
suppose that such intersection is transverse and positive. Then, we have that
and/ are homologous it (A, A°(Ly)), and either one of these curves defines a
generator ofH (A, A°(Lg)) = Z.

PROOF. Thanks to Lemma 3.3.25, we can assume that, interceptA! (L)
at the same instan € ]a,b[. By Proposition 1.4.38 there exists a symplecto-
morphismA € Sp(V,w, Lg) such thatA(¢;(to)) = ¢2(to). It follows from Corol-
lary 4.2.6 thatd o/ and/¢; are homologous i1 (A, A°(Lg)); note that alsol oy
intercepts\=! (L) only at the instanty and that such intersection is transverse and
positive (see Proposition 2.5.20).

The above argument shows that there is no loss of generality in assuming
l1(tg) = L2(tp). By Lemma 3.3.27, it is enough to show that the restriction
1] [ty—e to+) 1S hOMologous tda|, . 1,4 for somee > 0. Let L; € A be a
common complementary Lagrangianédt,) and Ly; for ¢ in a neighborhood of
to we can writef;(t) = ¢r,,1, © 4i(t), i = 1,2. By Example 4.2.8 we have that
Bi(to) and £(to) coincide inLo N 4;(to) = Ker(Bi(to)) (see (4.2.7)); since by
hypothesisZ,(ty) is positive definite in the unidimensional spabg N ¢;(t), it
follows from Theorem 4.1.32 (see also (4.1.25)) thatsfar 0 sufficiently small
we have

(4.2.9) ny(Bi(to+¢)) =ny(Bi(to)) +1, ny(Bi(to—¢)) = ny(Bi(to)).
Sincef (tg) = P2(to), it follows from (4.2.9) that

ny (Bi(to +¢)) = ni (Bato +¢)),  ny(Bilto — ) = ny(Ba(to —€)),
for ¢ > 0 sufficiently small. Now, it follows from Lemma 4.2.9 that the curve
1 jto—<,to+< is homologous to the curvg |y, . 4+ in Hi(A,A°(Lg)). This
concludes the proof of the first statement of the thesis.

To prove the second statement it suffices to exhibit a cathat has a unique
intersection withA=1(L,), being such intersection transverse and positive, so that
¢ defines a generator df; (A, A°(Lg)). Let (bj)]zgl be a symplectic basis df
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such thal(bj);?:1 is a basis ofl; (see Lemma 1.4.35); consider the generétof
Hy(A,A°(Ly)) described in (4.2.5) and (4.2.6). Itis easy to see thiatercepts
A=1(Lp) only at the instant = 7 and Lo N #(x) is the unidimensional space
generated by, ; moreover, an easy calculation shows that:

(4.2.10) gl(ﬂ)(bl,bl) = w(bn+1,b1) = —1;

it follows that¢~! has a unique intersection witt¥! (L) and that this intersection
is transverse and positive. By Lemma 3.3.27, the cérVeis also a generator of
Hiy(A, A%(Lyg)), which concludes the proof. a

4.2.12. EFINITION. Let Ly € A be a fixed Lagrangian; we define an isomor-
phism

(4.2.11) pLy: Hi(A A%(Lo)) — Z

as follows: choose a curviof classC! in A with endpoints inA%(Lg) such tha¥
has a unique intersection witt¥'! (L) and such that this intersection is transverse
and positive. Defing.z,, by requiring that the homology class 6be taken into
the element € Z; by Lemma 4.2.11 the isomorphism (4.2.11) is well defined, i.e.,
independent of the choice of the curiie

Suppose now that : [a,b] — A is anarbitrary curve with endpoints in
A%(Ly), then we denote by, (¢) € Z the integer number that corresponds to
the homology class df by the isomorphism (4.2.11); the number, (¢) is called
the Maslov indexof the curvel relative to the Lagrangiahy.

In the following Lemma we list some of the properties of the Maslov index:

4.2.13. LEMMA. Let/: [a,b] — A be a curve with endpoints in%(Lg); then
we have:

(1) if o: [d/,b] — [a,b] is a continuous map with(a') = a, o(b’) = bthen
pre(loo) = pur,(£);

(2) if m: [@’,b'] — A is a curve with endpoints iN® (L) such that/(b) =
m(a), thenpuz, (€ - m) = iy (6) + gy (m);

(3) pro (071) = —pre (0);

(4) if Im(¢) € A%(Lo) thenur, (¢) = 0;

(5) if m: [a,b] — A is homotopic to/ with free endpoints im\°(L,) (see
Definition 3.1.25) themr,, (¢) = ur,(m);

(6) there exists a neighborhoddof ¢ in C°([a, b], A) endowed with the com-
pact-open topology such that,sf € ¢/ has endpoints il\°(Lg), then
1Ly (€) = prg(m).

PrRoOOF Property (1) follows from Lemma 3.3.25; Properties (2) and (3) fol-
low from Lemma 3.3.27. Property (4) follows immediately from the definition of
the groupH; (A, A°(Lo)) (see (3.3.7)). Property (5) follows from Remark 3.3.30
and Property (6) follows from Theorem 3.1.27 and from Property (5). O

4.2.14. XAMPLE. The Maslov indexur,(¢) can be seen as thatersec-
tion numberof the curve/ with the subset\=!(Ly) C A; indeed, it follows
from Lemma 4.2.13 (more specifically, from Properties (2), (3) and (4)) that if
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¢: [a,b] — Ais a curve of clasg§' with endpoints inA’(L) that has only trans-
verse intersections with=!(Lg) then the Maslov index,(¢) is the number of
positive intersections of with A=!(Lg) minus the number of negative intersec-
tions of ¢ with A=1(L). As a matter of facts, these numbers are finite (see Exam-
ple 4.2.17 below). In Corollary 4.2.18 we will give a generalization of this result.

We will now establish an explicit formula for the Maslov indgx, in terms
of achartyr, 1, of A:

4.2.15. HEOREM. LetLj € A be a Lagrangian subspace and fet [a, b] —
A be a given curve with endpoints &P (Lg). If there exists a Lagrangiah; € A
complementary td.q such that the image of is contained inA°(L,), then the
Maslov indexur,, (¢) of £ is given by:

KL (E) =Ny (@Lo,Ll (f(b))) — Ny (SOLO,Ll (E(a))) .

PrROOF By Lemma 4.2.9, it suffices to determine for edch=0,1,...,n a
curveg; ;: [0,1] — Bgsym(Lo) such that:
(4.2.12) ny(8i;(0)) =1, dgn(;,;(0)) =0,

and such that the curvg ; = goz(iLl o (3;; satisfiesur,(¢; ;) = j —i. If i = j,
we simply takes; ; to be any constant curve such thigt(0) is nondegenerate and
such thatuy (3;,:(0)) = i.

Property (3) in the statement of Lemma 4.2.13 implies that there is no loss of
generality in assuming< j. Let us start with the cage= i + 1; choose any basis
of Ly and define3; ;11 (t) as the bilinear form whose matrix representation in this
basis is given by:

ﬁi,i-ﬁ-l(t) ~ dlag(la ]-a R 17t - %7 _]-7 _]-7 cee _1)7 te [07 1]7
~—— —
1 times n—i—1 times
wherediag(aq, . . ., ay,) denotes the diagonal matrix with entries, . . ., a,.
Then, we have:
n(Bii+1(0)) = 1, dgn(Bi,i+1(0)) =0,
ny (Biiri(1) =i+1, dgn(Biiy1(1)) = 0;

moreoverg; ;.1 (t) is degenerate only at = 3 and the derivativ$§7i+1(%) is

positive definite in the unidimensional spaléer(ﬂi,iﬂ(%)). It follows from Ex-

amples 4.2.7 and 4.2.8 thgt; 1 interceptsA=! (L) only att = 3, and that such
intersection is transverse and positive. By definition of Maslov index, we have:

tro (Gii1) =15
and this completes the construction of the cysygin the casg = i + 1.
Let us look now at the casg > i + 1. For eachi = 0,...,n, letB; €
Bsym(Lo) be a nondegenerate symmetric bilinear form with( 3;) = ; choose
any Curveﬂi7i+1: [0, 1] — Bsym(LO) with ﬁi,i—&-l(o) = Bl andﬂi7i+1(1) = Bi—i—l
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fori =0,...,n — 1. It follows from Lemma 4.2.9 and from the first part of the
proof thatl; ; 1 = gozol 1, © Bii+1 satisfiegur, (Ci41) = 1; for j > i + 1 define:

Bij = Biji+1 - Bittyig2 - Bj—1.

Then, the curves; ; satisfies (4.2.12), (4.2.13) and from Property (2) in the state-
ment of Lemma 4.2.13 it follows thaty,, (¢; ;) = j — 1.
This concludes the proof. O

4.2.16. DEFINITION. Given a curvet — £(t) € A of classC! we say that
¢ has anondegenerate intersectiamith A=!(Lg) at the instant = tq if £(ty) €
A=Y (Lg) and/'(to) is nondegenerate ihy N £(to).

4.2.17. XAMPLE. If a curve/ in A has a nondegenerate intersection with
AZ1(Ly) at the instant = tg, then this intersection isolated i.e.,/(t) € A°(Lo)
for ¢t # ty sufficiently close tay. To see this, choose a common complementary
LagrangianL; € A to Ly and/(ty) and apply Theorem 4.1.32 to the curte=
1,1, © ¢, keeping in mind Examples 4.2.7 and 4.2.8.

SinceA=!(Ly) is closed inA, it follows that if a curve? : [a,b] — A has only
nondegenerate intersections with! (L), then/(t) € A=1(Ly) only at a finite
number of instants € [a, b].

We have the following corollary to Theorem 4.2.15:

4.2.18. ®ROLLARY. LetLy € A be aLagrangian subspace and let be given a
curvel: [a,b] — A of classC! with endpoints im\%(Ly) that has only nondegen-
erate intersections with=!(Lo). Then,((t) € A= (L) only at a finite number of
instantst € [a, b] and the following identity holds:

pio(0) = Y sgn(l' (1)l (Lome) x (Lone())) -
t€(a,b]

PROOF. It follows from Example 4.2.17 that(t) € A='(Lg) only at a finite
number of instants € [a, b]. Lett, € ]a, b] be such that(ty) € A=1(Ly); keeping
in mind Property (2) and (4) in the statement of Lemma 4.2.13, it suffices to prove
that:

1Ly (Clitg—e.t0+¢]) = 880 (€' (t0) | (Loretto))x (Lone(to))) -
for ¢ > 0 sufficiently small. Choose a common complementaifye A of L
and/{(t); for ¢t in a neighborhood of, we can write3(t) = ¢, r,(4(t)). The

conclusion now follows from Theorem 4.2.15 and from Corollary 4.1.34, keeping
in mind Examples 4.2.7 and 4.2.8. O

In Example 4.2.17 we have seen that a nondegenerate intersection of & curve
of classC! with A=1(Lg) at an instant, is isolated, i.e., there exists> 0 such
thatf(t) ¢ A=Y (Ly) fort € [to — €,t0] U ]to, to + €]. For technical reasons, we
will need (in Proposition 5.2.8) a slightly stronger result and we will prove next
that the choice of such > 0 can be madeniformlywith respect to a parameter.
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4.2.19. LEMMA. Let X be a topological space and suppose that it is given a
continuous map:

X X [to,tl[ = ()\,t) — 6)\(15) = 6()\,15) eA

which is differentiable in the variableand such thal% : X X [to,t1]— TA'is
also continuous. Fix a Lagrangiahy € A; suppose thatlim(¢(\,tg) N Lg) is
independent oA € X and that the curve’,, = ¢()\o,-) has a nondegenerate
intersection withA=1(L) att = t, for some)\y € X. Then, there exists > 0
and a neighborhood of Ay in X such that, for all\ € 4, ¢, has a nondegenerate
intersection withA=!(Lg) at tq and such that(\,t) € A%(L) for all A € 4 and
all t €]to, o + €.

PROOF Choose a common complementary Lagrandianf Ly and?(Ag, to)
and defings(\, t) = ¢r,,1, (¢(A, t)) for ¢ in a neighborhood ofy and\ in a neigh-
borhood of)\g in X. Then,3 is continuous, it is differentiable ity and the deriva-
tive % is continuous. The conclusion follows now applying Proposition 4.1.35 to
the mapg, keeping in mind Examples 4.2.7 and 4.2.8. O

4.2.20. EMARK. A more careful analysis of the definition of the transverse
orientation ofA'(Lg) in A (Definition 2.5.19) shows that the choice of the sign
made for the isomorphism;, is actually determined by the choice of a sign in
the symplectic formu. More explicitly, if we replacev by —w, which does not
affect the definition of the set, then we obtain a change of sign for the isomor-
phismspr, 1, andpy, (defined in formulas (1.4.11) and (1.4.13)). Consequently,
this change of sign induces a change of sign in the cpayts,, (defined in formula
(2.5.3)) and in the isomorphism (2.5.12) that identifigg\ with By, (L).

The conclusion is that changing the sign.o€auses an inversion of the trans-
verse orientation oA!(L) in A, which inverts the sign of the isomorphigm, .

4.2.21. EMARK. The choice of a Lagrangian subspatcg € A defines an
isomorphism:

(4.2.14) Ly © qs: Hi(A) — Z,

whereq, is given in (4.2.3). We claim that this isomorphism does not indeed
depend on the choice diy; for, let Ljj € A be another Lagrangian subspace.
By Corollary 1.4.28, there exists a symplectomorphidne Sp(V,w) such that
A(Lg) = Li;; we have the following commutative diagram (see Lemma 4.2.5):

A,=Id
Hy(A) Hi(A)

(

Hi(A, A%(Lg)) —— = Hy (A, A%(L}))

Z
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where the commutativity of the lower triangle follows from Remark 2.5.21. This
proves the claim. Observe thatjf [a,b] — A is aloop, i.e.;y(a) = (b), then,
sincey defines a homology class H; (A),we obtain the equality:

1Ly (v) = pry (),
for any pair of Lagrangian subspacks, L, € A.

4.2.22. EMARK. LetJ be a complex structure ii compatible withw; con-
sider the inner produgt = w(-, J-) and the Hermitian produet in (V, J) defined
in (1.4.10). Letly € A be a Lagrangian subspace; Proposition 2.5.11 tells us that
the map

(4215) U(‘/u Jv gs)/O(gﬂv 9’€0x€0> > A : 0(607 g|€0><€0) [ — A(ZU) S A
is a diffeomorphism. As in (4.2.1), we can define a map

CZ: U(V7 J7 Qs)/O (£07g|f0><50) B Sl
obtained from

d=det?: UV, J,gs) — S*

by passage to the quotient; then the ridpduces an isomorphisi, of the fun-
damental groups. Indeed, by Remark 1.4.30 we can find a bagistbét puts
all the object{V,w, J, g, gs, £o) simultaneously in their canonical forms, and then
everything works as in Proposition 4.2.1. The isomorphisniogether with the

diffeomorphism (4.2.15) and the choice of (3.2.24) (or, equivalently, of (4.2.4)) as
a generator ofr; (S') = H,(S') produce an isomorphism (see also (4.2.2)):

w=1uyy: Hi(A) — Z;

this isomorphism does not indeed depend on the choicé aid of/,. To see
this, choose another complex structufein V' compatible withw and another
Lagrangian subspad§ € A; we then obtain an isomorphism = uy e . From
Remark 1.4.30 it follows that there exists a symplectomorphisenSp(V, w) that
takes(, onto/{, and that isC-linear from(V, .J) into (V, J'); then, it is easy to see
that the following diagram commutes:

Hy(A)

Hy(A)

By Lemma 4.2.5 we have that, = Id and the conclusion follows.

As a matter of facts, formula (4.2.10) shows that the isomorphidmas the
opposite sign of the isomorphism (4.2.14) obtained by using the transverse orien-
tation of A'(Lg) in A.
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Exercises for Chapter 4

EXERCISE4.1. Prove that every symmetric bilinear foh € By, (V') ad-
mits a maximal negative subspace.

EXERCISE4.2. Suppose thaB € Byym(V), with V = V; @ V, and B is
negative semi-definite ifv; and inV4. If the inequality (4.1.15) holds for all, €
V1 andwvy € Vo, thenB is negative semi-definite ilr.

EXERCISE4.3. LetV be ann-dimensional real vector spacB, € Beym (V)
a symmetric bilinear form and assume that the matrix representatiBrirofome
basis{vi,...,v,} of V is given by:

X Z
Z*Y)’

whereX is ak x k symmetric matrix and” is a(n — k) x (n — k) symmetric
matrix. Prove that, ifX is invertible, then:
n_(B)=n_(X)+n_(Y —2Z*X'2), dgn(B)=dgn(Y — Z*X'2),
and ny(B)=n (X)+n. (Y —Z*X'2).
EXERCISE4.4. LetV be afinite dimensional real vector space andlef €

Bsym (V) be nondegenerate symmetric bilinear formdosuch that/ — 7 is also
nondegenerate. Prove tHat! — Z~! is nondegenerate and that:

n(Z)—n_(U)=n_(Z7'-UYH—n_(U-2).

EXERCISE4.5. Consider the spadg?" endowed with its canonical symplec-
tic form w; define an isomorphisr® : R** — IR*" by O(x,y) = (z, —y), for
all x,y € IR™. Show thatO# (w) = —w and conclude thaD induces a diffeomor-
phism of the Lagrangian Grassmanniamto itself. Show that the homomorphism:

O* . Hl(A) — Hl(A)
is equal to minus the identity map (compare with Remark 4.2.20).

EXERCISE4.6. LetLy € A be a Lagrangian in the symplectic spdééw)
and letA : [a,b] — Sp(V,w, Ly), ¢ : [a,b] — A be continuous curves such that
(a),(b) € A°(Lg). Prove that the curvé= A o ¢ : [a,b] — A is homologous to
Zin Hl(A,AO(Lo))

EXERCISE4.7. Let Ly be a Lagrangian subspace @f,w) and letL,¢ :
[a, b] — A be curves such that:

e L,(t) is transverse td,o and to/(t) for all ¢ € [a, b];
e /(a) and{(b) are transverse thy.

Show that the Maslov indexz,, (¢) of the curvel is equal to:

110 (0) = 1y (010,0,(6) (b)) — Ny (@rg, 11 (a) (£(a))).
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EXERCISE4.8. Letly, L1, Lo, Ls € A be four Lagrangian subspaces of the
symplectic spacéV,w), with Lo N Ly = LoN Ly = LoN L3 = Ly N Ly = {0}.
Recall the definition of the mapy,, ., : L1 — L given in (1.4.11), the definition
of pull-back of a bilinear form given in Definition 1.1.2 and the definition of the
chartyr, 1, of A givenin (2.5.3). Prove that the following identity holds:

¥Lo,L1 (L3) — ¥YLi,Lo (L2) = (pLo,L1)#(90L0,L3 (L2>_1)'

EXERCISE4.9. As in Exercise 4.8, prove that the following identity holds:

ny (SDLO,Lg (L2)) =Ny (SOLl,Lo (LB) — ¥L1,Lo (L2))'

EXERCISE4.10. Let(Lg, L) be a Lagrangian decomposition of the symplec-
tic space(V,w) and let : [a,b] — A be a continuous curve with endpoints in
A°(Ly). Suppose that there exists a Lagrandiare A such thalm(¢) c A°(L,).
Prove that the Maslov index;,, (¢) is given by the following formula:

KL (E) =n- (90L17L0 (ﬁ(b)) — $PLy,Lo (L*)) —n- (SDLLLO (E(a)) — $PLy,Lo (L*))
EXERCISE4.11. Define the following symplectic form in R*":
w((v1,w1), (v2,w2)) = w(vr,v2) — w(wy, wa), V1, w1, vz, ws € R

wherew is the canonical symplectic form @&>". Prove thatd € Lin(IR*", IR*")
is a symplectomorphism ¢fR?", w) if and only if its graphGr(A) is a Lagrangian
subspace of[R*", ). Show that the maPp(2n, IR) > A — Gr(A) € AR, D)
is a diffeomorphism onto an open subset.

EXERCISE4.12. Prove that the s¢f” € Sp(2n, R) : T(Lg) N Lo = {0} } is
an open dense subset$#(2n, IR) with two connected components.

ExXERCISE4.13. Define:
r, — {T € Sp(2n, R) : det(T — 1d) > 0};

I = {T € Sp(2n, RR) : det(T — Id) < o}.

Prove thatl', andI'_ are open and connected subsetSpf2n, IR) (see Exer-
cise 4.15 for more properties of the s€ts andI'_).

EXERCISE4.14. Consider the set:
E= {T € Sp(2n, R) : det(T — 1d) # 0, T(Lo) N Lo = {o}}.
Prove thatt is a dense open subsetSyi(2n, IR) having2(n + 1) connected com-

ponents. Prove that each connected component contains an eﬁmeég g)

with A = 0 and B in diagonal form.

EXERCISE4.15. Recall from Exercise 4.13 the definition of the $etsI'_ C
Sp(2n, IR). Prove thatd € I'y UT'_ if and only if Gr(A) is a Lagrangian in
A%(A) ¢ A(IR*™, @), whereA is thediagonalof IR" = IR?>" ¢ IR?". Conclude
that any loop il UT'_ is homotopic to a constant Bp(2n, IR).



CHAPTER 5

Some Applications to Differential Systems

5.1. Symplectic Differential Systems

In this section we will always consider the symplectic sp#ited IR™* en-
dowed with its canonical symplectic form. Recall from Subsection 2.1.1 that
the Lie algebrap(/R™ & IR"*,w) can be identified with the set @ x 2n real
matricesX of the form:

c —A*

where A, B,C aren x n matrices andA* is the transpose off. The matri-
cesA, B,C and A* can be identified with linear operators € Lin(R"), B €
Lin(R™, IR"), C € Lin(R", IR™*) andA* € Lin(IR"*); we can also identifyB
with a symmetric bilinear form infR"™* andC with a symmetric bilinear form in
R™.

We will be interested in homogeneous systems of linear differential equations
of the form:

(5.1.2) % <Z((’?)> — X)) (Z(é;) telab),

whereX : [a,b] — sp(IR" & R"*,w), v: [a,b] — R" ea: [a,b] — IR™. For all
t € [a,b], the linear operatok (t) determines operatord(t), B(t) andC(t) as in
(5.1.1); we can then rewrite (5.1.2) more concisely in the form:

{v/:Av—{—Ba,

(5.1.1) X = (A B ) , B, C symmetric

513
( ) o =Cv— A*a,

where the variable is omitted for simplicity.

5.1.1. DEFINITION. A homogeneous linear system of differential equations of
the form (5.1.3), whered : [a,b] — Lin(R"), B : [a,b] — Bgym(R"") and
C : la,b] — Bgym(IR™) are smooth functions ang(¢) is nondegenerate for all
t € [a,b] is called asymplectic differential systemf X (¢) denotes the matrix
defined byA(t), B(t) and C(¢) as in (5.1.1), we say thaX is the coefficient
matrix of the symplectic system (5.1.3), and the mapsB andC' will be called
thecomponentsf X.

In general, we will identify the symplectic differential system (5.1.3) with its
coefficient matrixX; for instance, we will say thdt, «) is a solution ofX mean-
ing that(v, ) is a solution of (5.1.3), or, equivalently, of (5.1.2).

134
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In the rest of this section we will consider a fixed symplectic differential system
X :[a,b] — sp(IR™ & IR™,w) with components, B andC.

5.1.2. REMARK. SinceB(t) is nondegenerate for &l then its index does not
depend ort, and so we can write:
n_(B(t)=n_(Bt)" )=k, t¢&la,b).

Recall that the linear operatdt(¢)~! can be identified with a symmetric bilinear
form in IR", which is the push-forward of the bilinear for@(¢) by the linear
operatorB(t).

Given a smooth map : [a,b] — IR"™, there exists at most one map [a, b] —
IR™* such tha{v, «) is a solution ofX; for, the invertibility of B(¢) allows to solve
the first equation of (5.1.3) far in terms ofv. We can therefore define fany
smooth map : [a,b] — IR"™ a smooth majy, : [a,b] — IR"* by the following
formula:

(5.1.4) ay(t) = B() (V' (t) — A(t)v(1)).
5.1.3. DEFINITION. Given a smooth map : [a,b] — IR"™, we say thav is a
solutionof the symplectic differential systerd if (v, «,) is a solution ofX.

From the elementary theory of ordinary linear differential equations we know
that, givenvy € IR™ andagy € IR™, there exists a unique solutidm, «) of X
in [a,b] satisfyingv(a) = vg anda(a) = «p (see for instanced] Theorem 5.1,
Chapter 1]); therefore we have a well defined linear isomorphism:

o(t): R"® R"™ — R"® R"
such that
o(t)((v(a), a(a)) = (v(t), a(t)),
for any solution(v, ) of X. We then obtain a smooth curje b] > t — ®(¢t) €
GL(R" @ IR™") that satisfies:
(5.1.5) P'(t) = X(t)o ®(t), forallt € [a,b] and ®(a) = Id.

5.1.4. DEFINITION. The mapd determined by (5.1.5) is called tfigndamen-

tal matrix of the symplectic differential systerx.

SinceX takes values in the Lie algebra of the symplectic group, it follows from
(5.1.5) thatd takes values in the symplectic group (see Remark 2.1.4), that is, the
fundamental matrix of the symplectic differential systanis a differentiable map:

P: [a,b] — Sp(R" & R"",w).
The fact that?(¢) is a symplectomorphism is expressed by the following identity
(5.1.6) w((v(t), aw(t)), (w(t), (1)) = auw(t) - v(t) — aw(t) - w(t) = constant
for any solutions andw of X.

Let/y ¢ IR™ & IR™ be Lagrangian subspace; let us consider the following
initial condition for the system (5.1.3):

(5.1.7) (v(a),a(a)) € L.



136 5. APPLICATIONS

Recalling Exercise 1.11, there exists a bijection between the set of Lagrangian
subspace§ C R"®R™ and the set of pairgP, S), whereP C IR"™ is a subspace
andS € Bgym(P) is a symmetric bilinear form; such bijection is determined by
the identity:

(5.1.8) bo={(v,a) e R"®IR" :v € P, a|p + S(v) =0},

where S is identified with a linear operato$: P — P*. In terms of the pair
(P, S), the initial condition (5.1.7) can be rewritten in the form:

(5.1.9) v(a) € P, afa)lp+ S(v(a)) =0.

5.1.5. DeFINITION. We call (5.1.7) (respectively, (5.1.9)) thagrangian ini-
tial conditiondetermined by the Lagrangidp (respectively, by the paiiP, S)); if
(v, @) is a solution ofX that satisfies (5.1.7), or, equivalently, (5.1.9), we say that
(v, @) is asolution of the pairf X, ¢y), or also tha{v, ) is a(X, £p)-solution We
will denote byV = V(X {) the set of solutions ofX, ¢y), that is:

(5.1.10) V(X, ) =V = {v:visasolution of X, ¢)}.
Clearly,V is a subspace of the space of all mapsa, b] — IR™; moreover:
dim(V) = dim(4p) = n.

We will fix for the rest of the section a Lagrangién C IR™ @ IR™* and we
will denote by(P, S) the pair corresponding t as in (5.1.8).
For eachr € [a, b] we define the following subspace Bf":

(5.1.11) V[t] = {v(t) : v € V} C R™;
It is easy to see that:
(5.1.12) V[a] = P.

It follows directly from (5.1.6) that, given solutionsandw of (X, ¢;), then:

ay(t) - w(t) = aw(t) - v(t),

for eacht € [a, b]; then, ifv is a solution of( X, ¢y) with v(¢) = 0, the functional
ay(t) annihilates the spac¥|t]. Conversely, ifay € IR™* is a functional that
annihilatesV|t], it follows from (5.1.6) that ifv is the unique solution oK such
thatv(t) = 0 anda,(t) = ap, then

0= w((v(t), au(t), (w(t), aw(t))) = w((v(a), av(a)), (w(a), cw(a)),

for all (X, ¢y)-solutionw; hence(v(a), a,(a)) isw-orthogonal to/y and therefore
v is a solution of( X, £y). These observations show that the annihilato¥V@f is
given by:

(5.1.13) V[t]° = {aw(t) : v € Vandu(t) = 0},

forall t € [a, b]; keeping in mind (5.1.4), it follows directly from (5.1.13) that the
orthogonal complement &f[¢] with respect taB(¢)~! is given by:

(5.1.14) V[* = B(t)(V[1]°) = {v/(t) : v € Vandu(t) = 0}.
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5.1.6. DEFINITION. We say that € ]a, b] is a focal instantfor the pair( X, ¢)
(or thatt is a (X, ¢y)-focal instanj if there exists a non zero solutiane V of
(X, {y) such thaw(t) = 0; the dimension of the space of solutians V such that
v(t) = 0is called themultiplicity of the focal instant, and itis denoted byhul(¢).
The signatureof the focal instant, denoted bygn(¢), is defined as the signature
of the restriction of the symmetric bilinear forB(¢)~! to the spacé[t]*, that is:

sgn(t) = sgn(B() " |y xvigL )

where the orthogonal compleme¥ift] - is taken relatively to the bilinear form
B(t)~!. We say that the focal instahis nondegenerati B(t)~! is nondegenerate
onV[t]*. If t € Ja,b] is not a(X, ¢y)-focal instant, we definenul(t) = 0 and
sgn(t) = 0; if the pair (X, ¢y) has only a finite number of focal instants, we define
thefocal indexof (X, ¢y) as the integer number:

ifoc(X7£0) = ifoc = Z Sgn(t)'
t€)a,b]

5.1.7. REMARK. For allt € ]a, b] we have:
(5.1.15) mul(t) = dim(V[t]°) = codimg-V[t],

and in particulat is (X, ¢p)-focal if and only if V[t] # IR"™; indeed, it follows from
(5.1.13) that the map

{veV:v(t)=0}3v— a(t) € V[{]° C R™

is an isomorphism. Keeping in mind Remark 5.1.2, we see that the symmetric
bilinear formB(t)‘HVWW[tH is the push-forward oB ()0 x v(so DY the iso-
morphism

B(t)|vygo: V[H° — V[t]*;
Then, we conclude that the signature df¥4 ¢ )-focal instant: coincides with:

sgn(t) = sgn(B(t)vige xvige);
moreover, a focal instantis nondegenerate if and only¥[t]° is a nondegenerate

subspace foB(t). Observe also that Corollary 1.1.11 implies that a focal ingtant
is nondegenerate if and only #(¢)~! is nondegenerate i([t].

5.1.8. DEFINITION. We say that the Lagrangian initial condition determined
by the Lagrangian subspaég (or, equivalently, by the paifP, S)) is nondegen-
erateif the bilinear formB(a)~! is nondegenerate aR. In this case, we also say
that the pair( X, ¢y) has anondegenerate initial condition

5.1.9. REMARK. In Definition 5.1.6 we have explicitly excluded the possibility
thatt = a be a(X, ¢y)-focal instant. Nevertheless, if we admit for the moment the
terminology of Definition 5.1.6 also far = a, we see that the nondegeneracy for
the initial condition determined by is indeed equivalent to the nondegeneracy of
t = a as afocal instant. Arguing as in Remark 5.1.7 we see that the nondegeneracy
of the initial condition determined by, is equivalent to the nondegeneracy of
B(a) in the annihilator ofP in IR", and also to the nondegeneracy®fa) ! in
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P+, where the orthogonal complement is taken with respeé(io)~'. Observe
that if P = IR™, which is equivalent td, being transversal t¢0}™ & IR™*, or if

P = {0}, which is equivalent td, = {0}" & IR"*, then automatically X, ¢y) has
nondegenerate initial condition.

5.1.10. XAMPLE. If g : [a,b] — Bgym(/R") andR : [a,b] — Lin(/R") are
differentiable maps witly(¢) nondegenerate anll(¢) a g(t)-symmetric operator
for all ¢, then the homogeneous linear differential equation:

(5.1.16) g g(t) (1) = R(t) - v(t), tE€lab),
is called aMorse-Sturm equatiaon|f g is constant, then (5.1.16) can be written in
a simplified form:

(5.1.17) V(t) = R(t) -v(t), tE€][a,b)].

Defininga(t) = g(t) - v/(t), we can rewrite (5.1.16) as a system of differential
equations:

(5.1.18) % <Z((?)> _ (g(t)c?R(t) 9(6)‘1) (%D telab).

The system (5.1.18) is a symplectic differential system, with) = 0, B(t) =
g(t)"tandC(t) = g(t) o R(t). In general, any symplectic differential system
with A = 0 will be identified with a Morse—Sturm equation wigtit) = B(t)~!
andR(t) = B(t) o C(t).

5.2. The Maslov Index of a Symplectic Differential System

In this section we show that iK is a symplectic differential system arg
is a Lagrangian subspace 8" @ IR™*, then we can associate in a natural way
a curve in the Lagrangian Grassmanniato the pair(X, ¢y), and under suitable
hypotheses we can associat®aslov indexto the pair(X, ¢y). We will always
denote byL, the Lagrangian subspace:

and byA the Lagrangian Grassmannian of the symplectic sgdtep IR™* en-
dowed with its canonical symplectic structure. As usual, we will denotd big
andC' the components ok and by® its fundamental matrix.

We define a differentiable curve [a,b] — A by setting:

(5.2.1) 0(t) = B(t)(bo),
for all ¢ € [a, b]; more explicitly, we have:

(5.2.2) (t) = {(v(t), ap(t)) : v e V}

Observe that(a) = ¢y; keeping in mind (5.2.2) and (5.1.13) we see that:
(5.2.3) Lo N £(t) = {0}" & V[1]°,

forall t € [a, b]. We have the following:

5.2.1. LEMMA. An instantt € |a,b] is (X, ¢y)-focal if and only if¢(t) €
A=Y (Ly); moreover/(t) € A*(Ly) if and only ifmul(t) = k.
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PROOEF It follows easily from (5.2.3) and (5.1.15). O

Lemma 5.2.1 is a first indication that the properties of the focal instants of the
pair (X, £y) may be investigated by looking at the intersections of the ciwith
AZY(Lg). In order to make more explicit the relations between the focal instants
of (X, ¢y) and such intersections we now compute the derivative of

The linearization of the natural action of the symplectic grBupR" © IR™*, w)
in the Lagrangian Grassmannidngives us an anti-homomorphism of the Lie al-
gebrasp(R"™ @ IR™*,w) into the Lie algebra of differentiable vector fields An
These concepts were defined in Subsection 2.1.3, and we will use here the notations
of that subsection.

The identity (5.1.5) tells us thak is an integral curve of the time-dependent
vector field (¢, g) — X(¢)"(g) in the Lie groupSp(IR" & IR™*,w); from Re-
mark 2.1.22 and from (5.2.1) it then follows thais an integral curve of the time-
dependent vector fiel@t, m) — X (¢)*(m) in A, i.e.,

(5.2.4) () = X(t)* (L)),
for all t € [a, b]. Proposition 2.5.9 gives us:
(5.2.5) X)*(L) = w(X(#), )|«

forall L € A. Then, putting together (5.2.4) and (5.2.5) we obtain:
C(1)((0,0),(0,8) = w(X(£)(0,0), (0, 8))

= w((B(t)o, —A(t)"a), (0, 8)) = B(t)(a, B),
forany (0, «), (0, 5) € Lo N £(t). We have therefore shown the following:

(5.2.6)

5.2.2. LEMMA. Forall ¢ € [a, b], the restriction of the symmetric bilinear form
B(t) € Bgym(IR™) to V[t]° coincides with the push-forward of the restriction of
U'(t) € Beym(€(t)) to Lo N £(t) by the isomorphism:

Lone(t) > (0,a) — a € V[t]°
PROOEF It follows from (5.2.3) and (5.2.6). O

5.2.3. MROLLARY. An (X, {y)-focal instantt € ]a, b] is nondegenerate if and
only if £ has a nondegenerate intersection V\mﬁl(Lo) at the instant; moreover,

sgn(t) = sgu (' (t)] Lorer))-
Also, the pair(X,¢y) has nondegenerate initial condition if and only/ikither

has a nondegenerate intersection with!' (L) at the instantt = a or £(a) ¢
A=Y (Ly).

Prookr It follows from Remark 5.1.7 and Remark 5.1.9. O

5.2.4. @ROLLARY. If {3 € ]a,b] is a nondegeneratéX, ¢y)-focal instant,
then it isisolated i.e., no instant # t, sufficiently close td is (X, ¢y)-focal.
Moreover, if the initial condition of X, ¢y) is nondegenerate, then there are no
(X, ¢y)-focal instants in a neighborhood of= a. If (X, ¢y) has nondegenerate
initial condition and if it has only nondegenerate focal instants, th&n/,) has
only a finite number of focal instants.
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PROOF It follows from Corollary 5.2.3, Lemma 5.2.2 and Example 4.2.17.
O

We now want to define the Maslov index of a p@¥, ¢;); essentially, it will be
defined as the Maslov indeux;, (¢) of the curvel. The problem is that,, (¢) only
makes sense if has endpoints il\°(Ly); assuming that = b is not a(X, £y)-
focal instant, we have thétb) € A°(Ly) (see Lemma 5.2.1). However, in general
{(a) = £y may be inA=!(Ly); to overcome this problem the idea is to “erase” a
short initial portion of the curvé. More precisely, let us give the following:

5.2.5. DEFINITION. If the pair(X, ¢y) has nondegenerate initial condition and
if the final instantt = b is not (X, ¢y)-focal, then we define th&laslov index
imasiov (X, o) Of the pair(X, ¢y) by setting:

Imaslov (X7 EO) = imaslov = KL (6‘[a+s,b])7

wheree > 0 is chosen in such a way that there are(AQ ¢, )-focal instants in the
interval[a, a + ¢].

From Corollary 5.2.4 it follows that, indeed, there exists> 0 such that
(X, ¢y) does not have focal instants in the interf@la + <]. Moreover, the de-
finition of i,,,510v dO€s not depend on the choicesfsee Exercise 5.4).

Generically, the Maslov indeix,.s1ov (X, £p) can be thought as a sort alfge-
braic countof the focal instants of X, ¢y):

5.2.6. RROPOSITION Suppose thatX, ¢y) has nondegenerate initial condi-
tion and thatt = b is not (X, {y)-focal. If (X, ¢y) has only nondegenerate focal
instants, then the focal index coincides with the Maslov index:

ifoc<X7 ZO) = Imaslov (X, KO)
PrRoOOEF It follows directly from Corollary 4.2.18 and Corollary 5.2.3. O

5.2.7. XAMPLE. If B(t) is positive definite for some (hence for al¥ [a, b]
then (X, ¢y) automatically has nondegenerate initial condition; moreover, every
(X, {y)-focal instantt € ]a, b] is nondegenerate angn(¢t) = mul(t). Hence, if
t = bis not(X, ¢y)-focal, it follows from Proposition 5.2.6 that

imasiov (X, &) = Z mul(t) < +o0.
t€la,b|
One of the fundamental properties of the Maslov index of a pair &atsility;
we have the following:

5.2.8. RROPOSITION Let X' be a topological space and assume that for all
A € X itis given a symplectic differential systek, such that the map:
X % [a,b] 2 (A t) — X\ (t) € sp(R" & R"",w)
is continuous; let’y: X — A be a continuous curve in the Lagrangian Grass-
mannian such thatlim(Ly N ¢y(A\)) does not depend ok € X. If for some
Ao € X the pair (X, lo(No)) has nondegenerate initial condition amd= b is

not (X, %o(Ao))-focal, then there exists a neighborhoddf )\ in & such that
for all A € 4 we have:
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e (X, % (X)) has nondegenerate initial condition;
e the instant = b is not(X, £o()\))-focal;
L4 imaslov(X)\a EO(A)) = imaslov(X)\anO()\O))-

ProoF Denote by®, the fundamental matrix of the symplectic differential
systemX,. It follows from standard theory on continuous dependence with respect
to a parameter of solutions of differential equations that the fhap — @, (¢) is
continuous inX’ x [a, b]. Definel,(t) = @ (t)(Lo(A)); then clearly(\, t) — £, (t)
is a continuous map ¥ x [a,b] and it follows from (5.2.4) that alsQ\, t) +—
¢\ (t) is continuous inX x [a,b]. In particular,since\’(Ly) is open, we have
that/,(b) € A°(Lg) for X in a neighborhood of\q in X', and therefore for such
values of\ the instant = b is not(X, ¢y()))-focal (see Lemma 5.2.1). Keeping
in mind Corollary 5.2.3, it follows directly from Lemma 4.2.19 that there exists
e > 0 and a neighborhoodl of A in X" such that X, ¢y(\)) has nondegenerate
initial condition, and such that there are (3, ¢o(\) )-focal instants in the interval
[a,a + ¢] for all A € 4. Hence,

imastov (X2, €0(A)) = 1o (Caljate))

for all A in a neighborhood oh, in X. It follows from Remark 3.1.20 that the
map\ — ¢y € C%([a +¢,b], A) is continuous when we considéf ([a + ¢, b], A)
endowed with the compact-open topology. By Property (6) in the statement of
Lemma 4.2.13 we conclude thgt.siov (X, £o(A)) is constant wher runs in a
neighborhood of\y in X’; this concludes the proof. O

5.2.9. @WROLLARY. Suppose that it is given a sequerics, ), > of differen-
tiable mapsX,, : [a,b] — sp(IR" & IR"*,w) that converges uniformly to a differ-
entiable mapX; assume tha¥X and X,, are symplectic differential systems for all
n. Let also be given a sequen() of Lagrangian subspaces that converges to
somely € A, wheredim(Lg N ¢) = dim(Lg N £) for all n. Then, if(X, ¢y) has
nondegenerate initial condition andtif= b is not a(X, ¢y)-focal instant, then for
all n sufficiently large als@.X,,, /i) has nondegenerate initial condition ahé= b
is not (X, ¢;)-focal, and:

iInaslov()(na 68) = imaslov()(()a EO)

PROOF Consider the topological spaéé = IN U {+oc0}, wherell C X is
openifand only il C IV or X'\ ilis afinite subset afV. SettingX . ., = X, then
itis easy to see that the hypotheses of Proposition 5.2.8 are satisfigd-fos-oo.
The conclusion follows. O

5.3. The Maslov Index of semi-Riemannian Geodesics and Hamiltonian
Systems

In this section we show how the theory of symplectic differential systems
appears in several fields of geometry. In Subsection 5.3.1 we show how every
geodesic in a semi-Riemannian manifold determines in a natural way a Morse-
Sturm equation; such system is essentially obtained from the Jacobi equation along
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the geodesic through a parallel trivialization of the tangent bundle of the semi-
Riemannian manifold along the geodesic. In Subsection 5.3.2 we show that sym-
plectic differential systems appear also as linearizations of Hamiltonian systems;
we develop the theory in a very abstract and general formalism, using arbitrary
symplectic manifolds. Finally, in Subsection 5.3.3 we give references for some
further developments of the theory.

5.3.1. Geodesics in a semi-Riemannian manifold_et M be a differentiable
manifold; asemi-Riemannian metria M is a differentiablg2, 0)-tensor fieldg
such that for everyn € M, g,, is a nondegenerate symmetric bilinear form on
T, M. The pair(M, g) is called asemi-Riemannian manifalvheng,,, is positive
definite for everym € M we say thay is aRiemannian metriand that(}, g) is
a Riemannian manifoldit is well known that there exists a unigaennectionV
on the tangent bundl€M of M which is torsion-free and such thgis parallel;
such connection is called thevi-Civita connectionThecurvature tensoof V is
defined by:

R(X,Y)Z =VxVyZ — VyVxZ — Vixy|Z,

for every differentiable vector fieldX,Y, Z in M. Given a differentiable curve
~: I — M defined in some intervdl C IR and given a differentiable vector field
v: I — TM alongv, i.e., o(t) € T,y M for everyt € I, then we denote by
% (or just byv’) the covariant derivative af along+y; a geodesids defined as
a differentiable curvey : I — M whose derivativey’ is parallel, i.e.,y” = 0.
A differentiable vector field along a geodesig: [a,b] — M is called aJacobi
vector fieldif it satisfies the differential equation:

2
(5.3.1) %U(t) =R(Y(t),0(t))y(t), tE€ [a,b];

equation (5.3.1) is known as tllacobi equation Setdim(M) = n and chose
parallel vector fieldsZ;: [a,b] — T'M along~, i = 1,...,n such that(Z;(¢))",
form a basis off’, ;) M for some (and hence for alf) [a, b]; we say thatZ;);"_,

is aparallel trivialization of the tangent bundl& A along~y. The parallel trivi-
alization(Z;)?_, induces a bijection between the set of differentiable vector fields
v: [a,b] — T'M along~ and the set of differentiable maps [a,b] — IR™ given

by:

n

(5.3.2) o(t) =Y vi(t)Zi(t), t€[a,b],

=1

wherev(t) = (vi(t),...,vn(t)) € IR™; taking the covariant derivative alongon
both sides of (5.3.2) we get thatdfcorresponds to then the covariant derivative
v’ of v corresponds to the (standard) derivativeof v by means of the bijection
induced by the parallel trivialization. For eack [a, b] we define a nondegenerate
symmetric bilinear forny(t) € Bgym ([R") and a linear operatdi(t) € Lin(R")
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whose matrices with respect to the canonical basi®®Katisfy the identities:
9i;(t) = 9(Zi(t), Z;(t)), R(Y (1), Z;(1) (t) = ZRij(t)Zi(t)a
=1

for everyi,j = 1,...,n. Observe that, since bothand the vector field%; are
parallel, thesymmetric bilinear forng(¢) does not depend anmoreover, standard
symmetry properties of the curvature tensor imply tR&t) is g-symmetric for
everyt € [a,b]. We can therefore consider the Morse-Sturm equation:

(5.3.3) V" (t) = R(t)v(t), tE€ [a,b];

moreover, it is easy to see trevector fieldb along- is a Jacobi vector field iff the
mapuv: [a,b] — IR™ defined by5.3.2)is a solution of(5.3.3). In Example 5.1.10
we have mentioned that every Morse-Sturm equation can be identified with a sym-
plectic differential systemX with componentsA(¢t) = 0, B(t) = g(¢t)~! and
C(t) = g o R(t); observe thaty,(t) = g(v(t)) € IR™* for everyt.

Consider now a submanifol®t C M; thesecond fundamental forof P at a
pointp € P in a normal directiom < TpPL (where the orthogonal complement
is taken with respect tg) is the symmetric bilinear forns,, on7,, P defined by:

Sp(v,w) =g(V,W,n), v,weT,P,

wherelV is any differential vector field which is tangentfand such thaltV’ (p) =
w. Suppose now that we have a geodesida,b] — M with v(a) € P and
' (a) € Ty)P+; avector fieldv: [a, b] — T'M alongy is called &P-Jacobi field
if v is Jacobi and satisfy the condition:

'U(Cl) (S P and g(vl(a)’ ) |T’y(a)7> —+ 8’7’(&) (”U((I)7 ) =0¢c T’Y(G)P*

The basis(Z;(a))j-, of T, M induces an isomorphism frofi,,)M to IR"
which takesill,(a)P onto some subspade C IR™; moreover, there exists a unique
symmetric bilinear formt' € By (P) which is the push-forward o, ) by (the
restriction of) such isomorphism. The p&#, S) therefore defines a Lagrangian
subspacé, C IR"® IR™* asin (5.1.8); itis easily seen that a vector fielalong~y

is P-Jacobi if and only if the corresponding map|[a, b] — IR™ defined by (5.3.2)
is a solution of( X, ¢y). In semi-Riemannian geometry one usually defines that a
pointy(t), t € |a,b] is P-focal along~y when there exists a non zef-Jacobi
vector fieldv along~ such that(¢) = 0; the dimension of the space B-Jacobi
fieldsv along~ such that(¢) = 0 is called themultiplicity of the P-focal point
~(t). Moreover, for each € ]a, b] one considers the space:

J[t] = {v(t) : vis P-Jacobi alongy} C T, M.

Thesignatureof the P-focal pointy(t) is defined as the signature of the restriction
of the metricg to the orthogonal complemeiift]* of J[t]; the P-focal point-y(t)

is callednondegeneraté the space]|[t]* (or equivalently,J[t]) is nondegenerate
for g. When there are only a finite number®#focal points alongy we define the
focal indexof the geodesie with respect tdP as the sum of the signatures of the
‘P-focal points alongy. The following facts are obvious:
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e aninstant € Ja,b] is (X, {y)-focal iff v(¢) is aP-focal point; the multi-
plicity and signature of as a( X, ¢y)-focal instant or ofy(¢) as aP-focal
point coincide;

e the focal index of the paif.X, ¢y) coincide with the focal index of the
geodesiey with respect taP;

e a (X, {)-focal instantt € ]a,b] is nondegenerate if and only if the-
focal pointvy(¢) is non-degenerate;

e the initial condition of( X, /o) is nondegenerate if and onlyt )P is a
nondegenerate subspace gor

If g is nondegenerate dfi,,)P and if y(b) is not aP-focal point we define
the Maslov indexof the geodesiey with respect taP as the Maslov index of the
pair (X, {y). From Proposition 5.2.6 it follows immediately the following:

5.3.1. RROPOSITION Let~: [a,b] — M be a geodesic starting orthogonally
to a submanifold® C M; suppose that the metrigis nondegenerate ofi,(,)P
and that there are only nondegeneraefocal points alongy. Then, ify(b) is not
‘P-focal, the Maslov index of coincides with the focal index afwith respect to
P. O

Observe that if(M, g) is Riemannian then the focal index of a geodesgic
is simply the sum of the multiplicities of th@-focal points alongy; this (non-
negative) integer is sometimes called geometric indexf the geodesie). The
geometric index of a geodesic is one of the numbers which enters into the statement
of the celebratetorse Index Theorem

A semi-Riemannian manifold)/, g) is calledLorentzianif the metricg has
index 1 at every point; four-dimensional Lorentzian manifolds are mathematical
models for general relativistic spacetimes. A veator T'M is said to beime-
like, lightlike or spacelikerespectively whemy(v, v) is negative, zero or positive.
Similarly, we say that a geodesjds timelike, lightlike or spacelike whew( (¢) is
respectively timelike, lightlike or spacelike for &llWe have the following:

5.3.2. LEMMA. Let~: [a,b] — M be a timelike or a lightlike (non constant)
geodesic in a Lorentzian manifold/, g) starting orthogonally to a submanifold
P C M; assume thag is nondegenerate dfi, )P (which is always the caseif
is timelike). Then, for everye< ]a, b] the spacd[t] is g-positive.

PROOF. Setv(t) = (t—a)y'(t); thenv is aP-Jacobi field and thereforg(t) €
J[t] for t € ]a,b]]. It follows thatJ[¢] is contained in the orthogonal complement
of IRY'(t); if ~ is timelike, this implies thap is positive definite orJ[¢]. If v
is lightlike we still have to show that/(¢) is not in J[t]; observe first that, since
TP is g-nondegenerate it cannot b§a) < T,,yP and therefore it cannot be
TP+ C (lRfy’(a))L; hence we can find a Jacobi fieldalong~y with v(a) = 0
andv’(a) orthogonal tar’,,yP but not orthogonal to/(a). Thenv is aP-Jacobi
field and it cannot be that(¢) is orthogonal toy'(¢); for, s — g(v(s),7'(s)) is
an affine map which vanishes at= a and hence it cannot have another zero at
s = t, since this would imply(v,~’) = 0 andg(v’(a),~'(a)) = 0. This proves
that+/(t) ¢ J[t]* and completes the proof. O
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5.3.3. @ROLLARY. Under the hypotheses of Lemma 5.3.2, the geometric in-
dex and the focal index af with respect tdP coincide. O

5.3.2. Hamiltonian systems.In this subsection we will consider the follow-
ing setup. Le{.M, w) be asymplectic manifolgi.e., M is a smooth manifold and
w is a smooth closed skew-symmetric nondegenerate two-foroso thatw,,
is a = symplectic form of,,,M for eachm € M. We setdim(M) = 2n. Let
H : U — IR be a smooth function defined in an open&8e IR x M; we will
call such function &lamiltonianin (M, w). For eacht € IR, we denote by, the
mapm — H(t,m) defined in the open séf; C M consisting of thosen € M
such that(t,m) € U. We denote byA the smooth time-dependent vector field
in M defined bydH;(m) = w(H (t,m),-) for all (t,m) € U; let F denote the
maximal flow of the vector fieldd defined on an open set @ x IR x M taking
values inM, i.e., for eachm € M andt, € IR, the curvet — F(t, tp,m) is a
maximal integral curve off andF(tg, to, m) = m. This means tha¥'(-, tg, m) is
a maximal solution of the equation:

%F(t,to,m) = H(t, F(t, to,m)), F(to,to,m)=m.
Recall thatF" is a smooth map; we also writg ;, for the mapm — F(t,ty, m);
observe that; ;, is a diffeomorphism between open subsets.¢f

We recall that ssymplectic chartin M is a local chart(q, p) taking values
in IR™ @ IR™ whose differential at each point is a symplectomorphism from the
tangent space of1 to IR @ IR™* endowed with the canonical symplectic struc-
ture. We writeg = (q1,...,¢s) andp = (p1,...,pn); we denote by{a%, %_ ,
i,j = 1,...,n the corresponding local referential ¥/M, and by{dg;, dp;} the
local referential ofl’ M*. By Darboux’s Theoremthere always exists an atlas of
symplectic charts.

In a given symplectic chafy, p), we have:

- - ~~(0H 0 0H 0
= dg; Ndp;, H= — .
N ; anep ;(apz- da;  Da; api)

Let P be aLagrangian submanifoldf M, i.e., T, P is a Lagrangian subspace
of T,,M for everym € P. We fix an integral curv& : [a,b] — M of H, so
thatI'(t) = F(t,a,I'(a)) forall t € [a,b]. We also say thdl is asolution of the
Hamilton equationi.e., in a symplectic chaft(t) = (q(¢), p(t)):

da_ on
dt  op’
(5.3.4)
dp _ _0H
dt  9q°

We assume thdt starts atP, that isT'(a) € P. Finally, we will consider a fixed
smooth distributiong in M such thatg,, is a Lagrangian subspace Bf, M for
allm e M.
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The basic example to keep in mind for the above setup is the case whése
the cotangent bundIEA* of some smooth manifold/ endowed with the canon-
ical symplectic structureP is the annihilatofl’ P° of some smooth submanifold
P of M, and £ is the distribution consisting of theertical subspaces, i.e., the
subspaces tangent to the fibers/af/*.

The Hamiltonian flowF; ¢, is a symplectomorphism:

5.3.4. RoPOSITION The symplectic formw is invariant by the Hamiltonian
flow F', i.e., Fyy w = w forall (¢, o).

In the case of a time-independent Hamiltonian, the result of Proposition 5.3.4
follows easily from the formula for theie derivativeof forms:

Li=dig+igd
For the general case, the proof is based on the following elementary Lemma which

says how to compute the derivative of the pull-back of forms by a one-parameter
family of functions:

5.3.5. LEMMA. Let G be a smooth map on an open subseffbk M taking
values inM and letn be a smooth-form on M. For eacht € IR, denote byG,
the mapm — G(t, m) and byG?y the (r — 1)-form on an open subset 8# given
by:

(th)m = dG(m)™ iy N (m);
wherev = %G(t, m) and i, is theinterior product(or contractionin the first
variable) of a form with the vectar. Then, for allm € M we have:

(5.3.5)  (Ginn = A(Gn) + G ().

PrROOF The two sides of equality (5.3.5) afg-linear maps of; which have
the same behavior with respect to exterior derivative and exterior products. More-
over, they agree ofi-forms. The conclusion follows from the fact that, locally,
everyr-form is a linear combination of products of derivativeg)efbrms. O

PrROOF OFPROPOSITIONS.3.4. We fix an instanty € IR; we consider the
mapG(t,m) = F(t, tg,m) and we apply Lemma 5.3.5 tp = w. Observe that,
for eacht, the1-form G'w is equal toG} (dH;). From (5.3.5), we get:

d .

& (Ftﬂf()w)m - 0’
and sof}, w is independent of. The conclusion follows from the fact thét, ;,
is the identity map. O

A sextuplet(M,w, H, £, T, P) where(M, w) is a symplectic manifoldH is
a (time-dependent) Hamiltonian function defined on an open subgetofM, £
is a smooth distribution of Lagrangians.m, I : [a, b] — M is an integral curve
of H andP is a Lagrangian submanifold g1 with T'(a) € P, will be calleda set
of data for the Hamiltonian problem

We give some more basic definitions.
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5.3.6. DEFINITION. A vector fieldp alongI' in M is said to be &olution for
the linearized Hamilton (LinH) equatiorisit satisfies:

(5.3.6) p(t) = dF;o(I'(a)) p(a).

We also say that is aP-solutionfor the (LinH) equations if in addition it satisfies
p<a) € TF(a)P'

5.3.7. DEFINITION. A pointI'(t), t €a, b] is said to be &-focal pointalong
I" if there exists a non zerB-solutionp for the (LinH) equations such thatt)
£r()- Themultiplicity of aPP-focal pointI’(¢) is the dimension of the vector space
of suchp’s.

5.3.8. CEFINITION. A symplecticg-trivialization of T M alongl is a smooth
family of symplectomorphismsg(t) : IR" © IR"™* — T M such that, for all
te [a, b}, gf)(t)(L()) = Sp(t), whereLy = {O} ® R"".

The existence of symplectig-trivializations alond is easily established with
elementary arguments, using the fact thia¥t restricts to a trivial vector bundle
alongr".

We will be interested also in the quotient bundl@d1/£ and its dual bundle.
We have an obvious canonical identification of the ddaM /£)* with the anni-
hilator £° C T M*; moreover, using the symplectic form, we will identiy with
£ by the isomorphism:

(5.3.7) ToM>3p—w(,p) € T,M*, me M.

A symplectic£-trivialization ¢ induces a trivialization of the quotient bundle
T M/ £ alongI’, namely, for each € [a, b] we define an isomorphisi, : R" —
TrM/Lr:
(5.3.8) Zi(x) = ¢(t)(2,0) + £pp), =€ R"

Given a symplecticg-trivialization ¢ of T M alongI’, we define a smooth
curve® : [a, b] — Sp(2n, IR) by:
(5.3.9) () = ¢p(t) " 0 dF;4(T(a)) o ¢(a).

The fact that?(¢) is a symplectomorphism follows from Proposition 5.3.4.
We now define a smooth curnvé : [a, b] — sp(2n, IR) by setting:

(5.3.10) X(t) = @' (t)®(t)
As customary, the components of the matkixwill be denoted byA, B and C.
Finally, we define a Lagrangian subspdgef IR © IR™* by:
(5.3.11) to = ¢(a)" (Tr@)P).

5.3.9. DEFINITION. The canonical bilinear formof (M,w, H, £, T, P) is a
family of symmetric bilinear formsg(t) on (Tr)M/Lp))" =~ 2(5(“ ~ Lry
given by:

(5.3.12) Hg(t) = 240 B(t) o Zf,
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whereZ is the trivialization ofl’ M/ £ relative to some symplectig-trivialization
¢ of TM and B is the upper-right: x n block of the mapX in (5.3.10). In
Exercise 5.5 the reader is asked to prove that the right hand side of (5.3.12) does
not depend on the choice of the sympleciidrivialization of T M.

We say that the set of data\1,w, H, £,T", P) is nondegeneraté H(t) is
nondegenerate for atl € [a,b]. In this case, we can also define the symmetric
bilinear formHg(t) ! on Ty M/ Lr .

Given a nondegenerate set of dat,w, H, £,T', P), let us consider the pair
(X, ¢y) defined by (5.3.10) and (5.3.11). It is easily seen that the submar#fold
and the spac@ defined by, as in (5.1.8) are related by the following:

Za(P) = W(TF(a),P)a
wherer : Trq)M +— Tr() M/ Lr(q) is the quotient map. We set:
(5.3.13) Po = 7(Tr(o)P)-

To define the signature of A-focal point alongl’, we need to introduce the
following space:
(5.3.14)
U[t] = {p(t) : pis aP-solution of the (LinH) equatiohn Lr;y, ¢ € [a,b].

Using the isomorphism (5.3.7), it is easy to see that| is identified with the
annihilator(Tr,)P + £,)°. Itis easily seen that a point(t) is P-focal if and only
if 2J[t] is not zero and that the dimension ®ft| is precisely the multiplicity of
I(t).

5.3.10. DEFINITION. LetT'(¢) be aP-focal point along the solutiofi. The
signaturesgn(I'(¢)) is the signature of the restriction éf¢(¢) toU[t] C £, ~ £7.
I'(¢) is said to be a nondegenerd®efocal point if such restriction is nondegen-
erate. IfI" has only a finite number dP-focal points, we define thiacal index
ifoc(l—\) as:

(5.3.15) ifoc(T) = > sgn(T(t)).

teJa,b

5.3.11. DEFINITION. Given a set of dataM,w, H, £,T', P) such that:
e Hg(a)~! is nondegenerate 0By = (T, P), Wherer : T, )M —
Tr () M/ £r(q) is the quotient map;
e I'(b) is not aP-focal point.
We define theMaslov indeXiasiov(I') as the Maslov index of any paiX, ¢y)
associated to it by a symplectiztrivialization of T M alongT’.

5.3.3. Further developments.In this short subsection we indicate some re-
cent results by the authors of this book that contain further development of the
theory of the Maslov index and its applications to semi-Riemannian geometry and
Hamiltonian system.
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In [29] prove the stability of the geometric index for timelike and lightlike
Lorentzian geodesics (that follows from Corollary 5.3.3), it is given a counterex-
ample to the equality of the Maslov index and of the focal index of a geodesic
in the case that there are degenerate focal points. It is also studied the problem
of characterizing those curves of Lagrangians that arise from the Jacobi equation
along a semi-Riemannian geodesic.

In [12] it is proven a Lorentzian extension of the Morse Index Theorem for
geodesics of all causal character in a stationary Lorentzian manifgldr, more
generally, for geodesics that admit a timelike Jacobi field. It is considered the case
of a geodesic with initial endpoint variable in a submanif@lef M. Moreover,
under suitable compactness assumptions it is developed an infinite dimensional
Morse theory for geodesics with fixed endpoints in a stationary Lorentzian mani-
fold. A version of the index theorem for periodic geodesics in stationary Lorentzian
manifolds is proven in25]. The Morse Index Theorem for timelike or lightlike
geodesics in any Lorentzian manifold is proven2n]; for the case of both end-
points variable see3H].

In [36] the authors develop the Morse Index Theorem for the general case of a
non periodic solution of a possibly time-dependent Hamiltonian system; it is used
a suitable assumption that generalize the assumption of stationarity for the metric
used in [L2].

A general version of the semi-Riemannian Morse Index Theorem is proven in
[45]; the Maslov index is proven to be equal to the difference of the index and of
the coindex of suitable restrictions of the index form.

Exercises for Chapter 5

EXERcCISES.1. Consider the symplectic differential system given in formula
(5.1.3) and initial condition (5.1.7), witX : [a,b] — sp(IR" & IR"*,w) real-
analytic 1 Prove that either every instante ]a, b] is (X, £o)-focal, or else there
are only a finite number dfX, ¢y)-focal instants. Prove that if the initial condition
is nondegenerate, then there are only a finite numbgKof,)-focal instants.

Ia map f: U — IR" defined in an open subsEt C IR™ is said to beaeal-analyticif for all
z® € U, in a neighborhood af° we can writef as the sum of @ower seriesentered at’, i.e.,

fl@)=> an(@ —aD)M - (wm — ap),
A

for z nearz®, whereX = (\1,..., \n) runs over the set of alh-tuples of non negative integer
numbers. A power series centeredrdtand convergent in a neighborhood df, converges ab-

solutely and uniformly in a (possibly smaller) neighborhood:®f It follows that the series above
can be differentiated termwise; in particular, every real-analytic functid@rfts and the coefficient

ax is given by theTaylor’s formula

1 ale
DYRRERD vy 8xi1 .. Oxpm
where|A| = A1 + - - - 4+ A It follows easily from the two formulas above that the set of point of

wheref and all its partial derivatives are zero is open and closéd.ii particular,a real-analytic
function on a connected domain which is zero in a non empty open set is identically zero

(x(l)7 e 7m?n)7

a) =
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EXERCISE 5.2. Consider the isomorphis@: R" & R"* — IR" & IR"*
defined byO (v, a) = (v, —«); in terms of matrices:

1 0
o=(5 1)

wherel denotes the x n identity matrix. Define:
XP=00Xo00;

prove thatX°P is a symplectic differential system and compute its components
A°P, B°P andC°P, and its fundamental matri&°P. The systemX°P is called the
opposite symplectic differential system>of Characterize the solutions &f°P in
terms of those ofX'.

EXeERcISES.3. Inthe notations of Exercise 5.2, prove téat IR™ @ R™* —
IR™ @ IR™ is nota symplectomorphism (with respect to the canonical symplectic
structure), but it takes Lagrangian subspaces into Lagrangian subspaces. Given
ly € A(R™ ® IR™*,w), denote by(* the LagrangiarO(¢,), which is called the
opposite Lagrangian subspacefgf Denote by( P, S) and(P°P, S°P) respectively
the pair associated # and to the opposite Lagrangian subspéfe Determine
the relation betweer® and P°? and betweert and S°P; prove that(X, ¢y) has
a nondegenerate initial condition if and only(jKOP,Egp) does, and, in this case,
find the relation between the focal index (whenever defined) and the Maslov index
of (X, £y) and of (X°P, £;").

EXERCISES.4. Prove that, in Definition 5.2.5, the Maslov index of the curve
?| (44, does not depend on the choicesof 0 provided that there are nd, /)-
focal instants in the intervad, a + ].

EXERCISES.5. Show that the symmetric bilinear forfh: introduced in 5.3.9
does not indeed depend on the choice of the symplectic trivialization.



APPENDIX A

Answers and Hints to the exercises

A.1. From Chapter 1
Exercise 1.1. The naturality of the isomorfism (1.1.1) means that:
Lin(V,W*) —— B(V,W)
Lin(L,M*)l lB(L,M)
Lin(Vy, Wy) —— B(V4, W)
whereL € Lin(V1,V), M € Lin(W;, W) and the horizontal arrows in the dia-
gram are suitable versions of the isomorphism (1.1.1).
Exercise 1.2.Write B = Bs + Bj, With Bs(v,w) = 3 (B(v,w) + B(w,v))
andBa(v,w) = 5 (B(v,w) — B(w,v)).
Exercise 1.3.Use formula (1.2.1).

Exercise 1.4.Everyv € V can be written uniquely as= Zjej z;bj, where
zj = xj +1yj, v;,y; € IR, thereforev can be written uniquely as a linear combi-
nation of theb;’s and of theJ (b;)'s asv = 3. 7 x;b; + y;J (b))

Exercise 1.5. The uniqueness follows from the fact th&t’) generated © as
a complex vector space. For the existence defiig = f o' o R(v) +ifo
1~ 1o 3(v), whereRR andSs are the real part and the imaginary part operator relative
to the real form (V) of VC.

Exercise 1.6.Use Proposition 1.3.3 to get maps V,* — V,L andy : V,° —
Vl(C such thatpo 11 = 15 andy) o1y = ¢1; the uniqueness of Proposition 1.3.3 gives
the uniqueness of thg. Using twice again the uniqueness in Proposition 1.3.3,
one concludes that o ¢ = Id and¢ o 1) = Id.

Exercise 1.7.1f Z = UT, then obviously(Z) c Z. Conversely, it(Z) C Z
thenR(Z) and(Z) are contained i/ = Z N V. It follows easily thatz = U®,

Exercise 1.8.In the case of multi-linear operators, diagram (1.3.2) becomes:
Vl(C X - X Vp(C
L1 X XLy

le"‘XV})TiW
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The identities (1.3.5) still hold whefi® is replaced byI'C; observe that the
same conclusion doe®t hold for the identities (1.3.3) and (1.3.4).

Lemma 1.3.10 generalizes to the case of multi-linear operators; observe that
such generalization gives us as corollary natural isomorphisms between the com-
plexification of the tensor, exterior and symmetric powerg @nd the correspond-
ing powers of//C.

Lemma 1.3.11 can be directly generalized to the caseShatan anti-linear,
multi-linear or sesquilinear operator; in the anti-linear (respectively, sesquilinear)
TC must be replaced by (respectively, byI'®s). For aC-multilinear operator
S:VE x - x VE— VE (orif p=2andS is sesquilinear) the condition that
preserves real formsecomes:

SVix--xV,)CV,
while the condition otommuting with conjugatiohecomes:
S(ey...,c)=coS.

Exercise 1.9.If B € B(V), thenB(v,v) = —B(iv, iv).
Exercise 1.10.Use (1.4.4).

Exercise 1.11.Set2n = dim(V') and letP C L; be a subspace anl €
Bsym (P) be given. To see that the second term in (1.4.14) definescimensional
subspace o choose any complementary subspHcef P in L; and observe that
the map:

L9U+wi—>(U,pL17LO(’UJ>’Q)GP@Q*, v e L, we Ly,

is an isomorphism. To show thdtis isotropic, hence Lagrangian, one uses the
symmetry ofS:

(A.1.1)

w(vi4wi, va+w2) = pry 1o (W1)-v2a—pr,,L,(W2)-v1 = S(v1,v2)—S(ve,v1) =0,

forall v1,v9 € L1, w1, ws € Lo With v + w1, ve + we € L.

Conversely, let. be any Lagrangian; sét = 7;(L), wherer; : V. — Lj is
the projection relative to the direct sum decomposition= Lo ¢ L. If v € P
andwi, ws € Ly are such that + wq,v +we € L, thenw, — wy € LN Ly; Since
P C L+ Ly, it follows that the functionalgr,, 1,(w1) andpy, 1, (w2) coincide in
P. Conclude that if one choosas< L, such thaty +w € L, then the functional
S(v) = pr.,L,(w)|p € P* does not depend on the choicewf One obtains a
linear maps : P — P*; using the fact thal is isotropic the computation (A.1.1)
shows thatS is symmetric. The uniqueness of the pdh S) is trivial.

Exercise 1.12.The equalityl'(0, o) = (0, ) holds iff Ba = 0 and—A*a =
6. If Bisinvertible, then clearly the only solutionds= 0; conversely, ifB is not
invertible, then there exists a non zero solutioof the equations.

Since B*D is symmetric, then so i®* 1 (B*D)B~' = DB~'. Moreover,
since DB~! is symmetric, then so isi* DB~ A; substitutingA*D = (Id +
B*C)*, we getthatthe matrid+B*C)*B~1A = (Id+C*B)B~'A = B~1A+



A.l. FROM CHAPTER 1 153

C* A is symmetric. Sinc&* A is symmetric, themB~! A is symmetric. Finally,
substitutingC' = B*~!(D*A — 1d) and using the fact thd®B—! = B*~1D*, we
getC—DB'A-B ' =B* 'D*A-B*'-DB'A-B'=_pB* 1B,

which is clearly symmetric.

Exercise 1.13.7™* is symplectic iff, in the matrix representations with respect
to a symplectic basis, it BwT™ = w; this is easily established using the equalities
T*wT = w andw? = —Id.

Exercise 1.14.Clearly, if P,O € Sp(2n, IR) thenM = PO € Sp(2n, IR).
Conversely, recall from (1.4.6) thaf is symplectic if and only if\/ = w='M*J;
applying this formula ta\/ = PO we get:

PO = w PO =w ' Prw-w 0.
Sincew is an orthogonal matrix, them—!' P*w is again symmetric and positive
definite, whilew='O*w is orthogonal. By the uniqueness of the polar decomposi-

tion, we getP = w~!'P*w andO = w~'O*w which, by (1.4.6), implies that both
P andO are symplectic.

Exercise 1.15.Use Remark 1.4.7: a symplectic m&p V1 &V, — V must be
injective. Use a dimension argument to find a counterexample to the construction
of a symplectic map on a direct sum whose values on each summand is prescribed.

Exercise 1.16w(Jv, Jw) = w(J?w,v) = —w(w,v) = w(v,w).

Exercise 1.17.1f J is g-anti-symmetrigy(Jv, Jw) = —g(v, J?w) = g(v, w).

Exercise 1.18.Use induction onlim (V) and observe that the-orthogonal
complement of an eigenspacelis invariant by7 . Note that if7 is Hermitian,
the its eigenvalues are real;If is anti-Hermitian, then its eigenvalues are pure
imaginary.

Exercise 1.19.The linearity ofpr, 1, is obvious. Sincelim(L;) = dim(Lg),
it suffices to show thapr, 1, is surjective. To this aim, choose € L; and
extenda to the uniquea € V* such thata(w) = 0 for all w € L;. Sincew
is nondegenerate oW, there existey € V such thath = w(v,-). SinceL; is
maximal isotropic it must be € L, andpy, 1, is surjective.

Exercise 1.20.Clearly, (L) is isotropic in(S+/S,w). Now, to compute the
dimension ofr(L) observe that:

dim(7(L N $*)) = dim(L N S*) — dim(L N S),
(LNS)t =L+ + 5+ =1L+,

dim(L N S) + dim((L N S)*) = dim(V),

%dim(Sl /5) = %dim(V) _ dim(S) = dim(ZL) — dim(S).

The conclusion follows easily.
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A.2. From Chapter 2

Exercise 2.1. Suppose thaX is locally compact, Hausdorff and second count-
able. Then, one can writ& as a countable union of compact séfs, n € IV,
such that,, is contained in the interidnt (K, ;) of K, foralln. SetC; = K;
andC,, = K, \ int(K,_1) forn > 2. Let X = |J, U, be an open cover oX; for
eachn, coverC,, with a finite number of open sets, such that

e eachV, is contained in som&y;
e eachV, is contained irC,,_; U C,, U Cj 1.
It is easily seen thak’ = |, V,, is a locally finite open refinement ¢t/ } .

Now, assume thak is locally compact, Hausdorff, paracompact, connected
and locally second countable. We can find a locally finite open caver | J, Uy
such that eacl/,, has compact closure. Construct inductively a sequence of com-
pact setd{,,, n > 1, in the following way: K is any non empty compact sét,,
is the union (automatically finite) of all , such that/, N K,, is non empty. Since
K, C int(K,41), it follows that| J,, K, is open; sincé J,, K, is the union of a
locally finite family of closed sets, the),, K, is closed. SinceX is connected,

X = U, K,. EachK, can be covered by a finite number of second countable
open sets, henc¥ is second countable.

Exercise 2.2.Letp € P be fixed; by the local form of immersions there exist
open setd/ ¢ M andV € N, with fy(p) € V C U, and a differentiable map
r: U — V such that|y, = Id. Sincef is continuous, there exists a neighborhood
W of pin P with fo(W) C V. Then,folw =70 flw.

Exercise 2.3.Let A; and A, be differentiable atlases fa¥ which induce the
topologyr and such that the inclusiofs: (N, A;) — M andiy : (N, A2) — M
are differentiable immersions. Apply the result of Exercise 2.2 ita i; and
with f = iy; conclude thaid : (N, A;) — (N, Ay) is a diffeomorphism.

Exercise 2.4.The proof follows from the following characterization of local
closednesssS is locally closed in the topological spaéeif and only if every point
p € S has a neighborhood in X such that” N S is closed inV.

Exercise 2.5.From (2.1.14) it follows easily that the curve:
t— exp(tX)-m
is an integral line ofX *.
Exercise 2.6.Repeat the argument in Remark 2.2.5, by observing that the

union of a countable family gbroper subspaces o™ is aproper subset oflR"™.
To see this use the Baire’s Lemma.

Exercise 2.7.1t is the subgroup of5L(n, IR) consisting of matrices whose
lower left (n — k) x k block is zero.

Exercise 2.8.Setk = dim(L N Ly). Consider a (not necessarily symplectic)

basis(b;)?", of V such thatb;)"_, is a basis ofo and(bi)fg;karl is a basis of..

Define an extension aB by settingB(b;, b;) = 0 if eitheri or j does not belong
to{n—k+1,...,2n — k}.
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Exercise 2.9.The proof can be done in three steps:

e choose a partitiom = tg < t; < --- < tp = b of the interval|a, b]
such thatforali = 1,...,k — 1 the portiony|;,_, 4, ) of v has image
contained in an open séf; C B on which the fibration is trivial (an
argument used in the proof of Theorem 3.1.23);

e observe that a trivialization; of the fibration over the open sit induces
a bijection between the lifts of|, jandthe mapg : [t;—1,ti+1] —
F;

e constructy : [a,b] — E inductively: assuming that a liff; of [, is
given, define a lifty, . ; of v|(, 4, ,] in such away thay, . ; coincides with
7, on the intervala, t;_1 + ¢] for somes > 0 (use the local trivialization
a; and a local chart ir").

i—1bit1

Exercise 2.10.The map is differentiable because it is the inverse of a chart.
Using the technique in Remark 2.3.4, one computes the differential of the map
T — Gr(T) as:

Lin(R", IR™) > Z — qo Z o mi|awr) € Tawr)Gn(n +m),
wherem is the first projection of the decompositidR™ ® IR™ andq : IR™ —
R™™ /Gr(T) is given by:

q(x) = (0,z2) + Gr(T).

Exercise 2.11.Use the result of Exercise 2.9 and the fact afn, IR) is the
total space of a fibration oveéry(n).

Exercise 2.12.An isomorphismd € GL(n, IR) acts on the elemeitV, O) €
G (n) and produces the eleme (W), 0’) where?’ is the unique orientation
on A(W) which makes

Alw: (W,0) — (AW),0")

a positively oriented isomorphism. The transitivity is proven using an argument
similar to the one used in the proof of Proposition 2.4.2.

Exercise 2.13.Fixy,, is a closed subgroup &fp(V,w), hence it is a Lie sub-
group. LetLy, Ly € A°(Ly) be given. Fix a basi8 of Lo; this basis extends in a
unigue way to a symplectic basi in such a way that the last vectors of such
basis are in_; (see the proof of Lemma 1.4.35). Similarly,extends in a unique
way to a symplectic basi8] whose lask. vectors are irL;. The unique symplec-
tomorphismiI’ of (V,w) which fixesLy and mapd.; onto L} is determined by the
condition thatl” mapsB; to B;.

Exercise 2.14.Use (1.4.7) and (1.4.8) on page 21.

Exercise 2.15.Use formulas (2.5.6) and (2.5.7) on page 56: chdose A
with Ly N Lo = {0} and setB = ¢ _; (L). Now, solve forL; the equation:

B = (v (B) = (B7' - (PLO,zl)#((SOzl,LO(Ll))yl-



156 A. ANSWERS AND HINTS TO THE EXERCISES

A.3. From Chapter 3

Exercise 3.1. A homotopy H between the identity ok and a constant map
f = x( drags any given point ok to xg.

Exercise 3.2.For eachry € X, the set{y € X : dacontinuous curve :
[0,1] — X with 4(0) = zo, v(1) = y} is open and closed, sinck is locally
arc-connected.

Exercise 3.3.Define)s(t) = A((1 — s)t) andHy = (A\; ! -~) - \,. Observe
that H, is a reparameterization of

Exercise 3.4.If [y] € m1(X, o) thenH induces a free homotopy between the
loops f oy andg o v in such a way that the base point travels through the ciyve
use Exercise 3.3.

Exercise 3.5. Using the result of Exercise 3.4, itis easily seen that f. and
f+ o g« are isomorphisms.

Exercise 3.6. The inclusion of{z¢} in X is a homotopy inverse fof iff X is
contractible.

Exercise 3.7.1f g is a homotopy inverse fof, then it follows from Corol-
lary 3.3.24 thay, o f, = Id and f, o g, = Id.

Exercise 3.8.1t follows from r, o i, = Id.
Exercise 3.9.Do you really need a hint for this Exercise?

Exercise 3.10.If f1 and f, are such thap o f; = po fo = f then the set
{z: fi(z) = fo(x)} is open (becausgeis locally injective) and closed (becauBe
is Hausdorff).

Exercise 3.11. X is connected because it is the closure of the graphof =
sin(1/z), x > 0, which is connected. The two arc-connected componenfs of
are the graph of and the segmer{0} x [—1, 1]. Both connected components are
contractible, hencél((X) = Z & Z, andH,(X) = 0 forall p > 1.

Exercise 3.12.See B1, §24, Chapter 3].

Exercise 3.13.First, if U C X is open thermp(U) is open inX/G since
p Y p(U)) = Ugec 9U; moreover, ifU is such thayU N U = () for everyg # 1
thenp is a trivial fibration over the open sptU). This proves thap is a covering
map. The other statements follow from the long exact homotopy sequep@andf
more specifically from Example 3.2.21.

Exercise 3.14.The restriction of the quotient map X — X/G to the unit
squarel? is still a quotient map sincé? is compact and\ /G is Hausdorff; this
gives the more familiar construction of the Klein bottle. To see that the action of
G on X is properly discontinuous take for everyc X = IR? the open sel/ (see
Exercise 3.13) as an open ball of rad&xs

Exercise 3.15.Use Example 3.2.10 and Theorem 3.3.33.
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Exercise 3.16.Use the exact sequenée= Hy(D) — Hy(D,0D) —

A.4. From Chapter 4

Exercise 4.1.1t follows from Zorn’s Lemma, observing that the union of any
increasing net oB-negative subspaces isnegative.

Exercise 4.2. The proof is analogous to that of Proposition 4.1.27, observing
thatifvy, vy € V are linearly independent vectors such tBét;, v;) < 0,7 = 1,2,
and such that (4.1.5) holds, théris negative semi-definite in the two-dimensional
subspace generated byanduvs; (see Example 4.1.12).

Exercise 4.3.Let V1 be thek-dimensional subspace &f generated by the
vectors{vy, ..., vt} andV; be the(n — k)-dimensional subspace generated by
{Vk+1,...,vn}; sinceX is invertible, thenB|y, 1, is nondegenerate, hence, by
Propositions 1.1.10 and 4.1.23,.(B) = ni(Blyyxv,) + ni(B|Vlj_><Vlj_). One
computes:

Vit = {(—Xﬁlsz,wg) fwy € Vz},
andB|y.1 .1 is represented by the matiik — Z*X ' Z.

Exercise 4.4.SetlW = V @ V and define the nondegenerate symmetric bi-
linear formB ¢ Bsym(W) by B((al, bl), (ag, bg)) = Z(al,ag) — U(bl, bg). Let
A C W denote the diagonah = {(v,v) : v € V}; identifying V' with A by
v — (v,v), one computes easilB|» = Z — U, which is nondegenerate. More-
over, identifingl” with At by V 5 V — (v, U~ Zv) € A+, itis easily seen that
Blar = Z(Z7' — U1 Z. The conclusion follows.

Exercise 4.5. ComputeQ, on a generator off; (A).

Exercise 4.6.The map[0,1] x [a,b] 3 (s,t) — A((1 — s)t + sa) - £(t) €
A is a homotopy with free endpoints betweéand the curved(a) o ¢. Using
Remark 3.3.30 one gets thaand A(a) o ¢ are homologous iti; (A, A°(Ly)); the
conclusion follows from Corollary 4.2.6.

Exercise 4.7.Using the result of Exercise 2.13 we find a cut¥e [a, b] —
Sp(V,w) such thatA(t)(Ls) = L1(t) for all t and for some fixed.s € A°(Ly);
it is easily seen thap,, 1, (l(t)) = @ro.r,(A(t)"*(£(t))). The conclusion
follows from Theorem 4.2.15 and Exercise 4.6.

Exercise 4.8.Using formula (2.5.11) one obtains:

(A-4-1) ¥Ls,Lo (LZ) = _(pLo,Ls)# (@Lo,Ls (L2)71);
from (2.5.5) it follows that:

(A.4.2) YLy,Lo © (@Ls,Lo)_l(B) = ¥Ly,Lo (Ls) + (nf?,LS)#(B) € B(L1),
for any symmetric bilinear fornB € B(Ls). It is easy to see that:

L
(A.4.3) PLo,Ls © 1L, Ly = PLo,L1}
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and the conclusion follows by settif = ¢, 1,(L2) in (A.4.2) and then using
(A.4.1) and (A.4.3).

Exercise 4.9.See Examples 4.1.4 and 1.1.4.
Exercise 4.10.By Theorem 4.2.15, it is

1o () = 1y (@ro,L. (L)) — ny (€1o,2. (€(a)));

Conclude using the result of Exercise 4.9 whége= L., settingLy = ¢(a) and
thenLy = ¢(b).

Exercise 4.11.Use Exercise 2.10.

Exercise 4.12.0bserve that the map: Sp(IR" @ IR™*,w) — A given by
p(T) = T({0} & IR™) is a fibration; the set in question is the inverse image by
p of the dense subset’(Ly) of A (see Remark 2.5.18). The reader can prove
a general result that the inverse image by the projection of a dense subset of the
basis of a fibration is dense in the total space. For the connectedness matter see the
suggested solution of Exercise 4.13 below.

Exercise 4.13andExercise 4.14. These are the hardest problems on the book.
The basic idea is the following; write every symplectic matrix

-t )

with B invertible as a product of the form:

0 B\ /1 0
T:<—B*—1 D> (U 1)’

with D = S o B andS, U symmetricn x n matrices. Observe that the set of sym-
plectic matrice§” with B invertible is diffeomorphic to the set of triplés, U, B)

iN Bgym (IR™) X Bgym (IR™) x GL(n, IR). Using also some density arguments (like
the result of Exercise 4.12) the reader should be able to complete the details.

Exercise 4.15.The map® : Sp(2n, IR) — A(IR*") given by®(t) = Gr(T)
induces a map
@, : 11 (Sp(2n, R)) 2 Z — m (A(R™) 2 Z)

which is injective (it is the multiplication by, up to a sign). This is easily
checked by computing, on a generator ot (Sp(2n, ]R)) (see Remarks 4.2.21
and 4.2.22). It follows that if a loop ifp(2n, IR) has image byp which is con-
tractible inA(IR*") then the original loop is contractible Bp(2n, IR). Now, use
thatA°(A) is diffeomorphic to a Euclidean space.

A.5. From Chapter 5

Exercise 5.1.If X is real-analytic, then also the fundamental matrix ®(t)
is real-analytic infa, b]. If (b;)?_, is a basis of the Lagrangiap, then the(X, ¢;)-
focal instants are the zeroes]in b] of the real-analytic function:

[a,b] >t — det ((7T1 o ®(t)) - by,...,(m o d(t))- bn),
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wherer; : IR" & IR™ — IR™ denotes the projection onto the first coordinate. If
the initial condition is nondegenerate, then by Corollary 5.2.4 there af&n€)-
focal instants in a neighborhood of= a.

Exercise 5.2. A°» = A, B°®* = —B, C°? = —C and
(A5.1) OP=00d00.
Moreover,(v, ) is a solution ofX°P iff Oo (v, a) = (v, —«) is a solution ofX °P.

Exercise 5.3.1t is O (w) = —w, which proves that) is not a symplec-
tomorphism, but it takes Lagrangian subspaces into Lagrangian subspaces. It is
PP = P, SP = —8, i (X, 07) = —ifoc(X, lo) andimasiov(X°P, 4F) =
—imaslov (X, ¢0). For the focal indexes, it suffices to observe that /) and
(X°P, ¢;P) have the same focal instants, with the same multiplicity but opposite
signature. As to the Maslov indexes, one first observe that, using (A.5.1), the curve
(°? is given byO o ¢; O gives a diffeomorphism of the Lagrangian Grassmannian
A, O(Lg) = Lo and soO leavesA®(Lg) invariant. One gets an isomorphism
O, : Hi(A,A%(Lg)) — Hi(A,A°(Lg)); it follows from the result of Exercise 4.5
thatO, = —Id.

Exercise 5.4.1f 0 < ¢ < ¢’ and if there are n¢X, ¢;)-focal instants ifa, a +
e'], thenl|jqyc o 4o IS @ curve inA%(Lg), and thereforeuy,, (€|[a+€7a+8,]) =0.

Exercise 5.5. See B6], in the remarks after Definition 3.1.6.
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