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ABSTRACT. We prove bifurcation results for (compact portions of) nodoids inR3, whose
boundary consists of two fixed coaxial circles of the same radius lying in parallel planes.
Degeneracy occurs at an infinite discrete sequence of instants, that are divided into four
classes. Different types of bifurcation and break of symmetry occur at each instant of three
of the four classes; bifurcation does not occur at the degeneracy instants of the fourth class.
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1. INTRODUCTION

The classical Delaunay surfaces of revolution in R3 with constant mean curvature
(CMC for brevity) are divided into six different types: planes, spheres, cylinders, catenoids,
unduloids and nodoids, see [7]. The nodoids (Figure 2) are immersed surfaces in R3, ob-
tained by rotating around a fixed line ` the curve traced by the focus of a hyperbola that rolls
without slipping along `. Such generatrix, the nodary (Figure 1) is a periodic immersed
curve with non vanishing curvature, with loops toward the axis. The nodoids form a two-
parameter family of immersions of the infinite cylinder S1 × R. In this paper we study
bifurcation problems with symmetry breaking for CMC immersions in R3 of the compact
cylinder C = S1 × [−t0, t0] having fixed boundary. Let us consider two parallel horizontal
planes Π0 and Π1 inR3, and let C0, C1 be coaxial circles of the same radius r∗ > 0 on Π0

and Π1 respectively. Moreover, let Π be a plane parallel to Π0 and Π1 lying half way be-
tween Π0 and Π1 (see Figure 3). The nodoids whose intersection with Π0 and Π1 contain
respectively C0 and C1 and that are symmetric with respect to reflections around Π form a
real analytic 1-parameter family Σ = (Σt0), with t0 > 0. For all t0, Σt0 is a CMC immer-
sion of the cylinder in R3 whose symmetry group is the direct product S1 ×Z2, where S1

is the group of rotations, and the generator of Z2 is the reflection around the plane Π. The
mean curvature H(t0) of Σt0 is a real analytic function satisfying lim

t0→+∞
H(t0) = −∞,

see Proposition 3.1. The parameterization of the family will be chosen in such a way that
sin t0 is equal to the component of the unit normal to Σt0 on the boundary in the direction
of the the rotation axis, see Section 3.1. Thus, when t0 is of the form π

2 + kπ, with k ∈ N,
the corresponding nodoids Σt0 intersect Π0 and Π1 tangentially at C0 and C1. Figures 7
and 8 illustrate the situation. When t0 is of the form kπ, k ≥ 1, the corresponding nodoids
Σt0 intersect Π0 and Π1 orthogonally at C0 and C1, see for instance Figure 11. These
two types of nodoids are degenerate, in the sense that they are degenerate critical points of
the area functional subject to the constraint volume = const. (Propositions 3.5, 3.6). The
main result of the paper is that there is bifurcation of fixed boundary CMC immersions of
the cylinder with break of symmetry at each one of these degenerate nodoids. Rotational
symmetry breaks at the bifurcating branch at the instants π

2 + kπ, while at the instants
t0 = kπ the reflection symmetry is broken. Moreover, we determine a sequence of other
degenerate instants where no bifurcation occurs. A complete statement of our result is as
follows:

Theorem. The set Deg(Σ) of degeneracy instants t0 of the family Σ = (Σt0) contains the
set
{
k π2 : k ∈ N

}
and a sequence s0 < s1 < . . . < sk < . . ., where kπ < sk < kπ + π

2
for all k ≥ 0. Moreover:

(1) There is a bifurcating branch of non axially symmetric CMC immersed cylinders
with fixed boundary C0

⋃
C1 issuing from the family Σ at each degenerate nodoid

Σt0 , with t0 = π
2 + kπ, k ∈ N.

(2) At the instants t0 = kπ, with k ≥ 1, there is a bifurcating branch issuing from Σt0
that consists of fixed boundary nodoids (axially symmetric), that are not symmetric
with respect to reflections around Π.

(3) There is no bifurcation at the degenerate instants t0 = sk for all k ≥ 0.

(4) There are other degenerate instants at large values of the parameter t0, and at each
of them bifurcation occurs by a branch of non axially symmetric CMC immersions.
At some of these instants, the bifurcating branch is also not symmetric with respect
to reflections around Π. In all cases, the bifurcating branch consists of CMC
immersions of the cylinder that are invariant by rotation of an angle 2π

n , with n
arbitrarily large.

(5) For all nondegenerate instants, the nodoid family Σ is locally rigid, in the sense
that every CMC immersion of the cylinder having boundary C0

⋃
C1 which is
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FIGURE 1. The nodary and the symmetry axis.

FIGURE 2. A portion of nodoid, with boundary on parallel planes or-
thogonal to the axis.

sufficiently close to a nodoid Σt0 with t0 6= k π2 for all k ≥ 1 must be isometrically
congruent to a nodoid of the family.

There are some related results in the literature concerning bifurcation of constant mean
curvature curvature submanifolds and nodoids in particular. In [17], the author uses a
general bifurcation result of Crandall and Rabinowitz [6] to produce a symmetry breaking
bifurcation from a family of stable nodoids. We wish to emphasize that this method only
applies to bifurcation from a stable branch while here we consider a much larger class
of bifurcations. In [16] the authors prove a result of bifurcation for infinite nodoids in
R3, see also [18, 19]. The bifurcation of domains in nodoids has been studied in detail
in the applied mathematics literature (see [20]) but not in a mathematically rigorous way.
Again, only bifurcation from stable equilibria has been treated previously. Our objective
here is to present a theoretical justification of these bifurcations in the framework of global
analysis. In [2] it is proved a bifurcation result for embedded tori in spheres, the bifurcating
branch issuing from the family of CMC Clifford tori with varying radius. More results on
bifurcation and completeness of the bifurcating branch have been announced in [9].

The proof of our theorem uses an abstract bifurcation result of Smoller and Wasserman
in [21]; for the proof of item (4) of our main theorem, we use the equivariant version of the
result, see Subsection 2.8. We set up the appropriate variational framework in Section 2,
where the CMC problem is cast in the language of constrained critical points. Bifurcation
is then reduced to the study of the jumps of the Morse index of the nodoid immersions.
Here, by Morse index we mean the index of the quadratic form given by the CMC Jacobi
operator defined in the space of all variational vector fields vanishing on the boundary.
This is what we call the strong Morse index of the CMC immersion.

The 2-dimensional space of horizontal translations determines two linearly independent
Jacobi fields along the nodoids, that vanish on the boundary of the nodoid precisely when
the nodoid is tangent to the planes Π0 and Π1 at its boundary. This corresponds to the in-
stants t0 = π

2 +kπ, k ≥ 0. Thus, the corresponding CMC immersions are degenerate, i.e.,
the kernel of the second variation of the CMC variational problem is non trivial. We show
that such degeneracy does in fact produce a jump of the Morse index. This, together with a
further assumption of local injectivity of the mean curvature function, implies bifurcation,
see Proposition 2.5. It is interesting to observe here that the mean curvature function fails
to be locally injective at those degeneracy instant at which some Jacobi field has non zero
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FIGURE 3. Circles C0 and C1 for the CMC fixed boundary problem,
lying on the planes Π0 and Π1. In the middle, the symmetry plane Π.

average, see Subsection 2.6. This occurs, for instance, when the degeneracy is produced
by the vanishing of the first eigenvalue of the Jacobi operator. Thus, bifurcation can only
occur when some eigenvalue λk, with k > 1, vanishes.

As to the symmetry breaking property, this follows by a direct analysis of all possi-
ble axially invariant CMC immersions of the cylinder having fixed boundary and that are
“close” to the family of nodoids. All such immersions must indeed belong to the fam-
ily of nodoids, which proves that bifurcation must be realized by non axially symmetric
immersions.

Similarly, the one-dimensional space of vertical translations determine a Jacobi field
on each nodoid of the family, that vanishes on the boundary exactly when the normal to
the surface is horizontal at the points of the boundary. This corresponds to the instants
t0 = kπ, k ≥ 1. In this case, the Jacobi field is axially symmetric, and that implies that
there is a bifurcating branch of axially symmetric fixed boundary CMC immersions of the
cylinders. Thus, the bifurcating branch consists of nodoids, and they are not symmetric
with respect to the horizontal plane Π. We determine an explicit parameterization of each
bifurcating branch in this case, see Subsection 3.5.

A third type of degeneracy instant of the nodoid family is given by those instants where
the mean curvature function of the family has vanishing derivative. In this case, a non
trivial Jacobi field vanishing on the boundary along the degenerate nodoid is obtained as
the variational vector field of the family Σ itself, see Remark 2.11. Thus, there is no
bifurcation at this type of degeneracy instants.

Finally, a fourth type of degeneracy instants is determined via Sturm–Liouville theory
applied to the Jacobi equation, see Appendix A. We do not give a geometrical description
of these instants, but we prove that bifurcation occurs, and that all types of symmetry break
in the bifurcating branch.

The local rigidity of the nodoid family at nondegenerate instants is proved using the
Implicit Function Theorem, see also [12, Theorem 1.1].

The paper is organized as follows. In Section 2 we discuss the abstract framework for
the CMC variational problem, and we give criteria for the existence of bifurcations for
families of CMC immersions. Special emphasis is given to equivariant bifurcation, which
is employed in the study of axially symmetric surfaces.

In Section 3 we will describe the family of fixed boundary nodoids; the set of degenerate
instants is divided into four families, and we study the existence of bifurcating branches
and break of symmetry at instants of each class.

Appendix A contains a detailed study of the Jacobi field equation, using the method of
separation of variables.
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The bifurcation results for fixed boundary nodoids discussed in this paper can be ex-
tended to the more general case of anisotropic nodoids which arise as critical points for
axially symmetric anisotropic surface energies. Assuming adequate symmetry of the func-
tional, such an extension does not present significative differences from the standard CMC
case. In Section 5 we will present briefly the construction of families of fixed boundary
anisotropic nodoids, for which bifurcation results totally analogous to those for the stan-
dard nodoids hold.

2. THE VARIATIONAL FRAMEWORK

2.1. The manifold of immersed submanifolds. Let C denote the cylinder S1× [0, 1]; this
is a compact manifold with boundary ∂C = S1×{0}

⋃
S1×{1}. For k ≥ 2 and α ∈ ]0, 1[,

let X denote the Banach space Ck,α(C,R3), consisting of all maps x : C → R3 of class
Ck,α. The set:

X0 =
{
x ∈ X : x is an immersion, and x|∂C is injective

}
is an open subset of X .

Proposition 2.1. Given any two Ck,α-embeddings of the circle ci : S1 ↪→ R3, i = 0, 1,
then the subset:

X0(c0, c1) =
{
x ∈ X0 : x(·, 0) = c0, x(·, 1) = c1

}
is a non empty smooth embedded submanifold of X0.

Proof. In order to see that the set X0(c0, c1) is non empty, choose any smooth map D :
S1 × [0, 1] → R3 such that D(·, i) = ci, for i = 1, 2, and such that D is an immersion at
all points of S1 × {0}

⋃
S1 × {1}. Such a function exists, by the assumption that ci is an

embedding for i = 1, 2. Then, D can be approximated in the Ck+1-topology by smooth
immersions that coincide with D in a neighborhood of S1 × {0}

⋃
S1 × {1}, see [10]. In

particular, X0(c0, c1) is non empty.1

Denote by Y the Banach space Ck,α(S1,R3)× Ck,α(S1,R3). The map

E : X0 −→ Y

that carries x ∈ X0 to the pair of embeddings
(
x|S1×{0}, x|S1×{1}

)
is a smooth submer-

sion, and X0(c0, c1) = E−1
{

(c0, c1)
}

. �

We want to study a bifurcation problem for constant mean curvature immersions in
X0(c0, c1), and to this aim we need to identify immersions that differ by a change of
parameterization. We introduce the following equivalence relation in X0(c0, c1): x is
equivalent to y if there exists a diffeomorphism2 φ : C → C such that x = y ◦ φ. In this
situation, we write x ∼= y; the equivalence class of an immersion x ∈ X0(c0, c1) will be
denoted by

[
x
]
∼=. Let X0(c0, c1) be the set of all equivalence classes

[
x
]
∼=:

X0(c0, c1) =
{[
x
]
∼= : x ∈ X0(c0, c1)

}
.

Thus, X0(c0, c1) is the set of all immersed submanifolds of class Ck,α(R3) that are diffeo-
morphic to C, and whose boundary is the union of the images of c0 and of c1.

The geometrical structure of the set of Ck,α-embeddings of a compact manifold M
(without boundary) into a differentiable manifold N has been studied in [2]. The same
analysis carries over verbatim to the case of immersions of a manifold with boundary; let
us briefly recall the main facts here.

1Note that the argument does not show the existence of injective immersions of the cylinder with given
boundary values. Of course, injective immersions (embeddings) of the cylinder with arbitrary boundary values
may not exist.

2In fact, for our purposes it suffices to consider only diffeomorphisms of C that preserve each connected
component of the boundary ∂C.
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(a) X0(c0, c1) is endowed with a family of charts, denote by Φx, where x ∈ X0(c0, c1)
is a smooth (i.e., C∞) immersion. The domain of the chart Φx is a neighborhood
of
[
x
]
∼= in X0(c0, c1), and it takes values in a Ck,α-neighborhood of the null sec-

tion of the normal bundle of x vanishing on ∂C. For
[
y
]
∼= ∈ X (c0, c1) near

[
x
]
∼=,

Φx
([
y
]
∼=

)
is the unique Ck,α-map V : C → R3 such that:

• V (θ, t) is orthogonal to x(C) at x(θ, t), for all (θ, t) ∈ C;
• V (θ, 0) = V (θ, 1) = 0 for all θ ∈ S1,
• x+ V ∼= y.

(b) As x varies in the set of smooth immersions in X(c0, c1), the maps Φx form
an atlas of charts that make X (c0, c1) into an infinite dimensional topological
manifold, modeled on the (non separable) Banach space Ck,α0 (C,R).

(c) if F : X0(c0, c1)→ R is a smooth function which is invariant by reparameteriza-
tions, i.e., F (x) = F (x ◦ φ) for all diffeomorphism φ : C → C, then the induced
map F : X0(c0, c1) → R is such that F ◦ Φ−1

x is smooth in its domain. In this
situation, a normal field V in the image of the chart Φx is a critical point of the
function F ◦ Φ−1

x if and only if x+ V is a critical point of F in X0(c0, c1).

It is observed in [2] that the transition maps of the atlas {Φx}x∈C∞∩X0(c0,c1) are only
continuous, and not differentiable. This is due to the fact that their expression involves
the operation of taking the inverse of a Ck,α-diffeomorphism of C, which is not a differ-
entiable map in the group of diffeomorphism of class Ck,α. We observe however that,
for the purposes of the present paper, a global differentiable structure for the manifold of
unparameterized embeddings will not be needed. The local differentiable structure given
in (c) above will suffice, since we will establish a local bifurcation result for smooth maps
on X0(c0, c1) that are invariant by diffeomorphisms of C.

Given a smooth immersion x ∈ X0(c0, c1), using the chart Φx centered at x (as de-
scribed above), then the tangent space T[x]∼=X0(c0, c1) will be identified with the Banach
space of all Ck,α-section of the normal bundle x⊥ of x that vanish on ∂C. Note that
Φx(x) = 0x is the null section of x⊥. Let us assume fixed an orientation of C; then one
has a canonical choice of an orientation of x⊥. Let ~nx denote the unit normal vector field
along x which is positively oriented. Sections of x⊥ are of the form f · ~nx, for some func-
tion f : C → R; thus, when x ∈ X0(c0, c1) is smooth, the tangent space of X0(c0, c1) at[
x
]
∼= can be identified with the Banach space of real valued Ck,α-maps on C vanishing on

∂C.

2.2. Area and volume of an immersion. Let g0 denote the Euclidean metric onR3, vol3
the canonical volume form of R3, and let η be any primitive of vol3, i.e., dη = vol3. For
x ∈ X0(c0, c1), we denote by A(x) the area of the immersed submanifold X(C), given
by:

A(x) =

∫
C

volx,

where volx is the area form of the pull-back metric x∗(g0).
Similarly, we define the volume of an immersion x ∈ X0(c0, c1), denoted by V(x), the

real number defined by3 :

(2.1) V(x) =

∫
C
x∗(η).

The reason for calling such a number “volume” is that, when x is an embedding inR3 of a
closed orientable surface, then the above expression gives (up to a sign) the volume of the
bounded subset of R3 whose boundary is the image of x.

3For instance, taking η = 1
3

(x1dx2 ∧ dx3 − x2dx1 ∧ dx3 + x3dx1 ∧ dx2), then (2.1) is given by
V(x) = 1

3

∫
C x · ~nx volx
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Given an immersion x ∈ X0(c0, c1), we will denote by Sx its second fundamental form;
recall that for p ∈ C, Sx(p) is a symmetric operator on the tangent space at p to x(C), whose
trace tr

(
Sx(p)

)
is twice of the mean curvature of x at p. An immersion x ∈ X0(c0, c1)

is said to have constant mean curvature H ∈ R if tr
(
Sx(p)

)
= 2H for all p ∈ C. If

νx : C → S2 is the Gauss map of x, then for p ∈ C the second fundamental form Sx(p)
can be identified with the differential dνx(p).

Let us recall in the following proposition the main facts about the CMC variational
problem, formulated in the language of the present paper:

Proposition 2.2. The following statements hold.
(1) The functions A and V are smooth on X0(c0, c1).
(2) They are invariant by reparameterization, and thus by (c) above they define smooth

functions on A and V on X0(c0, c1).
(3) Given

[
x
]
∼= ∈ X0(c0, c1), and identifying the tangent space T[x]∼=X0(c0, c1) with

the space Ck,α0 (C,R), then the differential dV
(
[x]
)

is given by the linear operator
f 7→

∫
C f volx. In particular, V has no critical point in X0(c0, c1), and for all c in

the image of V , the set Σc = V−1(c) is an embedded submanifold of X0(c0, c1),
and for all [x]∼= ∈ Σc, the tangent space T[x]∼=Σc is identified with the closed
subspace of Ck,α0 (C,R) consisting of functions f such that

∫
C f volx = 0.

(4) Given x ∈ X0(c0, c1) and a real number λ, then
[
x
]
∼= is a critical point of the

functional fλ = A+λ·V inX0(c0, c1) if and only if x has constant mean curvature
H = λ

2 , and in this case
[
x
]
∼= contains a smooth representative.

(5) If x ∈ X0(c0, c1) is a smooth immersions with constant mean curvature H and
λ = 2H , then the second variation d2

(
fλ ◦ Φ−1

x

)
at 0x is identified with the

quadratic form:

(2.2) Qx(f) = −
∫
C
(Jxf) · f volx,

defined on the space Ck,α0 (C,R) of real valued Ck,α-maps f : C → R vanishing
on ∂C. Here Jx : Ck,α0 (C,R) → Ck−2,α(C,R) is the Jacobi operator along x,
which is the strongly elliptic second order linear differential operator defined by:

(2.3) Jxf = ∆xf − ‖Sx‖2 · f,

being ∆x the (positive definite) Laplacian of the pull-back metric x∗(g0), volx the
area form of this metric, and ‖ · ‖ is the Hilbert–Schmidt norm (‖L‖2 = tr(L∗L)).

Proof. Using local coordinates in X0(c0, c1), the maps A and V are given as composition
of a first order nonlinear differential operator (having smooth coefficients), with the linear
operator of integration. This proves part (1). Part (2) follows immediately from the formula
of change of variables in a double integral. Parts (3), (4) and (5) are standard in the classical
literature, see for instance [3, 4]. �

2.3. Degeneracy and Morse index. Let x ∈ X0(c0, c1) be a CMC smooth immersion,
with mean curvature equal to Hx. A function f ∈ Ck,α(C,R) satisfying Jxf = 0 will be
called a Jacobi field along x; by standard elliptic regularity (see [8]), a Jacobi field, is in fact
smooth. Jacobi fields along a CMC immersion x are variational vector fields corresponding
to variations of x by other immersions having the same constant mean curvature, up to
infinitesimals of first order. More precisely, if ]−ε, ε[ 3 s 7→ xs ∈ Ck,α(C,R3) is a
C1-variation of x by CMC immersions, with x0 = x and d

ds

∣∣
s=0

xs = V , then setting
f = V · ~nx, one has:

(2.4) Jxf = 2
d

ds

∣∣∣
s=0

H(s),
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where H(s) is the mean curvature of xs. If d
ds

∣∣
s=0

H(s) = 0, then f is a Jacobi field along
x. In particular, if ~v ∈ R3 is any fixed vector, then the function4 f = ~v ·~nx is a Jacobi field
along x.

Definition 2.3. We will say that x is a degenerate CMC immersion in X0(c0, c1), if
[
x
]
∼=

is a degenerate critical point of the functional f2Hx , i.e., if there exists a non trivial Jacobi
field f along x such that f vanishes on ∂C.

There are two distinct notions of Morse index for solutions of the constrained variational
problem above.

Definition 2.4. Let x ∈ X0(c0, c1) be a smooth immersion having constant mean curva-
ture. The strong Morse index of x, denoted by is(x), is the index of the quadratic form Qx
of (2.2) in the space Ck,α0 (C,R) of real valued Ck,α-maps f : C → R vanishing on ∂C.
The weak Morse index of x, denoted by iw(x), is the index of the restriction of the qua-
dratic form Qx to the closed subspace of Ck,α0 (C,R) consisting of functions f : C → R

with vanishing integral:
∫
C f volx = 0.

Since the subspace of functions with vanishing integral has codimension 1 (it is the
kernel of the bounded linear functional f 7→

∫
C f volx), then one has the following in-

equalities:

(2.5) iw(x) ≤ is(x) ≤ iw(x) + 1,

for all constant mean curvature immersion x ∈ X0(c0, c1).

2.4. Bifurcation of CMC immersions. Let us now assume that I ⊂ R is an interval
and I 3 s 7→ xs ∈ X0(c0, c1) is a continuous path of (smooth) constant mean curvature
immersions. Let us also assume that the value of the mean curvature of xs, denoted by
H(s), has non vanishing derivative in I . Let s ∈ I be fixed; we say that s is a bifurcation
instant for the family {xs}s∈I if there exists a sequence (sn)n∈N in I and a sequence
xn ∈ X0(c0, c1) such that:

i. sn → s as n→∞;
ii. xn has constant mean curvature equal to H(sn) for all n;

iii. xn → xs in X0(c0, c1) as n→∞;
iv. xn 6∈

[
xsn
]
∼= for all n ∈ N.

In other words, s is a bifurcation instant for the family (xs)s∈I if xs is an accumulation of
constant mean curvature immersions in X0(c0, c1) that are not isometrically congruent to
any of the immersions of the family (xs)s∈I .

This is our first result that gives a sufficient condition for bifurcation:

Proposition 2.5. Let ε > 0 and let (xs)s∈[s−ε,s+ε] ⊂ X0(c0, c1) be a C1-path of constant
mean curvature immersions, such that the mean curvature function s 7→ H(s) has non
zero derivative at s = s. Assume that:

(a) for all s ∈ [s− ε, s[
⋃

]s, s+ ε], the immersion xs is nondegenerate;
(b) the strong Morse indices is(xs−ε) and is(xs+ε) do not coincide.

Then, s is a bifurcation instant for the family (xs).
On the other hand, if (xs)s∈I is a C1-family in X0(c0, c1) of constant mean curvature

immersions, with injective mean curvature function s 7→ H(s), that are nondegenerate for
all s in the interval I , then there is no bifurcating instant in I for the family (xs).

Proof. The result is an application of [21, Theorem 2.1]; Smaller–Wasserman’s result
is used here in the following setup. The Banach spaces B0 and B2 are given respec-
tively by Ck−2,α(C,R) and Ck,α0 (C,R), H is the space L2(C) (Lebesgue space of square-
integrable functions on C relatively to the measure given by the area form volxs . The

4More generally, if ~v is any Killing vector field ofR3, then f = ~v · ~nx is a Jacobi field along x.
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interval [λ1, λ2] is given by [2Hmin, 2Hmax], where Hmin and Hmax are respectively the
minimum and the maximum of the mean curvatures of the immersions xs; by assump-
tion, there exists a C1-diffeomorphism [λ1, λ2] 3 λ 7→ sλ ∈ [s − ε, s + ε] such that,
for all λ ∈ [λ1, λ2], the mean curvature of xsλ is equal to λ

2 . The C1-path (uλ)λ∈[λ1,λ2]

in B2 is defined by uλ = Φxa
([
xλ
]
∼=

)
; if necessary, ε will be taken small enough to

guarantee that
[
xλ
]
∼= belongs to the domain of the chart Φxa . The gradient operator

Mλ : Ck,α0 (C,R) → Ck−2,α(C,R) is given by the standard quasi-linear elliptic constant
mean curvature differential operator for value of the mean curvature equal to λ

2 . For all λ,
its differential dMλ(uλ) at the point uλ is the strongly elliptic linear operator Jxaλ defined5

in (2.3). Strong ellipticity here implies the technical assumption on the finite dimension-
ality of the eigenspaces of dMλ(uλ) corresponding to small eigenvalues (recall that the
spectrum of a Fredholm operator near zero consists of eigenvalues of finite multiplicity).

The assumption of nondegeneracy of the immersions xs for s 6= s corresponds to as-
sumption (i) in [21, Theorem 2.1].

Finally, the assumption on the jump of the Morse index corresponds to assumption (i)
in [21, Theorem 2.1]; note that the dimension of the “eigenspace” of xλ is equal to the
strong Morse index is(xλ) when xλ is nondegenerate. This concludes the proof of the first
statement in the thesis.

The last statement of the thesis follows immediately from the Implicit Function Theo-
rem, applied to the equation Mλ(u) = 0. �

Assumption (b) in Proposition 2.5 implies that xs is a (strongly) degenerate constrained
critical point for the area functional; we will see that, in fact, the assumption that the deriv-
ative of the mean curvature function be non zero implies that xs is also weakly degenerate
(see Proposition 2.7). Here is an alternative statement of the bifurcation result in terms of
weak Morse index jumps.

Corollary 2.6. The statement of Proposition 2.5 holds if one replaces assumption (b) with:

(2.6)
∣∣iw(xs−ε)− iw(xs+ε)

∣∣ ≥ 2.

Proof. Using inequality (2.5), one sees immediately that (2.6) implies assumption (b) in
Proposition 2.5. �

2.5. Eigenvalues and Morse index. If x ∈ X0(c0, c1) is a smooth CMC immersion, then
the Jacobi operator Jx is self-adjoint and it has compact resolvent. Thus, Jx has spectrum
which consists of a strictly increasing and unbounded sequence λ1 < λ2 ≤ . . . of real
eigenvalues of finite multiplicity, and the corresponding eigenfunctions form an orthogonal
basis of L2. The number of negative eigenvalues (counted with multiplicity) of Jx is the
strong Morse index of x; x is degenerate if some eigenvalue is equal to 0.

The first eigenvalue λ1, which has a special role in the spectral theory of J , is always
simple, i.e., of multiplicity 1. The corresponding eigenfunction f1 can be chosen to be
positive in the interior C \∂C. In fact, such property characterizes the eigenfunctions of Jx
corresponding to the first eigenvalue.

Let us recall the following fact. Let f be a (non zero) eigenfunction corresponding to
the eigenvalue λk, for some k ≥ 1. The connected components of the set C \ f−1(0) are
called the nodal domains of f . Then, the number of nodal domains of f is less than or
equal to k; this is known as Courant’s nodal domain theorem.

If (xs)s∈I is a smooth variation of x by CMC immersions, then the corresponding
eigenvalue functions s 7→ λi(s) of the Jacobi operators Jxs are continuous. If (xs)s is a
variation of xwhose dependence on s is real-analytic, then by Kato Selection Theorem, see

5This is slightly imprecise. In formula (2.3) we give the expression for the second variation of fλ at a critical
point x, using the chart Φx centered at the same point. Here the critical point and the center of the chart are not
the same. This is really no big deal; the correct expression for dMλ(uλ) is a conjugate of Jxsλ .
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[11], the eigenvalues are also real-analytic. Assumption (b) in Proposition 2.5 is equivalent
to the fact that, for a = a, some eigenvalue function λi changes its sign at a. We will see
below that, in fact, our bifurcation result can only be applied when some eigenvalue λi
with i ≥ 2 crosses the value 0.

2.6. On the assumption of injectivity for the mean curvature function. Proposition 2.5
uses the assumption that the mean curvature function s 7→ H(s) has non vanishing deriv-
ative at the bifurcation instant s. Such an assumption is used in the proof in order to
parameterize the trivial branch of CMC immersions using the value of the curvature. One
can reasonably ask himself whether this assumption is really needed for the result, or not.
The following simple 2-dimensional example shows that the answer to this question is yes,
i.e., bifurcation may not occur otherwise.

Example. Consider the two variable function f(x, y) = 4y3 + 6xy2 − 3xy + 3x2y on the
plane. We can look at it as a family of functions of y, parameterized with the parameter x.
For each fixed x, we look at the critical points of the function y 7→ f(x, y), i.e., we look
for the zeroes of the partial derivative ∂f

∂y = 12y2 + 12xy − 3x + 3x2. Near (0, 0), the

points (x, y) solutions of ∂f∂y = 0 form a smooth curve6 contained in the half-plane x ≥ 0,
tangent to the vertical axis at (0, 0). Notice that the Implicit Function Theorem cannot be
used in this situation, as ∂2f

∂y2 (0, 0) = 0. Observe also that the function x is not locally
injective on the points of the curve near (0, 0), as for each x ∈]0, 1[ there are exactly two
solutions of 12y2 + 12xy− 3x+ 3x2 = 0, one with y > 0 and the other with y < 0. At all
point (x, y) of this curve where y > 0, the second derivative ∂2f

∂y2 = 24y + 12x is positive,
while it is negative at all points (x, y) of the curve with y < 0. Thus, there is a jump of the
Morse index at the point (0, 0), but there is no bifurcation.

Motivated by this observation, let us prove the following result relating the injectivity
property of the mean curvature function and the vanishing of the integral of Jacobi fields.
We will state the result only for CMC immersions of compact surfaces in R3, although an
analogous result clearly holds in the more general context of CMC immersions of hyper-
surfaces in arbitrary Riemannian manifolds.

Proposition 2.7. Let Σ be a compact oriented surface, let x : Σ→ R3 be a smooth CMC
immersion, and let Jx be the corresponding Jacobi differential operator. Assume that there
exists a smooth 1-parameter variation xs : Σ→ R3 of x by CMC immersions, s ∈ ]−ε, ε[,
with x0 = x and xs|∂Σ = x|∂Σ for all s. Assume also that, denoting by H(s) the mean
curvature of xs, the derivative H ′(0) = d

ds

∣∣
s=0

H(s) 6= 0 (and thus H(s) is injective
around s = 0). Then, every Jacobi field φ along x with φ|∂Σ = 0 satisfies:∫

Σ

φ volx = 0.

In particular, if the first eigenvalue λ1 of the Jacobi operator Jx is zero, then there is no
such variation xs of x.

Proof. Let V = d
ds

∣∣
s=0

xs be the variational vector field associated to xs, and set ψ =

V · ~nx; then, ψ|∂Σ = 0 and (see (2.4)):

Jxψ = 2H ′(0) 6= 0.

Now, if φ is a Jacobi field on Σ with φ|∂Σ = 0, then:

0 =

∫
Σ

ψ(Jxφ) volx =

∫
Σ

φ(Jxψ) volx = 2H ′(0)

∫
Σ

φ volx,

6By explicit calculation, the curve is the graph of the function x = 1
2

(
1− 4y ±

√
1− 8y

)
.
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i.e., ∫
Σ

φ volx = 0.

The last statement follows from the fact that, when λ1 = 0, the non zero eigenfunctions of
Jx corresponding to this (simple) eigenvalue do not change sign in the interior of Σ, and
thus they have non vanishing integral. �

It is useful to give the following:

Definition 2.8. Let x : Σ → R3 be a smooth CMC immersion of an oriented compact
manifold with boundary ∂Σ, and let Jx be the corresponding Jacobi differential operator.
A simple eigenvalue λ of the Dirichlet problem Jxf = −λf , f |∂Σ = 0 will be called
regular if all its eigenfunctions f 6= 0 satisfy

∫
Σ
f volx 6= 0.

For instance, the first eigenvalue λ1 is always simple and regular. Another interesting
example of regular eigenvalues comes from axially symmetric CMC immersions:

2.9. Example. Let x : Σ → R3 be a CMC immersion which is axially symmetric around
the x3-axis, symmetric with respct to the plane Π := {x3 = 0}, and with H 6= 0. Assume
that 0 is a simple eigenvalue of J , with corresponding eigenfunction given by an axially
symmetric Jacobi field f vanishing on the boundary, which is also symmetric with respect
to Π. If the position vector x = (x1, x2, x3) is not tangent to x(Σ) at the boundary, then 0 is
a regular eigenvalue. Namely, in this case

∫
Σ
f volx 6= 0; this is proved in Proposition A.3.

It is proved in [12, Theorem 1.2] that, given x : Σ→ R3 a smooth CMC immersion of
an oriented compact manifold with boundary ∂Σ, if some simple regular eigenvalue of Jx
vanishes, then there is exactly one 1-parameter variation xs of x by CMC immersions, with
xs|∂Σ = x|∂Σ for all s. Proposition 2.7 says that the mean curvature of such variation
is not monotone. Proposition 2.7 tells us also that our bifurcation result cannot be applied
when it is some simple regular eigenvalue of the Jacobi operator that crosses 0. An example
of this situation is given when x is the standard round embedding of a half-sphere in R3,
and xs consists of round spherical caps with the same boundary. The mean curvature has
a strict maximum at the half-sphere, see Figure 4. The result of [12, Theorem 1.2] can be
restated as follows:

Proposition 2.10. Given a smooth path of fixed boundary CMC immersions of a compact
surface inR3, then bifurcation of fixed boundary CMC immersions issuing from this family
does not occur at those degenerate immersions of the family for which the degeneracy is
produced by the vanishing of a simple regular eigenvalue of the Jacobi operator.

Remark 2.11. Let Σ be a compact oriented surface, let x : Σ → R3 be a smooth CMC
immersion, and let xs : Σ→ R3 be a smooth 1-parameter variation of x by CMC immer-
sions, s ∈ ]−ε, ε[, with x0 = x and xs|∂Σ = x|∂Σ for all s. If the derivative of the mean
curvature function H ′(0) = d

ds

∣∣
s=0

H(s) vanishes, then denoting by V = d
ds

∣∣
s=0

xs the
variational vector field associated to xs, the function ψ = V · ~nx is a Jacobi field along x
by (2.4)), which vanishes on ∂Σ.

2.7. Eigenvalues of the symmetrized problem. What we will discuss can be applied to
more general variational problem in which Schwarz symmetrization method works.

Denote by Σ the compact manifold

Σ := [0, `]× Sn−1,

where l > 0 is an interval of R, and let x : Σ → Rn+1 be an immersion whose image is
invariant by the group G ∼= SO(n) of rotations around the xn+1-axis. The hypersurface x
can be regarded as an immersion x : Σ→ Rn+1 which satisfies

x(σ,N) =
(
x1(σ)N, xn+1(σ)

)
, (σ,N) ∈ Σ,



12 M. KOISO, B. PALMER, P. PICCIONE

FIGURE 4. Spherical caps with the same boundary. The half-sphere has
maximal mean curvature. Bifurcation of fixed boundary CMC surfaces
does not occur in this situation.

where σ 7→
(
x1(σ), xn+1(σ)

)
is the generating curve in the (x1, xn+1)-plane of x, param-

eterized by arclength σ. We denote by ν : Σ→ Sn the Gauss map of x. Let

x̃ε = x+ ε(ξ + ψν) +O(ε2)

be an (n + 1)-dimensional volume-preserving variation of x which fixes the boundary,
where ξ is a tangent field to x and ψ is a smooth function. Then, the second variation of
the n-dimensional volume of x is given by the quadratic form:

(2.7) I[ψ] := −
∫

Σ

ψL[ψ] volx,

where volx is the volume form of the induced metric and L is the elliptic differential
operator

(2.8) L[ψ] := div(∇ψ) + 〈dν, dν〉ψ = ∆ψ + ‖dν‖2ψ.

The quadratic form L admits a continuous extension to the Sobolev space H1
0 (Σ), defined

as the completion of C1
0 with respect to the Hilbert space norm:

‖ψ‖2H1
0

=

∫
Σ

[
|ψ|2 + ‖∇ψ‖2

]
volx.

Let us denote by ‖ψ‖L2 the L2-norm of ψ, defined by:

‖ψ‖2L2 =

∫
Σ

|ψ|2 volx.

Denote by µk the (k-dimensional) volume of the k-dimensional unit sphere Sk. Define
functions ϕ and ζ as

ϕ :=
1

µn−1

∫
Sn−1

ψ dΘn−1, and ζ := ψ − ϕ.

Here, Θn−1 denotes the standard volume form of the (n−1)-sphere. Then, ϕ is a function
of σ; regarding it as a function on Σ = [0, `] × Sn−1 that does not depend on the second
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variable,7 the immersion x∗ε : Σ→ Rn+1 defined by

x∗ε = x+ εϕν +O(ε2)

is the Schwarz symmetrization of the (n+ 1)-dimensional volume-preserving variation

xε = x+ εψν +O(ε2).

Given a function ϕ : [0, `]→ R, then L[ϕ] takes the following form:

L[ϕ] =
1

xn−1
1

d

dσ

(
xn−1

1

dϕ

dσ

)
+ ‖dν‖2ϕ(2.9)

=
1

xn−1
1

d

dσ

(
xn−1

1

dϕ

dσ

)
+
[
k2

1 + (n− 1)k2
2

]
ϕ,(2.10)

where k1, k2, · · · , kn (k2 = · · · = kn) are principal curvatures of x.
Denote by λi := λi(x) the i-th eigenvalue of the following eigenvalue problem:

(2.11)

{
L[ψ] = −λψ, in Σ;

ψ = 0, in ∂Σ.

The eigenvalues λi have a variational characterization, by the following min-max formula:

(2.12) λi+1 = sup
V⊂H1

0(Σ)

dim(V )=i

inf
ψ∈V ⊥\0

I(ψ)

‖ψ‖2L2

;

here the supremum is taken over all i-dimensional subspaces V ofH1
0 (Σ), and the infimum

over all ψ ∈ H1
0 (Σ) \ {0} such that ψ is L2-orthogonal to V . Similarly, denote by λ̂i :=

λ̂i(`) the i-th eigenvalue of the following eigenvalue problem:

(2.13)

{
L[ϕ] = −λϕ, in [0, `];

ϕ(0) = ϕ(`) = 0,

where ϕ = ϕ(σ) is a function on [0, `]. We will call (2.13) the symmetrized eigenvalue
problem. Min-max formula for these eigenvalues reads:

(2.14) λ̂i+1 = sup
V̂⊂H1

0([0,`])

dim(V̂ )=i

inf
ϕ∈V̂ ⊥\0

I(ϕ)

‖ϕ‖2L2

.

Let e1 be the uniquely determined eigenfunction of the eigenvalue λ1 that satisfies

‖e1‖L2 = 1, and e1(p) > 0 ∀ p ∈ Σ \ ∂Σ;

Similarly, define ê1 the (unique) normalized eigenfunction of (2.13) corresponding to λ̂1

which is positive on in the interior of Σ. Sometimes it is easier to estimate λ̂i than λi.

Proposition 2.12. The following statements hold.

(a) Every eigenvalue λ̂ of the symmetrized problem (2.13) is an eigenvalue also of
problem (2.11).

(b) λi ≥ λ̂i for all i ≥ 1;
(c) λ1 = λ̂1 and e1 = ê1.
(d) If λi is a simple eigenvalue of (2.11) (i.e., the dimension of the correspond-

ing eigenspace is equal to 1), then the corresponding eigenfunction is SO(n)-
invariant, so that λi is an eigenvalue also of the symmetrized problem (2.13).

7We will identify implicitly functions on [0, `] with SO(n)-invariant functions on Σ.
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Proof. Part (a) follows directly from the very definition: eigenvalues of the symmetrized
problem are eigenvalues of (2.11) whose eigenfunctions are SO(n)-invariant. Part (b) is
proved easily using Rayleigh’s formulas (2.12) and (2.14). Observe that that the supremum
in (2.14) is taken over a more restricted collections of subspaces of H1

0 (Σ); namely, those
consisting only of SO(n)-invariant functions. In order to prove (c), let ϕ be a non trivial
eigenfunction of (2.13) corresponding to the eigenvalue λ̂1. Then, ϕ does not change sign
in ]0, `[. But ϕ is also an eigenfunction of (2.11) corresponding to some eigenvalue λk,
with k ≥ 1. Since the only eigenfunctions that do not change sign are those corresponding
to the first eigenvalue, then k = 1 and we are done. For part (d), observe that if ψ 6= 0 is
any eigenfunction of problem (2.11) and A ∈ SO(n), then ψ ◦ A is also an eigenfunction
of (2.11) with the same eigenvalue as ψ. If such eigenvalue is simple, then ψ ◦A = g(A)ψ
for some g(A) ∈ R. An immediate argument shows that g(A) = ±1; by continuity, since
g(1) = 1, one obtains g(A) = 1 for all A, i.e., ψ is SO(n)-invariant. �

Notice, however, that in general the equality λi = λ̂i does not hold for i ≥ 2.

Remark 2.13. As to the question of bifurcation, it is interesting to observe that the result
of Proposition 2.5 admits a formulation for axially symmetric CMC immersions. Assume
in the hypotheses of Proposition 2.5 that the path (xs)s∈[s̄−ε,s̄+ε] consists of axially sym-
metric CMC immersions. Under the same assumptions of Proposition 2.5, and assuming
in addition that some eigenvalue of the symmetrized problem crosses the value 0 at s = s̄,
then there is bifurcating branch issuing at xs̄ that consists of axially symmetric CMC im-
mersions with fixed boundary. This is proved by the same argument in the proof of Propo-
sition 2.5, where the abstract bifurcation result of Smoller and Wasserman is applied to the
symmetrized variational problem.

2.8. Equivariant bifurcation. Let us now discuss another bifurcation result for varia-
tional problems invariant by the action of some compact Lie group. For simplicity, we will
assume here that the group in question is the special orthogonal group SO(n), acting by
rotation around the xn+1-axis of Rn+1. For g ∈ SO(n), let Rg : Rn+1 → Rn+1 denote
the corresponding rotation.

In the setup of Subsection 2.7, let us consider the manifold Σ = [0, `] × Sn−1, with
n ≥ 2. Let x : Σ→ Rn+1 be a CMC immersion which is invariant by the group SO(n) of
rotations around the xn+1-axis; this means8 (Rg ◦x)(σ,N) = x(σ, gN) for all g ∈ SO(n)
and all (σ,N) ∈ Σ. There is an action of SO(n) on the space of (smooth) maps on
Σ, defined in the obvious way: to each element g ∈ SO(n) one associates the operator
Tg , defined by (Tgψ)(σ,N) = ψ(σ, gN), for all map ψ : Σ → R and all (σ,N) ∈ Σ.
Denote by J−x the negative eigenspace of the Jacobi operator Jx, i.e., the finite dimensional
vector space of smooth maps on Σ spanned by the eigenfunctions of the Jacobi operator Jx
corresponding to negative eigenvalues. Using the invariance of x and of the area and the
volume functionals, it is easy to see that, given an eigenfunction ψ of the Jacobi operator
Jx, then Tg(ψ) is another eigenfunction with the same eigenvalue. In particular, J−x is
invariant by Tg for all g, and we obtain a group representation:

SO(n) 3 g 7−→ Tg|Jx ∈ GL
(
J−x
)

of SO(n) on the finite dimensional space J−x , that will be denoted by πx.
Let us recall that, given a group G and representations πi : G → GL(Vi), i = 1, 2

on the (finite dimensional) vector spaces V1 and V2, π1 and π2 are said to be equivalent if
there exists an isomorphism L : V1 → V2 such that L ◦ π1(g) = π2(g) ◦ L for all g ∈ G.

We have the following refinement of Proposition 2.5:

8Up to a choice of a suitable parameterization of x. More generally, x is rotation invariant if the images of
the maps x and Rg ◦ x coincide for all g.
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Proposition 2.14. Let ε > 0 and let (xs)s∈[s−ε,s+ε] : Σ→ Rn+1 be aC1-path of constant
mean curvature SO(n)-invariant immersions, such that the mean curvature function s 7→
H(s) has non zero derivative at s = s. Assume that:

(a) for all s ∈ [s− ε, s[
⋃

]s, s+ ε], the immersion xs is nondegenerate;
(b) the representations πxs−ε and πxs+ε are not equivalent.

Then, s is a bifurcation instant for the family (xs).

Proof. This is an application of the equivariant result of Smoller and Wasserman [21,
Theorem 3.3]; the assumptions of this theorem are verified as in the proof of Proposi-
tion 2.5. �

In the case of SO(n)-invariant CMC immersions, Proposition 2.14 generalizes the result
of Proposition 2.5. Namely, the assumption on the jump of the Morse index implies that the
spaces J−xs−ε and J−xs+ε do not have the same dimension, hence the representations πxs−ε
and πxs+ε are not equivalent.

3. BIFURCATION OF FIXED BOUNDARY CMC NODOIDS

3.1. Description of the nodoids: the family Σt0 . We want to describe by explicit equa-
tions the family of nodoids passing through two given coaxial circles C0 and C1 of the
same radius r∗ > 0, lying on the parallel planes Π0 and Π1 whose distance is h∗ > 0,
and that are symmetric with respect to the reflection around the plane Π that lies half-way
between Π0 and Π1. Let (x1, x2, x3) be the canonical coordinates of R3. Up to a rigid
motion of R3, we can assume that the symmetry axis of the nodoids is the x3-axis, and
that planes Π0 and Π1 are given respectively by x3 = −h∗/2 and x3 = h∗/2, while Π is
given by x3 = 0.

There is a two-parameter family of Delaunay’s surfaces with given symmetry axis. This
family can be indexed using two parameters: H is the value of the mean curvature, and c,
whose interpretation is given below. We may choose the unit normal to the surface so that
H is negative. In the case of nodoids, c is also negative.

An explicit parameterization for the generatrix in the x1x3-plane of these surfaces of
revolution, the nodary curve (Figure 1), is given by (cf. [13, §5]):

(3.1) x1 = q1(t) :=
cos t+

√
cos2 t+ a

2|H|
,

x3 = q3(t) :=
1

2|H|

∫ t

0

cos τ +
√

cos2 τ + a√
cos2 τ + a

cos τ dτ,

where we have set9

(3.2) a = 2cH > 0.

Here t is a parameter varying in some interval [a, b] to be determined by the boundary
conditions. Note that the unit normal ν(t) to the nodary (3.1) at the instant t is given by:

ν(t) =
(

cos t, sin t
)
,

independently on the value of the parameters a and H .
There are two 1-parameter families of nodoids satisfying the given boundary conditions

and the symmetry condition. The first family contains nodoids that have an even number
of bulges in the slab −h0

2 ≤ z3 ≤ h0

2 , and the second family contains nodoids that have an
odd number of bulges in the slab, see Figure 8. As to the bifurcation problem, the situation

9The constant c is given by the conservation law (Noether’s theorem):

2x1(t) cos t+ 2Hx1(t)2 ≡ c.

This is derived from Noether’s Theorem and the fact that the functional is invariant with respect to vertical
translation. It can also be obtained from Codazzi equation, see (A.3).
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is totally analogous for the two families, and we will only consider the first family. This
will be denoted by Σt0 , with t0 > 0, and it can be described as follows.

Given a > 0, H < 0 and t0 > 0, let us denote by Σa,H,t0 the immersed surface
parameterized by the equations:

(3.3) x1 = q1(t) cos θ, x2 = q1(t) sin θ, x3 = q3(t),

where10 (t, θ) ∈ [−t0, t0] × [0, 2π]. The boundary of the nodoid Σa,H,t0 consists of two
circles of radius x(t0) on the planes x3 = q3(t0), and thus one has to impose

(3.4) − 2Hr∗ = cos t0 +
√

cos2 t0 + a,

and

(3.5) −Hh∗ =

∫ t0

0

cos τ +
√

cos2 τ + a√
cos2 τ + a

cos τ dτ.

Observe that the nodoid Σa,H,t0 has vertical normal on the boundary precisely when
q′3(t0) = 0, i.e., when t0 is of the form π

2 + kπ, for k ∈ N.
From (3.4) and (3.5), we get the following:

(3.6)
h∗
2r∗

(
cos t0 +

√
cos2 t0 + a

)
−
[
sin t0 +

∫ t0

0

cos2 τ√
cos2 τ + a

dτ

]
= 0.

Proposition 3.1. For every value of the constant h∗
2r∗

, equation (3.6) defines implicitly
a real analytic function a = a(t0), taking values in R+, and whose domain consists of
the union of open intervals and an open half-line ]t∗,+∞[ and it contains all instants
t0 = π

2 + kπ, k ∈ N (see Figure 5). This function satisfies:

(3.7) lim
t0→+∞

a(t0) = +∞,

and consequently, the function H(t0) = − 1
2r∗

[
cos t0 +

√
cos2 t0 + a(t0)

]
satisfies:

(3.8) lim
t0→+∞

H(t0) = −∞.

Proof. Denote byH(t0, a) the left-hand side of (3.6). For all t0 ∈ [0,+∞[:

lim
a→+∞

H(t0, a) = +∞;

moreover, for t0 sufficiently large or11 for t0 near a point in π
2 + πN:

H(t0, 0) =
h∗
2r∗

(
cos t0 + | cos t0|

)
− sin t0 −

∫ t0

0

| cos τ |dτ < 0.

Finally, the partial derivative:

∂H
∂a

=
h∗

4r∗
√

cos2 t0 + a
+

1

2

∫ t0

0

cos2 τ

(cos2 τ + a)
3
2

dτ

is strictly positive in [0,+∞[ × ]0,+∞[. The domain D of the desired function a con-
sists of all points t0 where H(t0, 0) < 0, and it depends on the value of the ratio h∗

2r∗
;

the smoothness of a follows from the Implicit Function Theorem. In fact, since all the
functions involved are real-analytic, then a is a real-analytic function of t0.

Let us prove (3.7). By contradiction, assume that there exists an unbounded sequence
tn →∞ and a positive real number M such that a(tn) ≤M for all n. Then:

lim inf
n→∞

∫ tn

0

cos2 τ√
cos2 τ + a(tn)

dτ ≥ lim
n→∞

∫ tn

0

cos2 τ√
cos2 τ +M

dτ = +∞.

10Nodoids having an odd number of bulges in the slab−h0
2
≤ z3 ≤ h0

2
have the same parametric equations,

with parameter t varying in [−t0, t0 + 2π].
11Namely, H(π

2
+ kπ, 0) = (−1)k+1 − 1 − 2k < 0 for all k ∈ N; moreover, if t0 is large enough to

guarantee that
∫ t0
0 | cos τ | dτ > 1 + h∗

r∗
, thenH(t0, 0) < −1− h∗

r∗
+ h∗

2r∗

(
cos t0 + | cos t0|

)
− sin t0 < 0.
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Then, using (3.6) one would have:

lim
n→∞

h∗
2r∗

(
cos tn +

√
cos2 tn + a(tn)

)
− sin tn = +∞,

which can only occur if lim
n→∞

a(tn) = +∞. This proves (3.7).
Equality (3.8) follows readily from (3.4) and (3.7). �

Definition 3.2. The real-analytic family Σa(t0),H(t0),t0 will be denoted by Σt0 ; it consists
of all nodoids satisfying the boundary conditions, that are symmetric with respect to the
(x1x2)-plane.

The unit normal vector field to the surface is given by:

ν(t, θ) =
(

cos t cos θ, cos t cos θ, sin t
)
.

When t0 ∈ π
2 + πN, the nodoid Σt0 is tangent to the planes x3 = ±h∗/2 at its boundary,

while when t0 ∈ πN, Σt0 is perpendicular to these planes at its boundary. For these values
of the parameter t0, the CMC surface Σt0 is a degenerate constrained critical point of the
area functional subject to volume = constant.

3.2. On the mean curvature function. Let us now consider the mean curvature function
t0 7→ H(t0) = H

(
t0, a(t0)

)
of Σt0 ; let us show that, for t0 = π

2 + kπ, k ∈ N, the
derivative d

dt0
H(t0) is non zero, so that H(t0) is strictly monotone near these instants.

First, observe that, from (3.6), one computes easily:

∂H
∂t0

(π/2 + kπ, a) = − h∗
2r∗

sin(π/2 + kπ) = (−1)k+1 h∗
2r∗
6= 0,

and so:

a′(π/2+kπ) = −∂H
∂t0

(
π/2+kπ, a(π/2+kπ)

)
·
[
∂H
∂a

(
π/2 + kπ, a(π/2 + kπ)

)]−1

6= 0.

From (3.5), we get:
∂H

∂t0

∣∣∣
t0=π/2+kπ

= 0,

and
∂H

∂a
(π/2 + kπ, a) =

1

2h∗

∫ π/2+kπ

0

cos2 τ

(cos2 τ + a)3/2
dτ > 0,

hence:

(3.9)
d

dt0

∣∣∣
t0=π/2+kπ

H(t0) =
∂H

∂a

(
π/2 + kπ, a(π/2 + kπ)

)
· a′(π/2 + kπ)

= (−1)k
1

4r∗

∫ π/2+kπ

0

cos2 τ

(cos2 τ + a)3/2
dτ

(
h∗

4r∗
√
a

+
1

2

∫ π/2+kπ

0

cos2 τ

(cos2 τ + a)3/2
dτ

)−1

6= 0.

A straightforward analysis of the sign in the above inequalities shows that the function
|H(t0)| is increasing for t0 near π2 +2kπ and decreasing for t0 near π2 +(2k+1)π, k ∈ N.

We will need the following:

Lemma 3.3. For all k ≥ 0, there exists (a unique) sk ∈
]
kπ, kπ + π

2

[
such that12

d

dt0

∣∣∣
t0=sk

H(t0) = 0.

12Actually, the proof works only if the entire interval [kπ, kπ+ π
2

] is contained in the domain of the function
a = a(t0) defined in Subsection 3.1.
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a

FIGURE 5. Graphs of the implicit function a = a(t0) defined by the
equationH(t0, a) = for different values of the constant h∗

2r∗
. The instants

t0 = π
2 + kπ correspond to the degenerate nodoids studied in Subsec-

tions 3.2 and 3.3; they belong to the domain of the function a = a(t0)
for all values of the constant h∗

2r∗
.

-r0 r0

x1

-

h0

2

h0

2

x3

FIGURE 6. Nodary curves that generate nodoids which pass through 2
circles. The bifurcation point is in the middle (thicker/red), it has hor-
izontal tangent at the point of intersection with the circles. The inner
circle is a limit of the family when a→ 0.

Proof. Let us check that
d

dt0

∣∣∣
t0=kπ

H(t0) and
d

dt0

∣∣∣
t0=kπ+π

2

H(t0) have opposite sign.

A straightforward calculation gives:

∂H
∂t0

(kπ, a) = (−1)k+1 − 1√
1 + a

;

and from (3.4):

(3.10)
d

dt0

∣∣∣
t0=kπ

H(t0) = − 1

4r∗

a′(kπ)√
1 + a(kπ)

=
∂H
∂t0

(kπ, a)

4r∗
∂H
∂a (kπ, a)

√
1 + a(kπ)

.
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FIGURE 7. Degenerate nodoids are tangent to the planes containing
their boundary. On the left, nodoids from the family Σ, on the right
nodoids that are not symmetric with respect to the reflection around the
plane Π.

FIGURE 8. Degenerate nodoid with two bulges.

Thus,
d

dt0

∣∣∣
t0=kπ

H(t0) has the same sign as
∂H
∂t0

(kπ, a): negative if k is even, and positive

if k is odd. On the other hand, from (3.9) we get that
d

dt0

∣∣∣
t0=kπ+π

2

H(t0) is positive if k is

even, and negative if k is odd.
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FIGURE 9. The two nodal domains of the Jacobi field ν1 on the first
degenerate nodoid Σπ

2
. The arrow gives the direction of the x1-axis.

This shows that there exists sk ∈
]
kπ, kπ + π

2

[
such that

d

dt0

∣∣∣
t0=sk

H(t0) = 0. Unique-

ness will be established later using the Jacobi equation of the symmetrized problem, see
Proposition 3.8, part (a). �

3.3. Bifurcation at the instants t0 = π
2 +kπ. We will now apply Proposition 2.5 to show

the existence of a bifurcating branch of fixed boundary CMC immersions issuing from the
family Σ at the instants t0 = π

2 + kπ, k ≥ 0. Let us prove some preliminary results.

Lemma 3.4. Let λk(t0) denote the k-th eigenvalue of the CMC immersion Σt0 , k ≥ 1.
Then, the function t0 7→ λk(t0) is real-analytic. Moreover:

(a) λ2

(
π
2

)
= λ3

(
π
2

)
= 0;

(b) λm
(
π
2 + kπ

)
= λm+1

(
π
2 + kπ

)
= 0 for some m ≥ 2 + 4k.

Proof. The family Σt0 has real-analytic dependence on t0, and so does each λk, as it has
been observed in Subsection 2.3.

It is known (see [14, Theorem 9.1]) that the first degenerate nodoid Σπ
2

is stable, in
the sense that the second variation of the area is nonnegative for all volume preserving
variations that fix the boundary, and this implies λ2(π2 ) ≥ 0. Consider the functions
νi = ~n · ~ei, i = 1, 2, 3, where ~n is the unit normal outward point vector to Σπ

2
and ~e1,

~e2, ~e3 is the canonical basis of R3. As we have observed, νi is a Jacobi field for Σπ
2

,
and clearly ν1|∂Σπ

2
= ν2|∂Σπ

2
= 0. Thus, ν1 and ν2 are eigenfunctions of the Jacobi

operator. These two functions have exactly two nodal domains in Σπ
2

, see Figure 9, and
by Courant’s nodal domain theorem, there exists k ≥ 2 such that λk(Σπ

2
) = 0. Thus,

0 ≤ λ2(Σπ
2

) ≤ λk(Σπ
2

) = 0, and so, λ2(Σπ
2

) = 0. Since the first eigenvalue has
multiplicity 1, λ1(Σπ

2
) < λ2(Σπ

2
) = 0 holds.

Finally, observe that the eigenvalue 0 has multiplicity greater than or equal to 2, which
implies λ2(Σπ

2
) = λ3(Σπ

2
) = 0, proving (a).

For part (b), observe that the functions ν1 and ν2 are Jacobi fields vanishing on the
boundary of Σπ

2 +kπ for all k ∈ N, and they have exactly 2 + 4k nodal domains. The proof
of (b) follows directly from Courant’s nodal domain theorem. �

A more accurate description of the set of degeneracy instants and of the eigenvalues of
the family Σ will be given below, see Subsection 3.8.

Proposition 3.5. The instants t0 = π
2 + kπ, k ≥ 0, are isolated degeneracy instant for the

nodoid family Σ, and there is jump of the Morse index at each of these instants.

Proof. Fix k ≥ 0 and set t∗ = π
2 + kπ; for (s, t0) near (t∗, t∗), let us denote by i(s, t0) the

strong Morse index of the nodoid Σa(s),H(s),t0 as a constrained critical point of the fixed
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FIGURE 10. The nodoid Σ 3
2π

decomposed into six nodal domains of
the function ν1.

FIGURE 11. The nodoid Σ.

boundary CMC variational problem. Note that Σa(s),H(s),t0  Σa(s),H(s),t1 for t0 < t1,
and for all s. We need to show that i(t0, t0) has a jump at t0 = t∗, and towards this goal
we make the following observations.

(1) For all s, the instant t∗ is an isolated degeneracy instant for the family t0 7→
Σa(s),H(s),t0 . This follows easily from the strict monotonicity of the eigenvalues
of the Jacobi operator with respect to inclusions.

(2) If Js,t0 denotes the Jacobi operator of Σa(s),H(s),t0 , then the map (s, t0) 7→ Js,t0
is continuous with respect to the operator topology in the space of bounded linear
operators from C2,α(C,R) to C0,α(C,R). It is real-analytic in both variables s
and t0, and it takes values in the open subset of (essentially positive) Fredholm
operators.

(3) For (s, t0) near (t∗, t∗), the degeneracy of Σs,t0 is determined by the vanishing
of a finite number of non constant real-analytic functions, namely, some eigen-
value λk(s, t0) of the Jacobi operator Js,t0 . For every fixed s, the function t0 7→
λk(s, t0) has a zero of finite order, hence isolated, at t0 = t∗; by continuity, one
can find ε, η > 0 sufficiently small, such that the unique zero of [t∗ − η, t∗ + η] 3
t0 7→ λk(s, t0), for s ∈ [t∗ − ε, t∗ + ε], is t0 = t∗.

(4) i(s, t∗ + η) is constant for s ∈ [t∗, t∗ + ε]. This follows from the fact that Σs,t∗+η
is nondegenerate for all s ∈ [t∗, t∗ + ε]. Recall that the index of a continuous
path of nondegenerate path of essentially positive Fredholm operators is constant.
Similarly, i(s, t∗ − η) is constant for s ∈ [t∗ − ε, t∗].
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(5) i(t∗, t∗ + ε) − i(t∗, t∗ − ε) = 2. This follows from the strict monotonicity
of the eigenvalues, and from the fact that the nullity of the degenerate nodoid
Σa(t∗),H(t∗),t∗ is equal to 2.

If ε′ = min{ε, η}, then based on the above observation we compute:

i(t∗ + ε′, t∗ + ε′)− i(t∗ − ε′, t∗ − ε′)
= i(t∗ + ε′, t∗ + ε′)− i(t∗, t∗ + ε′) + i(t∗, t∗ + ε′)− i(t∗, t∗ − ε′)

+ i(t∗, t∗ − ε′)− i(t∗ − ε′, t∗ − ε′) = 2.

This concludes the proof. �

We can now finalize the proof of the statement on non rotational bifurcation at the
instants t0 = π

2 + kπ.

Proof of statement (1) of Theorem. For all k ∈ N, denote by xk : C → R3 any smooth
parameterization of Σk := Σπ

2 +kπ . By (a) and (b) of Lemma 3.4, xk is degenerate in the
sense of Definition 2.3. Observe that13 ∫

C ν1 volx =
∫
C ν2 volxk = 0. Namely, consider

the isometry Ψ of R3 defined by Ψ(x1, x2, x3) = (x1, x2,−x3); then, Ψ preserves Σk,
i.e., Ψ(Σk) = Σk, and νi ◦Ψ = −νi, i = 1, 2.

Using Proposition 2.5, the proof of existence of bifurcation at Σk for the family Σt0
follows by observing that:

• for t0 near π2 + kπ and t0 6= π
2 + kπ, the nodoid Σt0 is nondegenerate, as proved

in Proposition 3.5;
• there is a jump of the strong Morse index of Σt0 at t0 = π

2 +kπ, by Proposition 3.5;
• the function t0 7→ H(t0) < 0 of the mean curvature of Σt0 has non zero derivative

at t0 = π
2 + kπ, as proved in Subsection 3.2.

As to the break of symmetry of the bifurcating branch, one simply observes that axially
symmetric CMC surfaces are determined completely by the values of the parameters H
and c; the dependence on such parameters is continuous. So, if Σ = Σ(H, c) is a nodoid
(H < 0 and c < 0), and Σ′ = Σ(H ′, c′) is an axially symmetric CMC surface with the
same boundary of Σ and very close to Σ, then, H ′ is close to H . Hence c′ is close to c, and
therefore H ′ < 0 and c′ < 0 hold. Hence, Σ′ is also a nodoid. Since the CMC immersions
of the bifurcating branch are not isometrically congruent to any nodoid, it follows that they
can’t be axially symmetric.

This concludes the proof. �

3.4. Bifurcation at the instants kπ, k ≥ 1. Let us now study the degenerate nodoids
corresponding to the instants t0 = kπ, with k ≥ 1. At these instants, the function ν3 is the
Jacobi field that vanishes on the boundary. Notice that this function is axially symmetric,
and thus it is also a Jacobi field for the symmetrized problem, recall Subsection 2.7. Let us
denote by I3 : R3 → R3 the map I3(x1, x,x3) = (x1, x2,−x3); note that ν3 ◦ I3 = −ν3.

Proposition 3.6. Let λ̂k(t0) denote the k-th symmetrized eigenvalue of the CMC immer-
sion Σt0 , k ≥ 1. Then, the function t0 7→ λ̂k(t0) is real-analytic, and strictly decreasing.
Moreover:

(a) λ̂2k(kπ) = 0 for all k ≥ 1;
(b) the (unique) zero of λ̂2k+1 is in ]kπ, (k + 1)π[;
(c) if f is an eigenfunction of λ̂k(t0) for some k ≥ 1, then f ◦ I3 = (−1)k+1f .

Proof. Part (a) follows from Courant Nodal Domain Theorem, in the form of Sturm Os-
cillation Theorem for the symmetrized 1-dimensional problem. Namely, the function ν3

has exactly 2k nodal domains in Σkπ , thus the corresponding eigenvalue is λ̂2k(kπ). For

13i.e., xk is also weakly degenerate
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FIGURE 12. Nodaries of bifurcating branch of nodoids at the instant
t0 = π.

part (b), observe that by the strict domain monotonicity of the eigenvalues, each eigen-
value has at most one zero. Moreover, the eigenvalues of the symmetrized problem are
simple, thus λ̂2k(t0) < λ̂2k+1(t0) < λ̂2k+2(t0) for all t0, thus λ2k+1(kπ) > 0 and
λ2k+1

(
(k + 1)π

)
< 0. Part (c) follows from a general fact on CMC surfaces of revo-

lution. Eigenfunctions of the k-th symmetrized eigenvalues are of the form fk(t) cos θ,
fk(t) sin θ, where fk is even if k + 1 is even and odd if k + 1 is odd. This is discussed in
detail in Appendix A. �

We will show later that, in fact, the unique zero of the function λ̂2k+1 coincides with
the instant sk ∈

]
kπ, kπ + π

2

[
introduced in Lemma 3.3, see Proposition 3.8, part (a).

We can now conclude the proof of the statement on bifurcation at the instants t0 = kπ.

Proof of statement (2) of Theorem. It suffices to apply the abstract bifurcation result of
Smoller and Wasserman to the symmetrized variational problem. By Proposition 3.6, there
is jump of the Morse index of the symmetrized problem at the instants t0 = kπ, k ≥ 1.
Moreover, we have shown in the proof of Lemma 3.3, see formula (3.10), that the deriv-
ative of the mean curvature function H(t0) at t0 = kπ is non zero. By Proposition 2.5,
there is a bifurcating branch of CMC immersions of the cylinder, issuing from Σkπ for
all k ≥ 1, and since the Jacobi field ν3 is axially symmetric, then the bifurcating branch
consists of axially symmetric immersions (see Remark 2.13). Arguing as in the proof of
statement (1) of the Theorem, one proves that the bifurcating branch consists of nodoids
with fixed boundary. Since they do not belong to the family Σ, they fail to be symmetric
with resect to reflections around the plane Π. �

We will now give an explicit description of these bifurcating branches.

3.5. The bifurcating branches of non symmetric nodoids. Each nodoid14 Σkπ , k ≥ 1,
belongs to a 1-parameter family of fixed boundary nodoids that are not symmetric with

14Again, we assume here that kπ belongs to the domain of the function a = a(t0) introduced in Subsec-
tion 3.1.
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respect to reflections around the plane Π (x3 = 0). Let k ≥ 1 be fixed; for ε > 0 small
enough, there exists a real-analytic function ]−ε, ε[ 3 s 7→ ak(s) > 0 such that, setting:

Hk(s) = − 1

2r∗

[
cos(kπ − s) +

√
cos2(kπ − s) + ak(s)

]
,

the following equality holds∫ kπ−s

−kπ−s

cos τ +
√

cos2 τ + ak(s)√
cos2 τ + ak(s)

cos τ dτ = −2Hk(s)h∗

for all s ∈ ]−ε, ε[. The proof of the existence of such function ak is obtained from the
Implicit Function Theorem, in total analogy with the discussion in Subsection 3.1; observe
that for s = 0 we recover the data of the symmetric nodoid Σkπ , i.e., ak(0) = a(kπ) and
Hk(0) = H(kπ).

For all s ∈ ]−ε, ε[, define Nk,s the surface in R3 defined by parametric equations:

x1 =
cos t+

√
cos2 t+ ak(s)

−2Hk(s)
cos θ, x2 =

cos t+
√

cos2 t+ ak(s)

−2Hk(s)
sin θ

x3 = −h∗
2
− 1

2Hk(s)

∫ t

−kπ−s

cos τ +
√

cos2 τ + ak(s)√
cos2 τ + ak(s)

cos τ dτ,

where (t, θ) ∈ [−kπ − s, kπ − s]× [0, 2π].
This is a real-analytic family of nodoids satisfying the same boundary conditions as the

family Σ, and that are not symmetric with respect to the plane x3 = 0 except when s = 0,
see Figure 12. For all k,Nk,0 = Σkπ , and s 7→ Nk,s is the bifurcating branch of the family
Σ issuing at Σkπ .

3.6. Degeneracy instants where bifurcation does not occur. We will study the instants
sk introduced in Lemma 3.3, showing that they are degenerate instants, but that there is
no bifurcation at these instants. We prove first a result on the vanishing of the derivative
of the mean curvature function; let us consider the functions H(t0) and a(t0) defined in
Subsection 3.1.

Lemma 3.7. If H ′(t∗) = 0, then a′(t∗) 6= 0.

Proof. Assume H ′(t∗) = 0; differentiating (3.4) we get:

a′(t∗) = 2 sin t∗

[
cos t∗ +

√
cos2 t∗ + a(t∗)

]
.

The right-hand side of this equality does not vanish for all t∗ 6= kπ, k ∈ N; on the other
hand, t∗ is not an integer multiple of π, since H ′(kπ) 6= 0 for all k ∈ N (see (3.10)). Thus
a′(t∗) 6= 0. �

Proposition 3.8. The following statements hold.

(a) The mean curvature function H has vanishing derivative only at the instants sk
introduced in Lemma 3.3.

(b) For all k ≥ 0, sk is a degenerate instant for the family Σ which corresponds to the
vanishing of an eigenvalue of the symmetrized problem.

(c) No bifurcation for the family Σ occurs at sk, unless sk coincides with one of the
other degeneracy instants described in the paper.

Proof. Let t∗ be such that H ′(t∗) = 0, and denote by ~n the normal to Σt∗ . Consider the
map f = V ·~n, where V is the variational vector field of the variation t0 7→ Σt0 at t0 = t∗.
Clearly, f vanishes on ∂Σt∗ , and it is an axially symmetric Jacobi field along Σt∗ by (2.4).
Let us show that f is not identically zero. Since ~n(0, 0) is the first vector of the canonical
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x1

x3

FIGURE 13. If the position vector x = (x1, x3) is tangent to the curve
γ in the first quadrant, then the normal ~n = (n1, n3) to γ at the point
of tangency satisfies n1 · n3 ≤ 0, i.e., ~n gives the direction of a line
with nonpositive angular coefficient. In the case of the generatrix of
the nodoid Σsk , the normal at the boundary is (cos sk, sin sk), where
sk ∈

]
kπ, kπ + π

2

[
, and so cos sk sin sk > 0. This implies that the

position vector is not tangent to Σsk at its boundary.

basis of R3, the value of f at (t, θ) = (0, 0) is the first component of the variational vector

field V (0, 0). This is given by the derivative of the map t0 7→
1+
√

1+a(t0)

−2H(t0) at t0 = t∗:

f(0, 0) =
d

dt0

∣∣
t0=t∗

1 +
√

1 + a(t0)

−2H(t0)
= − a′(t∗)

4H(t∗)
√

1 + a(t∗)
6= 0,

by Lemma 3.7. This shows that f is not identically zero, hence every instant t∗ at which
H ′(t∗) = 0 is a degeneracy instant for the symmetrized problem, proving (b). By Proposi-
tion 3.6, since kπ < sk < (k+1)π, λ̂2k(sk) < 0 and λ̂2k+2(sk) > 0, thus λ̂2k+1(sk) = 0.
So, the only degeneracy instants for the symmetrized problem are kπ and sk, and therefore
there are no other instants where H ′ vanishes. This proves (a), and the uniqueness claim
in Lemma 3.3.

As to part (c), we observe that the degeneracy at sk is produced by the vanishing of
an eigenvalue of the axially symmetric problem, with corresponding Jacobi field which is
even, see Appendix A. Let us prove that 0 is a regular eigenvalue at sk, in the sense of
Definition 2.8; to this aim, it suffices to show that the position vector x = (x1, x2, x3) is
not tangent to Σsk at ∂Σsk , see Example 2.9. This follows form an elementary geometrical
argument (see Figure 13), using the fact that sk ∈

]
kπ, kπ + π

2

[
(see Lemma 3.7). Hence,

0 is a regular eigenvalue at sk, and by Proposition 2.10, no bifurcation occurs at sk. �

3.7. Large degeneracy instants. The method of separation of variables provides all pos-
sible Jacobi fields and eigenfunctions of the Jacobi operator, see Appendix A. We will use
Sturm–Liouville theory to show the existence of arbitrarily large degeneracy instants for
the nodoid family Σ, where bifurcation occurs with break of both type of symmetry.

Proposition 3.9. There are arbitrarily large degeneracy instants for the family Σ that do
not belong to the set

{
kπ/2, sk−1 : k ≥ 1

}
. The multiplicity of these degeneracy instants
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is greater than or equal to 2. If t0 is one of these instants, denoting by f1 and f2 two
linearly independent Jacobi fields vanishing on ∂Σt0 , then, for i = 1, 2:

(a) fi ◦ I3 = ±fi, (both possibilities occur);
(b) fi is not axially symmetric, but it is invariant by rotations of an angle 2π

n for some
n ≥ 2.

Moreover, bifurcation occurs at t0 by a branch of non axially symmetric CMC immersions
of the cylinder C with fixed boundary. The bifurcating branch consists of CMC surfaces that
are not symmetric with respect to reflections around the plane Π exactly when fi◦I3 = −fi,
and that are symmetric with respect to a finite (non trivial) group of rotations around the
axis.

Proof. We use the method of separation of variables in the Jacobi equation, which is dis-
cussed in Appendix A. In the notations of the appendix, we will consider an arc-length
parameterization of the nodary curve γt0 = (xt01 , x

t0
3 ) in the (x1x3)-plane which is the

generatrix of Σt0 . Non axially symmetric Jacobi fields along Σt0 can be obtained of the
form f1 = S cos(nθ), f2 = S sin(nθ), where n ≥ 1 and S : R → R is a solution of the
Sturm–Liouville equation:

(3.11) (xt01 S
′)′ +

(
xt01 ‖dνt0‖2 − n2

x
t0
1

)
S = 0,

dνt0 is the second fundamental form of Σt0 . Such Jacobi fields are invariant by the rotation
of 2π

n . Moreover, fi ◦ I3 = ±fi according to whether S is an even or an odd function;
note that the coefficients of the ODE (3.11) are even functions, and this implies that such
equation admits a pair of linearly independent solutions consisting of an even and an odd
function, corresponding the the initial values S(0) = 1, S′(0) = 0 and S(0) = 0, S′(0) =
1 respectively. Notice that in the case n = 1, the even solution (3.11) is given by the
function ẋt03 (see Appendix A), and this gives rise to the Jacobi fields ν1 = ẋt03 cos θ and
ν2 = ẋt03 sin θ.

A nodal domain inside Σt0 is obtained when either the even or the odd solution of
(3.11) has a zero in the interval ]0, Lt0/2], where Lt0 is the length of γt0 . However, a non
trivial Jacobi field vanishing on the boundary of Σt0 is obtained from a solution of (3.11)
only when this has a zero precisely at Lt0/2. We claim that statements (a) and (b) will be
proved once we show that, given any n ≥ 2, then for t0 large enough the odd solution of
(3.11) has a zero in ]0, Lt0/2] (this will imply that also the even solution does, by Sturm
oscillation theorem). Namely, denote by Sn,t0 the odd solution of (3.11), and assume that
given n ≥ 2 there exists t0 large such that the first positive zero of Sn,t0 lies in ]0, Lt0/2].
Clearly, such t0 is bounded away from zero, i.e., there exists t∗ > 0 such that Sn,t0 does
not vanish in ]0, Lt0/2] for all t0 ≤ t∗. Thus, by continuity, there must exist t0 > t∗ such
that Sn,t0(Lt0/2) = 0

Let us prove that, for any given n ≥ 2, one can find t0 sufficiently large such that every
solution of (3.11) has two consecutive zeroes at distance less than or equal to Lt0 . Denote
by kt01 and kt02 the principal curvatures of Σt0 , so that ‖dνt0‖2 = (kt01 )2 + (kt02 )2; one
computes:

kt01 = H(t0) + ẋt03 /x
t0
1 , kt02 = −ẋt03 /x

t0
1 ,

see Appendix A. The basic estimates needed for our argument are as follows:
(1) lim

t0→+∞
a(t0) = +∞, see (3.7);

(2) −H(t0) ∼= 1
2r∗

a(t0)
1
2 as t0 →∞, see (3.4);

(3) xt01 tends to the constant r∗ uniformly as t0 → +∞, this is proved using (1) and
formula (3.1);

(4) |ẋt03 | ≤ 1, thus |kt02 | is uniformly bounded as t0 →∞;

(5) ‖dνt0‖2 ∼=
a(t0)
4r2
∗

as t0 → +∞;
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(6)
(
xt01 ‖dνt0‖2 − n2

x
t0
1

) ∼= a(t0)

4r∗
as t0 → +∞;

(7) Lt0 =
1

−H(t0)

∫ t0

0

[
1 +

cos τ√
cos2 τ + a(t0)

]
dτ≥ t0

−2H(t0)
∼=

4r∗t0

a(t0)
1
2

as t0 → +∞;
Using (3) and (6), Sturm comparison theorem tells us that the distance between two con-
secutive zeroes of a solution of (3.11) is comparable with the distance between two con-
secutive zeros of the linear ODE with constant coefficient:

S′′ +
(a(t0)

4r2
∗
− n2

r3
∗

)
S = 0.

For such equation, the distance between two consecutive zeros of any solution is of the
order of a(t0)−

1
2 . By (7), for t0 large enough, Lt0/2 is larger than this value, which

implies that the odd solution of (3.11) must have a zero in ]0, Lt0/2]. This concludes the
proof of (a) and (b).

As to the statement on bifurcation at these degenerate instants, this is obtained as an ap-
plication of the equivariant result of Proposition 2.14. First we observe that the assumption
on the non vanishing of the derivativeH ′ is proved in Proposition 3.7. The passage through
one of the degenerate instants in question produces eigenfunctions of the Jacobi operator
corresponding to negative eigenvalues, whose stabilizer relatively to the S1-action is a non
trivial cyclic group, say of order n. Thus, passing through such degenerate instant gives a
jump in the dimension of the space spanned by eigenfunctions of the Jacobi operator with
negative eigenvalue and whose S1-stabilizer has finite order n > 1. This implies a jump
of the isomorphism class of the S1-representation on the negative eigenspace of the Jacobi
operator, as discussed in Subsection 2.8. �

3.8. Conclusions. In conclusion, we have found the following sequence of degenerate
instants for the nodoid family Σ:

s0 <
π
2 < π < s1 <

3
2π < 2π < s2 <

5
2π <

. . . < kπ < sk < kπ + 1
2π < (k + 1)π < . . .

The eigenvalues π
2 + kπ, k ≥ 0, have multiplicities equal to 2, and the corresponding

eigenfunctions are not axially symmetric. All the other eigenvalues are simple, and they
correspond to axially symmetric eigenfunctions. For all k ≥ 1:

λmk(kπ) = λ̂2k(kπ) = 0

for some mk ≥ k, and at these instants there is bifurcation by axially symmetric nodoids
that are not symmetric with respect to the horizontal plane. For all k ≥ 0:

λlk
(
kπ + π

2

)
= λlk+1

(
kπ + π

2

)
= 0

for some lk ≥ 4k + 2, and at these instants there is bifurcation by a branch of non axi-
ally symmetric CMC immersions. Note that the Jacobi fields corresponding to λ4k+2 and
λ4k+3 at the instants kπ + π

2 have exactly 4k + 2 nodal domains.
A third type of degeneracy instants are the sk’s, where the mean curvature function has

vanishing derivative. They correspond to zeroes of the even axially symmetric Jacobi field.
For all k ≥ 0:

λnk(sk) = λ̂2k+1(sk) = 0

for some nk ≥ 4k + 1, and there is no bifurcation at these degenerate instants.
Although a complete analysis of all the degeneracy instants seems quite involved, the

method of separation of variables and Sturm–Liouville theory allow to prove the existence
of a further class of degeneracy instants. The corresponding Jacobi fields vanishing of the
boundary are of the form S(t) sin(nθ) and S(t) cos(nθ), with n arbitrarily large, and S is
either an even or an odd function.
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4. FINAL REMARKS AND CONJECTURES

Bifurcation at the embedded nodoid Σπ
2

is of particular interest. We conjecture that the
non-nodoidal branch at Σπ

2
contains surface which minimize area for volume preserving

fixed boundary variations. A proof of this fact requires an analysis of the stability for the
bifurcating branch, which is the subject of an ongoing research project, see [15]. It is
generally believed that absolute minimizers are “as symmetric as possible”. In the case
of one circular boundary component and genus zero surfaces, the only stable equilibria
are axially symmetric ([1]). This implies that, with one circular boundary component and
surfaces of higher genus, no minimizer exists. So, it is quite interesting that there might be
a non axially symmetric minimizer for 2 circular boundaries.

We also conjecture that, for large volumes, the solutions of the isoperimetric problem
for surfaces bounded by our contour are not axially symmetric.

5. EXTENSIONS TO ANISOTROPIC MEAN CURVATURE

The bifurcation theory of the nodoid discussed above fits into the far more general the-
ory of anisotropic nodoids which arise as critical points for axially symmetric anisotropic
surface energies. The generalization is not only mathematical; the physical problem of
determining the equilibrium shape of a liquid-liquid interface which is tethered to two par-
allel planes along two coaxial circles is a special case of an anisotropic-liquid interface
having the same boundary conditions.

5.1. Constant anisotropic mean curvature surfaces. Let γ = γ(ν3) be a positive, C2

function on S2. We assume the following convexity condition. We define the functions

1/µ2 := γ − ν3γ
′(ν3) , 1/µ2 := (1− ν2

3)γ′′(ν3) + 1/µ2 .

We will also assume here that γ is an even function, although most of what is said here
holds when this is not the case. These functions are assumed to be positive. They are the
principal curvatures of a convex surface of revolution W , called the Wulff shape, which is
parameterized over S2 as follows. The profile curve of W is given in terms of the vertical
coordinate on S2 by

u = u(ν3) :=

√
1− ν2

3

µ2
, v = v(ν3) :=

ν3

µ2
+ γ′(ν3) .

Then W can be parameterized,

(5.1) χ(ν3, θ) =
(
ueiθ, v

)
.

The positivity of 1/µi, i = 1, 2 is equivalent to the fact that this surface W is convex, the
µi’s are the principal curvatures of W with respect to the inward pointing normal.

To a smooth, compact surface X : Σ → R3 with normal ν, we assign the axially
symmetric energy

F [X] :=

∫
Σ

γ(ν3) dΣ .

For a smooth variation of the surface Xε = X + ε(δX) + O(ε2), we have the first
variation formula

(5.2) δF =: −
∫

Σ

ΛδX · ν dΣ +

∮
∂Σ

XL × χ · δX dL ,

which defines the anisotropic mean curvature Λ. Above we have used χ to denote the
composition of the map given in 5.1 with the Gauss map ν. For the isotropic case γ ≡ 1, we
have Λ = 2H . The equation Λ ≡ constant characterizes critical points of the functional F
subject to the constraint that the enclosed three dimensional volume is fixed. The convexity
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condition imposed above insures that the equation Λ ≡ constant is elliptic. Specifically,
the linearized operator J defined by the equation,

(5.3) δΛ =: J [ψ] +∇Λ · ξ ,

defines a linear, strongly elliptic self-adjoint differential operator.
The surface W occurs among the critical points of the volume constrained energy func-

tional. In fact, it is the absolute minimizer of F among all surfaces enclosing the same
volume. This is known as Wulff’s Theorem.

The standard examples that occur in applications are the so called Rapini–Papoular
functionals γ = 1 + eν2

3 , where e is a constant. The convexity condition is satisfied when
|e| < 1.

Assuming that a given surface Σ is a critical point of a volume constrained anisotropic
energy functional, i.e., that Λ ≡ const., the second variation of the fixed boundary problem
is given by

δ2F = −
∫

Σ

ψJ [ψ] dΣ ,

where J is given by (5.3) andψ := δX ·ν. We note that if δX is taken to be the infinitesimal
generator of a family of translations, i.e., δX = E ∈ R3, then if Λ = constant, we obtain
from 5.3, J [ν ·E] = 0. The same argument shows that if δX is taken to be the infinitesimal
generator of a family of rotations around the x3-axis, then J [δX · ν] = 0.

5.2. Anisotropic nodoids. The axially symmetric surfaces with constant anisotropic mean
curvature are called anisotropic Delaunay surfaces ([13]). They are exactly the axially
symmetric critical points of the functional F , subject to a volume constraint. To find these
surfaces explicitly, note that vertical translation is a symmetry of both the functional F and
the volume functional. Assuming a surface of revolution is a critical point and deforming
it by a one parameter family of vertical translations, δX = E3 = ET3 + ν3ν, we obtain
that the first variation, as given by (5.2), vanishes. Writing this out explicitly for the given
variations yields

0 = −Λ

∫
Σ

Λν2 dΣ +

∮
∂Σ

u
ET3
|ET3 |

· η dL ,

where η denotes the outward pointing unit conormal to ∂Σ.
By applying the divergence theorem to the surface integral and noticing that the inte-

grand is constant in the line integral, we obtain the conservation law

(5.4) 2ux+ Λx2 ≡ constant =: c .

As in the isotropic case, the anisotropic Delaunay surfaces fall into six classes. In all cases,
we can assume, through a choice of orientation, that Λ ≤ 0 holds. The anisotropic nodoids
occur when the scale invariant quantity a := Λc is positive.

In order to parameterize the anisotropic nodoids, we first extend the function u to a
periodic function by defining:

U(cos t) :=
cos t

µ2(cos t)
.

In this case, an explicit parameterization is given by first defining

q1(t) :=
U(cos t) +

√
U2(cos t) + a

|Λ|
,

q3(t) :=
1

|Λ|

∫ t

0

U(cos τ) +
√
U2(cos τ) + a√

U2(cos τ) + a
dv(cos τ) .

Then the surface can be parameterized X := (q1(t)eiθ, q3(t)). The outward pointing
normal is given by ν = [(q′1(t))2 + (q′3(t))2]−1/2(q′3(t)eiθ,−q′1(t)).
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FIGURE 14. Anisotropic nodoids for the functionals γ = 1 + eν2
3 , with

e = −0.4 (left), e = 0 (center) and e = 0.4 (right). In all cases Λ = −1
and a = 0.3.

The boundary of the anisotropic nodoid Σa,Λ,t0 consists of two circles of radius q1(t0)
on the planes x3 = q3(t0), and thus one has to impose

(5.5) − Λr∗ = U(cos t0) +
√
U2(cos t0) + a,

and

(5.6) − Λh∗
2

=

∫ t0

0

U(cos τ) +
√
U2(cos τ) + a√

U2(cos τ) + a
dv(cos τ).

Note that the nodoid Σa,Λ,t0 has vertical normal on the boundary precisely when q′3(t0) =
0, i.e., when t0 is of the form π

2 + kπ, for k ∈ N.
From (5.5) and (5.6), we get the following:

(5.7)
h∗
2r∗

(
U(cos t0) +

√
U2(cos t0) + a

)
−

[
v(cos(t0)) +

∫ t0

0

U(cos τ)√
U2(cos τ) + a

dv(cos τ)

]
= 0.

We claim that for every value of the constant h∗
2r∗

, equation (5.7) defines implicitly a smooth
function a = a(t0), taking values in R+, and whose domain consists of the union of
open intervals and an open half-line ]t∗,+∞[ and it contains all instants t0 = π

2 + kπ,
k ∈ N. In order to prove the claim, denote by H(t0, a) the left-hand side of (5.7). For all
t0 ∈ [0,+∞[:

lim
a→+∞

H(t0, a) = +∞;

moreover, for t0 sufficiently large or for t0 near a point in π
2 + πN:

H(t0, 0) =

h∗
2r∗

(
U(cos t0) + |U(cos t0)|

)
−
(
v(cos(t0)) +

∫ t0

0

sign(U(cos τ)) dv(cos τ)

)
< 0.

(Note that u is negative exactly on the part ofW where v is decreasing). Finally, the partial
derivative:

∂H
∂a

=
h∗

4r∗
√
U2(cos t0) + a

+
1

2

∫ t0

0

U(cos τ)

(U2(cos τ) + a)
3
2

dv(cos τ)
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is strictly positive in [0,+∞[× ]0,+∞[. The domain D of the desired function a consists
of all points t0 where H(t0, 0) < 0, and it depends on the value of the ratio h∗

r∗
; the

smoothness of a follows from the Implicit Function Theorem. For example, if W is real-
analytic, then all the functions involved are real-analytic, and so a is a real-analytic function
of t0.

Definition 5.1. The real-analytic family Σa(t0),Λt0 ,t0
will be denoted by Σt0 ; it consists

of all nodoids satisfying the boundary conditions, that are symmetric with respect to the
(x1, x2)-plane.

For t0 ∈ π
2 + πN, Σt0 is degenerate. The proof of existence of a bifurcating branch

of fixed boundary constant anisotropic curvature issuing from each of these degenerate
anisotropic nodoids is totally analogous to the isotropic case, and it will be omitted. We
will only show that, also for the anisotropic degenerate nodoids, the anisotropic mean
curvature function has non zero derivative at the instants t0 ∈ π

2 + πN.

5.3. On the anisotropic mean curvature function. Let us now consider the anisotropic
mean curvature function t0 7→ Λt0 = Λ

(
t0, a(t0)

)
of Σt0 ; let us show that, for t0 =

π
2 + kπ, k ∈ N, the derivative d

dt0
Λt0 is non zero, so that Λ(t0) is strictly monotone near

the degenerate instants. One can observe from the Wulff shape that

(5.8) U(ν3 = ±1) = 0 = vν3(ν3 = ±1) , Uν3(ν3 = ±1) 6= 0 6= v(ν3 = ±1) .

Then, observe that, from (5.7), one computes easily:
∂H
∂t0

(π/2+kπ, a) = − h∗
2r∗

Uν3
(ν3 = ±1) sin(π/2+kπ) = (−1)k+1 h∗

2r∗
Uν3

(ν3 = ±1) 6= 0,

and so:

a′(π/2+kπ) = −∂H
∂t0

(
π/2+kπ, a(π/2+kπ)

)
·
[
∂H
∂a

(
π/2 + kπ, a(π/2 + kπ)

)]−1

6= 0.

From (5.6) and (5.8), we get:
dΛ

dt0

∣∣∣
t0=π/2+kπ

= 0,

and

h∗
∂Λ

∂a
(π/2 + kπ, a) =

∫ π/2+kπ

0

U(cos τ)

(U2(cos τ) + a)3/2
dv(cos(τ)) > 0,

hence:
d

dt0

∣∣∣
t0=π/2+kπ

Λt0 =
∂Λ

∂a

(
π/2 + kπ, a(π/2 + kπ)

)
· a′(π/2 + kπ) 6= 0.

A straightforward analysis of the sign in the above inequalities shows that the function
|Λt0 | is increasing for t0 near π2 + 2kπ and decreasing for t0 near π2 + (2k+ 1)π, k ∈ N.

APPENDIX A. SEPARATION OF VARIABLES IN THE JACOBI EQUATION OF AXIALLY
SYMMETRIC CMC SURFACES

Let us consider a smooth regular (not necessarily injective) curve γ = (x, z):

(x, z) :
[
− L

2 ,
L
2

]
−→ R2

parameterized by arclength, and the corresponding surface of revolution Σ in R3 given by
parametric equations:

X =


x1 = x(σ) cos θ,

x2 = x(σ) sin θ,

x3 = z(σ),

σ ∈
[
− L

2 ,
L
2

]
, θ ∈ [0, 2π].

This is an axially symmetric surfaces in R3, with symmetry axis given by the x3-axis. Let
us assume that:
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(a) x > 0 is an even function;
(b) z is an odd function;
(c) x and ż are periodic functions of period T0 > 0.

Assumptions (a) and (b) mean that Σ is symmetric with respect to the plane x3 = 0.
Assumption (c) says that Σ is a portion of a periodic infinite surface, and its boundary
consists of two coaxial circles of the same radius lying on the planes x3 = ±z(L/2). By
(a), ẋ(0) = 0, thus ż(0) = ±1; we can assume ż(0) = 1 (if not, replace z with −z).

An orthonormal basis of the pull-back metric on the cylinder C = [−L/2, L/2]× [0, 2π]
is given by:

w1 =
∂

∂σ
, w2 =

1

x

∂

∂θ
,

and the area form is given by xdσ dθ. The Gauss map ν : C → S2 is given by ν(σ, θ) =
±
(
ż(σ) cos θ, ż(σ) sin θ,−ẋ(σ)

)
; we choose the orientation of ν outward pointing at the

point X(0, 0) =
(
x(0), 0, 0), i.e., ν(0, 0) = e1, thus

ν(σ, θ) =
(
ż(σ) cos θ, ż(σ) sin θ,−ẋ(σ)

)
.

The differential dν (the second fundamental form of X) is written relatively to the basis
{w1, w2} and {∂X∂σ ,

1
x
∂X
∂θ } as:

dν(σ, θ) ∼=

(
−‖γ̈(σ)‖ 0

0 − ż(σ)
x(σ)

)
.

The principal curvatures of Σ are given by:

(A.1) k1 = ẍż − ẋz̈, k2 = − ż
x
.

Note that k1 is the curvature of the plane curve γ, thus:

(A.2) ẍ = k1ż, and z̈ = −k1ẋ.

Let us assume that Σ has constant mean curvature H , i.e.:

2H = k1 + k2 = ẍż − ẋz̈ − ż

x
= constant;

Codazzi equation then gives:

x2(k1 − k2) = c (constant),

from which we get the following conservation law:

(A.3) 2xż + 2Hx2 = c;

recall from (3.2) the identity 2cH = a. This can also be obtained as an application of
Noether’s theorem, using the fact that the area functional is invariant by vertical transla-
tions. From (A.3), a straightforward calculation yields:

(A.4) k1 = H +
c

2x2
, k2 = H − c

2x2
,

and differentiating we get:

(A.5) (xk1)′ = k2ẋ, (xk2)′ = k1ẋ,

which are the Codazzi equations.
The Hilbert–Schmidt norm ‖dν‖2 is computed easily:

‖dν‖2 = ‖dν(w1)‖2 + ‖dν(w2)‖2 = k2
1 + k2

2 = ‖γ̈‖2 +
ż2

x2
;
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observe that k1 and k2 are even periodic functions, and so is ‖dν‖2. Using (A.3), we obtain
another expression for ‖dν‖2, as follows:

(A.6) ‖dν‖2 = k2
1 + k2

2 =

(
2H +

ż

x

)2

+

(
ż

x

)2

=
1

x2

[
2ż2 + 2Hc

]
=

1

x2

[
2ż2 + a

]
.

The Laplacian ∆ of the pull-back metric is computed easily as:

∆ =
1

x

∂

∂σ

(
x
∂

∂σ

)
+

1

x2

∂2

∂θ2
.

Let J denote the Jacobi operator of Σ, given by:

J = ∆ + ‖dν‖2 =
1

x

∂

∂σ

(
x
∂

∂σ

)
+

1

x2

∂2

∂θ2
+ (ẍż − ẋz̈)2 +

ż2

x2
.

The corresponding eigenvalue problem is:

(A.7) JF = −λF,

with boundary conditions

(A.8) F (−L/2, θ) = F (L/2, θ) = 0, ∀ θ;

we use the method of separation of variables for this linear equation, i.e., we look for
solutions F (σ, θ) that are product F = S(σ)T (θ). This leads to the following pairs of
boundary value problems for ODE’s:

(A.9) T ′′ + κT = 0, T (0) = T (2π), T ′(0) = T ′(2π),

and

(A.10) − (xS′)′ +
(κ
x
− x‖dν‖2

)
S = λxS, S

(
− L

2

)
= S

(
L
2

)
= 0.

Problem (A.9) has non trivial solutions when κ = n2, n ∈ N, with corresponding eigen-
functions cosnθ and sinnθ; substituting κ = n2 in (A.10) we get:

(A.11)

−(xS′)′ +

(
n2

x
− x‖dν‖2

)
S = λxS,

S
(
− L

2

)
= S

(
L
2

)
= 0.

Solutions of (A.11) with n = 0 are precisely the axially symmetric solutions of (A.7);
in particular, the axially symmetric Jacobi fields are the solutions of (A.11) with n = 0 and
λ = 0. Observe that the differential equation in (A.11) is a Sturm–Liouville equation; an
immediate application of Sturm theory gives the following.

Proposition A.1. The following statements hold:

(a) For all n ≥ 0, there exists a diverging sequence λ(n)
1 < λ

(n)
2 < . . . of eigenvalues

of the boundary value problem (A.11). The corresponding eigensolutions Sn,1,
Sn,2, . . . , can be chosen to form an orthonormal basis of the Lebesgue space
L2
(
[−L/2, L/2]

)
relatively to the measure dµ = xdσ. For all j ≥ 1, Sn,j has

exactly j − 1 zeroes in ]−L/2, L/2[.

(b) For all eigenvalue λ of problem (A.7) with boundary conditions F (−L/2, θ) =
F (L/2, θ) = 0, there exists a finite sequence n1(λ),. . .nmλ(λ) of nonnegative
integers such that, for n = nj(λ), problem (A.11) has a non trivial solution Sλ,j .
Every eigensolution of (A.7) is a linear combination of the functions

Sλ,j(σ) cos
(
nj(λ)θ

)
and Sλ,j(σ) sin

(
nj(λ)θ

)
,

j = 1, . . . ,mλ.
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Proof. Part (a) is precisely Sturm–Liouville theory of the boundary value problem (A.11).
For part (b), observe that if the function:

(A.12)
n2

x
− x‖dν‖2 − λx =: ϕ

is strictly positive on [−L/2, L/2], then no nontrivial solution of the ODE in (A.11) can
have two distinct zeroes in [−L/2, L/2]. This is proved with an elementary argument on
the sign of the second derivative at a critical point of a solution of the ODE. Now, since
x > 0, given any λ ∈ R then for n large enough the quantity (A.12) is positive. This
implies that for each given λ, there is only a finite sequence of n’s for which (A.11) has
non trivial solutions. Note that, by our periodicity assumptions, an upper bound for the
values of n for which (A.11) has non trivial solutions can be found15 independent of the
constant L.

For each n ∈ N ∪ {0}, let Sn,k be a k-th eigenfunction of (A.11). {Sn,k ; k ∈ N}
can be chosen so that it forms an orthogonal basis of L2

(
[0, 2π],dθ) and for all n, the

functions Sn,k, k ≥ 1, form an orthonormal basis of L2
(
[−L/2, L/2], xdσ

)
, then the

doubly indexed family

F =
{
Sn,k(σ) cos(nθ), Sn,k(σ) sin(nθ)

}
n≥0,k≥1

forms an orthogonal basis of L2(C, xdσdθ), and it consists of eigenfunctions of (A.7).
Since eigenfunctions of (A.7) corresponding to distinct eigenvalues are orthogonal in

L2(C, xdσdθ), it follows that every eigenfunction of (A.7) with eigenvalue λ is a linear
combination of those Sn,k cos(nθ) and Sn,k sin(nθ) for which λ(n)

k = λ. �

Corollary A.2. Let L > 0, λ ∈ R be fixed, and assume that every non zero solution F of
(A.7) and (A.8) is not axially symmetric. Then,

∫
Σ
F dΣ = 0.

Proof. By part (b) of Proposition A.1, every such F is a linear combination of functions of
the form S·cos(nθ) and S·sin(nθ), with n > 0, and

∫ 2π

0
cos(nθ) dθ =

∫ 2π

0
sin(nθ) dθ = 0

for all n > 0. �

A.1. Axially symmetric Jacobi fields. Let us now consider the ODE:

(A.13) (xS′)′ + x‖dν‖2S = 0;

this corresponds to the equation in (A.11) with n = λ = 0. We can extend by periodicity
its coefficients, and we study its solutions on the entire real line. Such solutions correspond
to axially symmetric Jacobi fields along Σ. Denote by So, Se : R → R the solutions of
(A.13) satisfying:

So(0) = 0, S′o(0) = 1, and Se(0) = 1, S′e(0) = 0.

The function So is a constant multiple of ẋ:

So(σ) = ẍ(0)−1ẋ(σ).

Namely, one checks easily that the function ẋ is a solution of (A.13); using (A.1), (A.2)
and (A.5) we compute:

(xẍ)′ = (xk1ż)
′ = (xk1)′ż + xk1z̈ = ẋk2ż − k2

1xẋ = −x(k2
1 + k2

2)ẋ.

This solution is the axially symmetric Jacobi field ν3; it is an odd periodic function. Now,
using the fact that x and ‖dν‖2 are even functions, it is easily checked that the function Se

is also even.
Zeroes of the functions So and Se correspond to values of L such that the CMC surface

Σ is degenerate as a constrained critical point of the area functional. Since x‖dν‖2 > 0,
both So and Se have an infinite sequence of zeroes, occurring at points symmetric with

15For instance, n2 ≤ max
[0,t0]

x2
[
λ+ ‖dν‖2

]
.
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respect to the origin. It is easily checked that if a linear combination αSo + βSe has zeros
at two points symmetric with respect to the origin, then either α or β must be zero. In other
words, the only degeneracy instants of Σ by axially symmetric Jacobi fields occur at the
zeroes of So and of Se.

If ro is a zero of So, then clearly
∫ ro
−ro xSo dσ = 0. If re is the first positive zero of Se,

then: ∫ re

−re
xSe dσ 6= 0.

Namely, Se is positive in ]−re, re[. Let us give a geometrical condition equivalent to the
non vanishing of the integral of Se between two symmetric zeroes.

Proposition A.3. Assume H 6= 0, and let re > 0 be a zero of Se. Then, the integral∫ re
−re xSe dσ is zero if and only if the position vector

(
x1(re), x3(re)

)
is tangent to the

curve γ at γ(re).

Proof. Consider the support function q : [−L/2, L/2] → R defined by q = X · ν. Then,
Jq = −2H . Namely, q can be written as d

dt |t=1Xt ·ν, where Xt = tX is a CMC variation
of X with mean curvature H(Xt) = 1

tH . Using (2.4), we have:

Jq = 2
d

dt

∣∣
t=1

(
1
tH
)

= −2H 6= 0.

Partial integration gives:

− 2H

∫ re

−re
xSe dσ =

∫ re

−re
Se(Jq)xdσ

=

∫ re

−re
(JSe)qxdσ − 2S′e(re)q(re)x(re) = −2S′e(re)q(re)x(re).

Since S′e(re)x(re) 6= 0, it follows that
∫ re
−re xSe dσ = 0 if and only if q(re) = 0, which is

the thesis. �

A.2. Non axially symmetric Jacobi fields. Let us now consider the equation:

(xS′)′ + x‖dν‖2S − n2

x
S = 0, n ≥ 1.

Each solution of this equation provides two linearly independent non axially symmetric
Jacobi fields along Σ; if S is a non zero solution of this equation, the corresponding Jacobi
fields J1 = S · sin(nθ) and J2 = S cos(nθ) are invariant by the rotation of 2π

n . Moreover,
if S is not even, then J1 and J2 are not symmetric with respect to reflections around the
plane x3 = 0.

As above, one proves that for all n ≥ 1 this equation admits two linearly independent
solutions, one even and one odd, corresponding to the initial values S(0) = 1, S′(0) = 0
and S(0) = 0, S′(0) = 1, respectively. However, for n large, such solutions may not have
nodal domains, i.e., may not have two distinct zeroes. This is the case, for instance, when
n > maxx‖dν‖2.

When n = 1, the function ż is the even solution of the equation. This is checked using
again the identities (A.1), (A.2) and (A.5); setting S = ż:

(xS′)′ = (xz̈)′ = −(k1ẋx)′ = −(k1x)′ẋ− k1xẍ = −k2ẋ
2 − k2

1xż

= −k2(1−ż2)−k2
1xż = −k2+k2ż

2−k2
1xż = −k2−(k2

1+k2
2)xż =

[
1
x−(k2

1+k2
2)x
]
S.

The functions ż cos θ and ż sin θ are the Jacobi fields ν1 and ν2.
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