

Instituto de Matemática e Estatística

MAT0103 — COMPLEMENTOS DE MATEMÁTICA PARA CONTABILIDADE E ADMINISTRAÇÃO

LISTA DE EXERCÍCIOS 5

PROFESSOR: PAOLO PICCIONE MONITOR: LEANDRO AUGUSTO LICHTENFELZ

Questão 1. Enuncie o Teorema de Weierstrass. Prove que se $f:\mathbb{R}\to\mathbb{R}$ é uma função contínua, tal que $\lim_{x\to+\infty}f(x)=\lim_{x\to-\infty}f(x)=+\infty$, então f admite mínimo em \mathbb{R} . Dê um exemplo de função $f:]0,1]\to\mathbb{R}$ contínua que não admite nem máximo nem mínimo em [0,1].

Questão 2. Enuncie o Teorema do Valor Médio (Teorema de Lagrange). Prove que existe $\alpha \in \left]0, \frac{\pi}{2}\right[$ tal que:

$$e^{\operatorname{sen}\alpha}\cos\alpha = \frac{2}{\pi}(e-1).$$

Questão 3. Quais das seguintes afirmações é verdadeira? Argumente sua resposta: se a afirmação for falsa, mostre um contra-exemplo, se for verdadeira, a prove.

- (a) Se $x_0 \in [a, b]$ é um ponto de máximo local da função derivável $f : [a, b] \to \mathbb{R}$, então $f'(x_0) = 0$.
- (b) Se $f'(x_0) = 0$ então x_0 é um ponto ou de máximo local da f ou de mínimo local da f.
- (c) Se $f:[a,b]\to\mathbb{R}$ for uma função derivável, e com derivada contínua, então existe M>0 tal que para todo $x_1,x_2\in[a,b], \left|f(x_1)-f(x_2)\right|\leq M\cdot|x_1-x_2|.$
- (d) Se $f:[a,b]\to\mathbb{R}$ for uma função derivável e $f(x)\geq 0$ para todo $x\in[a,b]$, e $x_0\in[a,b[$ é tal que $f(x_0)=0$, então $f'(x_0)=0$.
- (e) Se $f: \mathbb{R} \to \mathbb{R}$ é uma função derivável par, então sua derivada $f': \mathbb{R} \to \mathbb{R}$ é uma função par.

Questão 4. Prove que para todo $x_1, x_2 \in \mathbb{R}$, $|\cos x_1 - \cos x_2| \le |x_1 - x_2|$.

Date: Versão atualizada, 27 de Junho de 2011.

Questão 5. Determine o polinômio de grau menor o igual a 2 que melhor aproxima a função f(x) dada perto do ponto x_0 dado.

- (1) $f(x) = \cos x, x_0 = \frac{\pi}{4};$ (2) $f(x) = e^{2x}, x_0 = 1;$ (3) $\ln(1+2x), x_0 = 0;$

- (4) $f(x) = \operatorname{tg} x, x_0 = 0;$ (5) $f(x) = e^{\sin x}, x_0 = 0.$