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Chapter 1

Symplectic Vector Spaces

We will exclusively deal with �nite-dimensional real symplectic spaces. We begin
by discussing the notion of symplectic form on a vector space. Symplectic forms
allow the de�nition of symplectic bases, which are the analogues of orthonormal
bases in Euclidean geometry.

1.1 Generalities

Let E be a real vector space; its generic vector will be denoted by z. A symplectic
form (or: skew-product) on E is a mapping ! : E � E �! R which is

� linear in each of its components:

!(�1z1 + �2z2; z
0) = �1!(z1; z

0) + �2!(z2; z
0)

!(z; �1z
0
1 + �2z

0
2; z

0) = �1!(z; z
0
1) + �2!(z; z

0
2)

for all z; z0; z1; z01; z2; z
0
2 in E and �1; �01; �2; �

0
2 in R;

� antisymmetric (one also says skew-symmetric):

!(z; z0) = �!(z0; z) for all z; z0 2 E

(equivalently, in view of the bilinearity of !: !(z; z) = 0 for all z 2 E):

� non-degenerate:

!(z; z0) = 0 for all z 2 E if and only if z0 = 0:

De�nition 1 A real symplectic space is a pair (E;!) where E is a real vector
space on R and ! a symplectic form. The dimension of (E;!) is, by de�nition,
the dimension of E.

1
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The most basic �and important �example of a �nite-dimensional symplectic
space is the standard symplectic space (R2nz ; �) where � (the standard symplectic
form) is de�ned by

�(z; z0) =
nX
j=1

pjx
0
j � p0jxj (1.1)

when z = (x1; :::; xn; p1; :::; pn) and z0 = (x01; :::; x
0
n; p

0
1; :::; p

0
n). In particular,

when n = 1,
�(z; z0) = �det(z; z0):

In the general case �(z; z0) is (up to the sign) the sum of the areas of the
parallelograms spanned by the projections of z and z0 on the coordinate planes
xj ; pj .
Here is a coordinate-free variant of the standard symplectic space: set X =

Rn and de�ne a mapping � : X �X� �! R by

�(z; z0) = hp; x0i � hp0; xi (1.2)

if z = (x; p); z0 = (x0; p0). That mapping is then a symplectic form on X �X�.
Expressing z and z0 in the canonical bases of X and X� then identi�es (R2nz ; �)
with (X � X�; �). While we will only deal with �nite-dimensional symplectic
spaces, it is easy to check that formula (1.2) easily generalizes to the in�nite-
dimensional case. Let in fact X be a real Hilbert space and X� its dual. De�ne
an antisymmetric bilinear form � on X �X� by the formula (1.2) where h�; �i is
again the duality bracket. Then � is a symplectic form on X �X�.

Remark 2 Let � be the mapping E �! E� which to every z 2 E associates
the linear form �z de�ned by

�z(z
0) = !(z; z0): (1.3)

The non-degeneracy of the symplectic form can be restated as follows:

! is non-degenerate() � is a monomorphism E �! E�.

We will say that two symplectic spaces (E;!) and (E0; !0) are isomorphic if
there exists a vector space isomorphism s : E �! E0 such that

!0(s(z); s(z0)) = !0(z; z0)

for all z; z0 in E; two isomorphic symplectic spaces thus have same dimension.
We will see below that, conversely, two �nite-dimensional symplectic spaces are
always isomorphic in the sense above if they have same dimension; the proof of
this property requires the notion of symplectic basis, studied in next subsection
Let (E1; !1) and (E2; !2) be two arbitrary symplectic spaces. The mapping

! = !1 � !2 : E1 � E2 �! R
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de�ned by
!(z1 � z2; z01 � z02) = !1(z1; z01) + !2(z2; z02) (1.4)

for z1� z2; z01� z02 2 E1�E2 is obviously antisymmetric and bilinear. It is also
non-degenerate: assume that

!(z1 � z2; z01 � z02) = 0 for all z01 � z02 2 E1 � E2;

then, in particular, !1(z1; z01) = !2(z2; z
0
2) = 0 for all (z01; z

0
2) and hence z1 =

z2 = 0. The pair
(E;!) = (E1 � E2; !1 � !2)

is thus a symplectic space; it is called the direct sum of (E1; !1) and (E2; !2).

Example 3 Let (R2nz ; �) be the standard symplectic space. Then we can de�ne
on R2nz � R2nz two symplectic forms �� and �	 by

��(z1; z2; z
0
1; z

0
2) = �(z1; z

0
1) + �(z2; z

0
2)

�	(z1; z2; z
0
1; z

0
2) = �(z1; z

0
1)� �(z2; z02):

The corresponding symplectic spaces are denoted (R2nz � R2nz ; ��) and (R2nz �
R2nz ; �	).

Here is an example of a nonstandard symplectic structure. Let B be an
antisymmetric (real) n� n matrix: BT = �B and set

JB =

�
�B I
�I 0

�
.

We have

J2B =

�
B2 � I �B
B �I

�
hence J2B 6= �I if B 6= 0. We can however associate to JB the symplectic form
�B de�ned by

�B(z; z
0) = �(z; z0)� hBx; x0i ; (1.5)

this symplectic form intervenes in the study of electromagnetism (more generally
in the study of any Galilean invariant Hamiltonian system). The scalar product
�hBx; x0i is therefore sometimes called the �magnetic term�.

1.2 Symplectic Bases

We begin by observing that the dimension of a �nite-dimensional symplectic
vector is always even: choosing a scalar product h�; �iE on E, there exists an
endomorphism j of E such that !(z; z0) = hj(z); z0iE and the antisymmetry of
! is then equivalent to jT = �j where T denotes here transposition with respect
to h�; �iE ; hence

det j = (�1)dimE det jT = (�1)dimE det j.

The non-degeneracy of ! implies that det j 6= 0 so that (�1)dimE = 1, hence
dimE = 2n for some integer n, as claimed.
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De�nition 4 A set B of vectors

B = fe1; :::; eng [ ff1; :::; fng

of E is called a �symplectic basis�of (E;!) if the conditions

!(ei; ej) = !(fi; fj) = 0 , !(fi; ej) = �ij for 1 � i; j � n (1.6)

hold (�ij is the Kronecker index: �ij = 1 if i = j and �ij = 0 if i 6= j).

We leave it to the reader to check that the conditions (1.6) automatically
ensure the linear independence of the vectors ei; fj for 1 � i; j � n (hence a
symplectic basis is a basis in the usual sense).
Here is a basic (and obvious) example of a symplectic basis: de�ne vectors

e1; :::; en and f1; :::; fn in R2nz by

ei = (ci; 0) , ei = (0; ci)

where (ci) is the canonical basis of Rn. (For instance, if n = 1, e1 = (1; 0) and
f1 = (0; 1)). These vectors form the canonical basis

B = fe1; :::; eng [ ff1; :::; fng

of the standard symplectic space (R2nz ; �); one immediately checks that they
satisfy the conditions �(ei; ej) = 0, �(fi; fj) = 0, and �(fi; ej) = �ij for 1 �
i; j � n. This basis is called the canonical symplectic basis.
Taking for granted the existence of symplectic bases (it will be established

in a moment) we can prove that all symplectic vector spaces of same �nite
dimension 2n are isomorphic: let (E;!) and (E0; !0) have symplectic bases
fei; fj ; 1 � i; j � ng and fe0i; f 0j ; 1 � i; j � ng and consider the linear isomor-
phism s : E �! E0 de�ned by the conditions s(ei) = e0i and s(fi) = f 0i for
1 � i � n. That s is symplectic is clear since we have

!0(s(ei); s(ej)) = !
0(e0i; e

0
j) = 0

!0(s(fi); s(fj)) = !
0(f 0i ; f

0
j) = 0

!0(s(fj); s(ei)) = !
0(f 0j ; e

0
i) = �ij

for 1 � i; j � n:
The set of all symplectic automorphisms (E;!) �! (E;!) form a group

Sp(E;!) �the symplectic group of (E;!) �for the composition law. Indeed,
the identity is obviously symplectic, and so is the compose of two symplectic
transformations. If !(s(z); s(z0)) = !(z; z0) then, replacing z and z0 by s�1(z)
and s�1(z0), we have !(z; z0) = !(s�1(z); s�1(z0)) so that s�1 is symplectic as
well.
It turns out that all symplectic groups corresponding to symplectic spaces

of same dimension are isomorphic:

Proposition 5 Let (E;!) and (E0; !0) be two symplectic spaces of same di-
mension 2n. The symplectic groups Sp(E;!) and Sp(E0; !0) are isomorphic.
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Proof. Let � be a symplectic isomorphism (E;!) �! (E0; !0) and de�ne a
mapping f� : Sp(E;!) �! Sp(E0; !0) by f�(s) = f � s � f�1. Clearly f�(ss0) =
f�(s)�(s

0) hence f� is a group monomorphism. The condition f�(S) = I (the
identity in Sp(E0; !0)) is equivalent to f �s = f and hence to s = I (the identity
in Sp(E;!)); f� is thus injective. It is also surjective because s = f�1 � s0 � f
is a solution of the equation f � s � f�1 = s0.

These results show that it is no restriction to study �nite-dimensional sym-
plectic geometry by singling out one particular symplectic space, for instance
the standard symplectic space, or its variants. This will be done in next section.
Note that if B1 = fe1i; f1j ; 1 � i; j � n1g and B2 = fe2k; f2`; 1 � k; ` � n2g

are symplectic bases of (E1; !1) and (E2; !2) then

B = fe1i � e2k; f1j � f2` : 1 � i; j � n1 + n2g

is a symplectic basis of (E1 � E2; !1 � !2).

1.3 Di¤erential Interpretation of �

A di¤erential two-form on a vector space Rm is the assignment to every x 2 Rm
of a linear combination

�x =
X

i<j�m
bij(x)dxi ^ dxj

where the bij are (usually) chosen to be C1 functions, and the wedge product
dxi ^ dxj is de�ned by

dxi ^ dxj = dxi 
 dxj � dxj 
 dxi

where dxi : Rm �! R is the projection on the i-th coordinate. Returning to
R2nz , we have

dpj ^ dxj(z; z0) = pjx0j � p0jxj
hence we can identify the standard symplectic form � with the di¤erential 2-form

dp ^ dx =
nX
j=1

dpj ^ dxj = d(
nX
j=1

pjdxj);

the di¤erential one-form

pdx =
nX
j=1

pjdxj

plays a fundamental role in both classical and quantum mechanics; it is some-
times called the (reduced) action form in physics and the Liouville form in
mathematics1 .

1Some authors call it the tautological one-form.
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Since we are in the business of di¤erential form, let us make the following
remark: the exterior derivative of dpj ^ dxj is

d(dpj ^ dxj) = d(dpj) ^ dxj + dpj ^ d(dxj) = 0

so that we have
d� = d(dp ^ dx) = 0.

The standard symplectic form is thus a closed non-degenerate 2-form on
R2nz . This remark is the starting point of the generalization of the notion of
symplectic form to a class of manifolds: a symplectic manifold is a pair (M;!)
where M is a di¤erential manifold M and ! a non-degenerate closed 2-form on
M . This means that every tangent plane TzM carries a symplectic form !z
varying smoothly with z 2M . As a consequence, a symplectic manifold always
has even dimension (we will not discuss the in�nite-dimensional case).
One basic example of a symplectic manifold is the cotangent bundle T �Vn

of a manifold Vn; the symplectic form is here the �canonical 2-form�on T �Vn,
de�ned as follows: let � : T �Vn�! Vn be the projection to the base and de�ne
a 1-form � on T �Vn by �z(X) = p(��(X)) for a tangent vector Vn to T �Vn at
z = (z; p). The form � is called the �canonical 1-form�on T �Vn; its exterior
derivative ! = d� is called the �canonical 2-form�on T �Vn and one easily checks
that it indeed is a symplectic form (in local coordinates � = pdx and � = dp ^
dx). The symplectic manifold (T �Vn; !) is in a sense the most straightforward
non-linear version of the standard symplectic space (to which it reduces when
Vn = Rnx since T �Rnx is just Rnx � (Rnx)� � R2nz ). Observe that T �Vn never is a
compact manifold.
A symplectic manifold is always orientable: the non-degeneracy of ! namely

implies that the 2n-form
!^n = ! ^ � � � ^ !| {z }

n factors

never vanishes on M and is thus a volume form on M . We will call the exterior
power !^n the symplectic volume form. When M is the standard symplectic
space then the usual volume form on R2nz

Vol2n = (dp1 ^ � � � ^ dpn) ^ (dx1 ^ � � � ^ dxn)

is related to the symplectic volume form by

Vol2n = (�1)n(n�1)=2
1

n!
�^n. (1.7)

1.4 Skew-Orthogonality

All vectors in a symplectic space (E;!) are skew-orthogonal (one also says
�isotropic�) in view of the antisymmetry of a symplectic form: �(z; z0) = 0 for
all z 2 E. The notion of length therefore does not make sense in symplectic
geometry (whereas the notion of area does). The notion �skew orthogonality�
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is extremely interesting in the sense that it allows the de�nition of subspaces of
a symplectic space having special properties. We begin by de�ning the notion
of symplectic basis, which is the equivalent of orthonormal basis in Euclidean
geometry.
Let M be an arbitrary subset of a symplectic space (E;!). The skew-

orthogonal set to M (one also says (or annihilator) is by de�nition the set

M! = fz 2 E : !(z; z0) = 0; 8z0 2Mg.

Notice that we always have

M � N =) N! �M! and (M!)
! �M .

It is traditional to classify subsets M of a symplectic space (E;!) as follows:
M � E is said to be:

� Isotropic if M! �M : !(z; z0) = 0 for all z; z0 2M ;

� Coisotropic (or: involutive) if M! �M ;

� Lagrangian if M is both isotropic and co-isotropic: M! =M ;

� Symplectic if M \M! = 0.

Notice that the non-degeneracy of a symplectic form is equivalent to saying
that the only vector that of a symplectic space which is skew-orthogonal to all
other vectors is 0.
Following proposition describes some straightforward but useful properties

of the skew-orthogonal of a linear subspace of a symplectic space:

Proposition 6 (i) If M is a linear subspace of E, then so is M! and

dimM + dimM! = dimE and (M!)
!
=M: (1.8)

(ii) If M1, M2 are linear subspaces of a symplectic space (E;!), then

(M1 +M2)
!
=M!

1 \M!
2 , (M1 \M2)

!
=M!

1 +M
!
2 . (1.9)

Proof. Proof of (i). That M! is a linear subspace of E is clear. Let � :
E �! E� be the linear mapping (1.3); since the dimension of E is �nite the
non-degeneracy of ! implies that � is an isomorphism. Let fe1; :::; ekg be a
basis of M ; we have

M! =
k\
j=1

ker(�(ej))

so that M! is de�ned by k independent linear equations, hence

dimM! = dimE � k = dimE � dimM
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which proves the �rst formula (1.8). Applying that formula to the subspace
(M!)! we get

dim(M!)! = dimE � dimM! = dimM

and hence M = (M!)! since (M!)
! �M whether M is linear or not. Proof of

(ii). It is su¢ cient to prove the �rst equality (1.9) since the second follows by
duality, replacing M1 by M!

1 and M2 by M!
2 and using the �rst formula (1.8).

Assume that z 2 (M1 +M2)
!; then !(z; z1 + z2) = 0 for all z1 2 M1; z2 2 M2.

In particular !(z; z1) = !(z; z2) = 0 so that we have both z 2M!
1 and z 2M!

2 ;
proving that (M1 +M2)

! � M!
1 \ M!

2 . If conversely z 2 M!
1 \ M!

2 then
!(z; z1) = !(z; z2) = 0 for all z1 2 M1; z2 2 M2 and hence !(z; z0) = 0 for all
z0 2M1 +M2. Thus z 2 (M1 +M2)

! and M!
1 \M!

2 � (M1 +M2)
!.

Let M be a linear subspace of (E;!) such that M \ M! = f0g; in the
terminology introduced above M is a �symplectic subset of E�.

Exercise 7 If M \M! = f0g, then (M;!jM ) and (M!; !jM! ) are complemen-
tary symplectic spaces of (E;!):

(E;!) = (M �M!; !jM � !jM! ): (1.10)

[Hint: M! is a linear subspace of E so it su¢ ces to check that the restriction
!jM is non-degenerate].

1.5 The Symplectic Gram�Schmidt theorem

The following result is a symplectic version of the Gram�Schmidt orthonormal-
ization process of Euclidean geometry. Because of its importance and its many
applications we give it the status of a theorem:

Theorem 8 Let A and B be two (possibly empty) subsets of f1; :::; ng. For any
two subsets E = fei : i 2 Ag, F = ffj : j 2 Bg of the symplectic space (E;!)
(dimE = 2n), such that the elements of E and F satisfy the relations

!(ei; ej) = !(fi; fj) = 0 , !(fi; ej) = �ij for (i; j) 2 A�B (1.11)

there exists a symplectic basis B of (E;!) containing E [ F .

Proof. We will distinguish three cases. (i) The case A = B = ;. Choose
a vector e1 6= 0 in E and let f1 be another vector with !(f1; e1) 6= 0 (the
existence of f1 follows from the non-degeneracy of !). These vectors are linearly
independent, which proves the theorem in the considered case when n = 1.
Suppose n > 1 and let M be the subspace of E spanned by fe1; f1g and set
E1 = M!; in view of the �rst formula (1.8) we have dimM + dimE1 = 2n.
Since !(f1; e1) 6= 0 we have E1 \M = 0 hence E = E1�M , and the restriction
!1 of ! to E1 is non-degenerate (because if z1 2 E1 is such that !1(z1; z) = 0 for
all z 2 E1 then z1 2 E!1 = M and hence z1 = 0); (E1; !1) is thus a symplectic
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space of dimension 2(n� 1). Repeating the construction above n� 1 times we
obtain a strictly decreasing sequence

(E;!) � (E1; !1) � � � � � (En�1; !n�1)

of symplectic spaces with dimEk = 2(n� k) and also an increasing sequence

fe1; f1g � fe1; e2; f1; f2g � � � � � fe1; :::; en; f1; :::; fng

of sets of linearly independent vectors in E, each set satisfying the relations
(1.11). (ii) The case A = B 6= ;. We may assume without restricting the
argument that A = B = f1; 2; :::; kg. Let M be the subspace spanned by
fe1; :::; ek; f1; :::; fkg. As in the �rst case we �nd that E = M �M! and that
the restrictions !M and !M! of ! to M and M!, respectively, are symplectic
forms. Let fek+1; :::; en; fk+1; :::; fng be a symplectic basis of M!; then

B = fe1; :::; en; f1; :::; fng

is a symplectic basis of E. (iii) The case BnA 6= ; (or BnA 6= ;). Suppose
for instance k 2 BnA and choose ek 2 E such that !(ei; ek) = 0 for i 2 A and
!(fj ; ek) = �jk for j 2 B. Then E [F [fekg is a system of linearly independent
vectors: the equality

�kek +
X
i2A

�iei +
X
j2B

�jej = 0

implies that we have

�k!(fk; ek) +
X
i2A

�i!(fk; ei) +
X
j2B

�j!(fk; ej) = �k = 0

and hence also �i = �j = 0. Repeating this procedure as many times as
necessary, we are led back to the case A = B 6= ;.

Remark 9 The proof above shows that we can construct symplectic subspaces of
(E;!) having any given even dimension 2m < dimE containing any pair of vec-
tors e; f such that !(f; e) = 1. In fact, M = Spanfe; fg is a two-dimensional
symplectic subspace (�symplectic plane�) of (E;!). In the standard symplec-
tic space (R2nz ; �) every plane xj ; pj of �conjugate coordinates� is a symplectic
plane.

It follows from the theorem above that if (E;!) and (E0; !0) are two symplec-
tic spaces with same dimension 2n there always exists a symplectic isomorphism
� : (E;!) �! (E0; !0). Let in fact

B = fe1; :::; eng [ ff1; :::; fng , B0 = fe01; :::; e0ng [ ff 01; :::; f 0ng

be symplectic bases of (E;!) and (E0; !0), respectively. The linear mapping
� : E �! E0 de�ned by �(ej) = e0j and �(fj) = f

0
j (1 � j � n) is a symplectic

isomorphism.
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This result, together with the fact that any skew-product takes the standard
form in a symplectic basis shows why it is no restriction to develop symplectic
geometry from the standard symplectic space: all symplectic spaces of a given
dimension are just isomorphic copies of (R2nz ; �):
We end this subsection by brie�y discussing the restrictions of symplectic

transformations to subspaces:

Proposition 10 Let (F; !jF ) and (F 0; !jF 0) be two symplectic subspaces of (E;!).
If dimF = dimF 0 there exists a symplectic automorphism of (E;!) whose re-
striction 'jF is a symplectic isomorphism 'jF : (F; !jF ) �! (F 0; !jF 0).

Proof. Assume that the common dimension of F and F 0 is 2k and let

B(k) = fe1; :::; ekg [ ff1; :::; fkg
B0(k) = fe01; :::; e0kg [ ff 01; :::; f 0kg

be symplectic bases of F and F 0, respectively. In view of Theorem 8 we may
complete B(k) and B(k0) into full symplectic bases B and B0 of (E;!). De�ne a
symplectic automorphism � of E by requiring that �(ei) = e0i and �(fj) = f

0
j .

The restriction ' = �jF is a symplectic isomorphism F �! F 0.

Let us now work in the standard symplectic space (R2nz ; �); everything can
however be generalized to vector spaces with a symplectic form associated to a
complex structure. We leave this generalization to the reader as an exercise.

De�nition 11 A basis of (R2nz ; �) which is both symplectic and orthogonal (for
the scalar product hz; z0i = �(Jz; z0)) is called an orthosymplectic basis.

The canonical basis is trivially an orthosymplectic basis. It is easy to con-
struct orthosymplectic bases starting from an arbitrary set of vectors fe01; :::; e0ng
satisfying the conditions �(e0i; e

0
j) = 0: let ` be the vector space (Lagrangian

plane) spanned by these vectors; using the classical Gram�Schmidt orthonor-
malization process we can construct an orthonormal basis fe1; :::; eng of `. De-
�ne now f1 = �Je1; :::; fn = �Jen. The vectors fi are orthogonal to the vectors
ej and are mutually orthogonal because J is a rotation; in addition

�(fi; fj) = �(ei; ej) = 0 , �(fi; ej) = hei; eji = �ij

hence the basis
B = fe1; :::; eng [ ff1; :::; fng

is both orthogonal and symplectic.
We leave it to the reader as an exercise to generalize this construction to

any set
fe1; :::; ekg [ ff1; :::; fmg

of normed pairwise orthogonal vectors satisfying in addition the symplectic con-
ditions �(fi; fj) = �(ei; ej) = 0 and �(fi; ej) = �ij .



Chapter 2

The Symplectic Group

In this second Chapter we study in some detail the symplectic group of a sym-
plectic space (E;!), with a special emphasis on the standard symplectic group
Sp(n), corresponding to the case (E;!) = (R2nz ; �).

2.1 The Standard Symplectic Group

Let us begin by working in the standard symplectic space (R2nz ; �).

De�nition 12 The group of all automorphisms s of (R2nz ; �) such that

�(sz; sz0) = �(z; z0)

for all z; z0 2 R2nz is is denoted by Sp(n) and called the �standard symplec-
tic group� (one also frequently �nds the notations Sp(2n) or Sp(2n;R) in the
literature).

It follows from Proposition 5 that Sp(n) is isomorphic to the symplectic
group Sp(E;!) of any 2n-dimensional symplectic space.
The notion of linear symplectic transformation can be extended to di¤eo-

morphisms:

De�nition 13 Let (E;!), (E0; !0) be two symplectic vector spaces. A di¤eo-
morphism f : (E;!) �! (E0; !0) is called a �symplectomorphism1� if the dif-
ferential dzf is a a linear symplectic mapping E �! E0 for every z 2 E. [In
the physical literature one often says �canonical transformation� in place of
�symplectomorphism�].

It follows from the chain rule that the composition g � f of two symplecto-
morphisms f : (E;!) �! (E0; !0) and g : (E0; !0) �! (E00; !00) is a symplecto-
morphism (E;!) �! (E00; !00). When

(E;!) = (E0; !0) = (R2nz ; �)
1The word was reputedly coined by J.-M. Souriau.

11
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a di¤eomorphism f of (R2nz ; �) is a symplectomorphism if and only if its Jacobian
matrix (calculated in any symplectic basis) is in Sp(n). Summarizing:

f is a symplectomorphism of (R2nz ; �)
()

Df(z) 2 Sp(n) for every z 2 (R2nz ; �).

It follows directly from the chain rule D(g � f)(z) = Dg(f(z)Df(z) that the
symplectomorphisms of the standard symplectic space (R2nz ; �) form a group.
That group is denoted by Symp(n).

De�nition 14 Let (E;!) be a symplectic space. The group of all linear sym-
plectomorphisms of (E;!) is denoted by Sp(E;!) and called the �symplectic
group of (E;!)�.

Following exercise produces in�nitely many examples of linear symplecto-
morphisms:
The notion of symplectomorphism extends in the obvious way to symplectic

manifold: if (M;!) and (M 0; !0) are two such manifolds, then a di¤eomorphism
f : M �! M 0 is called a symplectomorphism if it preserves the symplectic
structures on M and M 0, that is if f�!0 = ! where f�!0 (the �pull-back of !0

by f) is de�ned by

f�!0(z0)(Z;Z
0) = !0(f(z0))((dz0f)Z; (dz0f)Z

0)

for every z0 2 M and Z;Z 0 2 Tz0M . If f and g are symplectomorphisms
(M;!) �! (M 0; !0) and (M 0; !0) �! (M 00; !00) then g � f is a symplectomor-
phism (M;!) �! (M 00; !00).
The symplectomorphisms (M;!) �! (M;!) obviously form a group, de-

noted by Symp(M;!).

2.2 Symplectic Matrices and Eigenvalues

For practical purposes it is often advantageous to work in coordinates and to
represent the elements of Sp(n) by matrices.
Recall that de�nition (1.1) of the standard symplectic form can be rewritten

in matrix form as
�(z; z0) = (z0)TJz = hJz; z0i (2.1)

where J is the standard symplectic matrix:

J =

�
0 I
�I 0

�
: (2.2)

Notice that JT = �J and J2 = �I.
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Choose a symplectic basis in (R2nz ; �) we will identify a linear mapping s :
R2nz �! R2nz with its matrix S in that basis. In view of (2.1) we have

S 2 Sp(n)() STJS = J

where ST is the transpose of S. Since

detSTJS = detS2 det J = det J

it follows that detS can, a priori, take any of the two values �1. It turns out,
however, that

S 2 Sp(n) =) detS = 1.

There are many ways of showing this; none of them is really totally trivial.
Here is an algebraic proof making use of the notion of Pfa¢ an (we will give an
alternative proof later on). Recall that to every antisymmetric matrix A one
associates a polynomial Pf(A) (�the Pfa¢ an of A�) in the entries of A, it has
the following properties:

Pf(STAS) = (detS) Pf(A) , Pf(J) = 1.

Choose now A = J and S 2 Sp(n). Since STJS = J we have

Pf(STJS) = detS = 1

which was to be proven.

Remark 15 The group Sp(n) is stable under transposition: the condition S 2
Sp(n) is equivalent to STJS = J ; since S�1 also is in Sp(n) we have (S�1)TJS�1 =
J ; taking the inverses of both sides of this equality we get SJ�1ST = J�1 that
is SJST = J , so that ST 2 Sp(n). It follows that we have the equivalences

S 2 Sp(n)() STJS = J () SJST = J . (2.3)

A symplectic basis of (R2nz ; �) being chosen, we can always write S 2 Sp(n)
in block-matrix form

S =

�
A B
C D

�
(2.4)

where the entries A;B;C;D are n� n matrices. The conditions (2.3) are then
easily seen, by a direct calculation, equivalent to the two following sets of equiv-
alent conditions2 :

ATC, BTD symmetric, and ATD � CTB = I (2.5)

ABT , CDT symmetric, and ADT �BCT = I. (2.6)

It follows from the second of these sets of conditions that the inverse of S is

S�1 =

�
DT �BT
�CT AT

�
. (2.7)

2These conditions are sometimes called the �Luneburg relations� in theoretical optics.
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Example 16 Here are three classes of symplectic matrices which are useful: if
P and L are, respectively, a symmetric and an invertible n� n matrix we set

VP =

�
I 0
�P I

�
, UP =

�
�P I
�I 0

�
, ML =

�
L�1 0
0 LT

�
. (2.8)

The matrices VP are sometimes called �symplectic shears�.

It turns out �as we shall prove later on �that both sets

G = fJg [ fVP : P 2 Sym(n;R)g [ fML : L 2 GL(n;R)g

and
G0 = fJg [ fUP : P 2 Sym(n;R)g [ fML : L 2 GL(n;R)g

generate the symplectic group Sp(n).

Example 17 Let X and Y be two symmetric n � n matrices, X invertible.
Then

S =

�
X + Y X�1Y Y X�1

X�1Y X�1

�
is a symplectic matrix.

We can also form direct sums of symplectic groups. Consider for instance
(R2n1 ; �1) and (R2n2 ; �2), the standard symplectic spaces of dimension 2n1 and
2n2; let Sp(n1) and Sp(n2) be the respective symplectic groups. The direct sum
Sp(n1)� Sp(n2) is the group of automorphisms of

(R2nz ; �) = (R2n1 � R2n2 ; �1 � �2)

de�ned, for z1 2 R2n1 and z2 2 R2n2 , by

(s1 � s2)(z1 � z2) = s1z1 � s2z2.

It is evidently a subgroup of Sp(n):

Sp(n1)� Sp(n2) � Sp(n)

which can be expressed in terms of block-matrices as follows: let

S1 =

�
A1 B1
C1 D1

�
and S2 =

�
A2 B2
C2 D2

�
be elements of Sp(n1) and Sp(n2), respectively. Then

S1 � S2 =

2664
A1 0 B1 0
0 A2 0 B2
C1 0 D1 0
0 C2 0 D2

3775 2 Sp(n1 + n2). (2.9)
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The mapping (S1; S2) 7�! S1 � S2 thus de�ned is a group monomorphism

Sp(n1)� Sp(n2) �! Sp(n).

The elements of Sp(n) are linear isomorphisms; we will sometimes also con-
sider a¢ ne symplectic isomorphisms. Let S 2 Sp(n) and denote by T (z0) the
translation z 7�! z + z0 in R2nz . The composed mappings

T (z0)S = ST (S
�1z0) and ST (z0) = T (Sz0)S

are both symplectomorphisms, as is easily seen by calculating their Jacobians.
These transformations form a group.

De�nition 18 The semi-direct product Sp(n)ns T (2n) of the symplectic group
and the group of translations in R2nz is called the a¢ ne (or: inhomogeneous)
symplectic group, and is denoted by ISp(n).

For practical calculations it is often useful to identify ISp(n) with a matrix
group:

Exercise 19 Show that the group of all matrices

[S; z0] �
�
S z0

01�2n 1

�
is isomorphic to ISp(n) (here 01�2n is the 2n-column matrix with all entries
equal to zero).

Let us now brie�y discuss the eigenvalues of a symplectic matrix. It has
been known for a long time that the eigenvalues of symplectic matrices play an
fundamental role in the study of Hamiltonian periodic orbits; this is because
the stability of these orbits depend in a crucial way on the structure of the
associated linearized system. It turns out that these eigenvalues also play an
essential role in the understanding of symplectic squeezing theorems, which we
study later in this book.
Let us �rst prove the following result:

Proposition 20 Let S 2 Sp(n).
(i) If � is an eigenvalue of S then so are �� and 1=� (and hence also 1=��);
(ii) if the eigenvalue � of S has multiplicity k then so has 1=�.
(iii) S and S�1 have the same eigenvalues.

Proof. Proof of (i). We are going to show that the characteristic polynomial
PS(�) = det(S � �I) of S satis�es the re�exivity relation

PS(�) = �
2nPS(1=�); (2.10)
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(i) will follow since for real matrices eigenvalues appear in conjugate pairs. Since
STJS = J we have S = �J(ST )�1J and hence

PS(�) = det(�J(ST )�1J � �I)
= det(�(ST )�1J + �I)
= det(�J + �S)
= �2n det(S � ��1I)

which is precisely (2.10). Proof of (ii). Let P (j)S be the j-th derivative of the

polynomial PS . If �0 has multiplicity k; then P
(j)
S (�0) = 0 for 0 � j � k � 1

and P (k)S (�) 6= 0. In view of (2.10) we also have P (j)S (1=�) = 0 for 0 � j � k� 1
and P (k)S (1=�) 6= 0. Property (iii) immediately follows from (ii).

Notice that as an immediate consequence of this result is that if �1 is an
eigenvalue of S 2 Sp(n) then its multiplicity is necessarily even.
We will see in next subsection (Proposition 22) that any positive-de�nite

symmetric symplectic matrix can be diagonalized using an orthogonal transfor-
mation which is at the same time symplectic.

2.3 The Unitary Group U(n)

The complex structure associated to the standard symplectic matrix J is very
simple: it is de�ned by

(�+ i�)z = �+ �Jz

and corresponds to the trivial identi�cation z = (x; p) � x + ip. The unitary
group U(n;C) acts in a natural way on (R2nz ; �):

Proposition 21 The monomorphism � : M(n;C) �! M(2n;R) de�ned by
u = A+ iB 7�! �(u) with

�(u) =

�
A �B
B A

�
(A and B real) identi�es the unitary group U(n;C) with the subgroup

U(n) = Sp(n) \O(2n;R). (2.11)

of Sp(n).

Proof. In view of (2.7) the inverse of U = �(u), u 2 U(n;C), is

U�1 =

�
AT BT

�BT AT

�
= UT

hence U 2 O(2n;R) which proves the inclusion U(n) � Sp(n) \O(2n;R). Sup-
pose conversely that U 2 Sp(n) \O(2n;R). Then

JU = (UT )�1J = UJ
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which implies that U 2 U(n) so that Sp(n) \O(2n;R) � U(n).

We will loosely talk about U(n) as of the �unitary group�when there is no
risk of confusion; notice that it immediately follows from conditions (2.5), (2.6)
that we have the equivalences:

A+ iB 2 U(n) (2.12)

()
ATB symmetric and ATA+BTB = I (2.13)

()
ABT symmetric and AAT +BBT = I; (2.14)

of course these conditions are just the same thing as the conditions

(A+ iB)�(A+ iB) = (A+ iB)(A+ iB)� = I

for the matrix A+ iB to be unitary.

In particular, taking B = 0 we see the matrices

R =

�
A 0
0 A

�
with AAT = ATA = I (2.15)

also are symplectic, and form a subgroup O(n) of U(n) which we identify with
the rotation group O(n;R). We thus have the chain of inclusions

O(n) � U(n) � Sp(n).

Let us end this subsection by mentioning that it is sometimes useful to iden-
tify elements of Sp(n) with complex symplectic matrices. The group Sp(n;C)
is de�ned, in analogy with Sp(n), by the condition

Sp(n;C) = fM 2M(2n;C) :MTJM = Jg.

Let now K be the complex matrix

K =
1p
2

�
I iI
iI I

�
2 U(2n;C)

and consider the mapping

Sp(n) �! Sp(n;C) , S 7�! Sc = K
�1SK:

One veri�es by a straightforward calculation left to the reader as an exercise
that Sc 2 Sp(n;C). Notice that if U 2 U(n) then

Uc =

�
U 0
0 U�

�
.
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We know from elementary linear algebra that one can diagonalize a sym-
metric matrix using orthogonal transformations. From the properties of the
eigenvalues of a symplectic matrix follows that when this matrix is in addition
symplectic and positive de�nite this diagonalization can be achieved using a
symplectic rotation:

Proposition 22 Let S be a positive de�nite and symmetric symplectic matrix.
Let �1 � � � � � �n � 1 be the n smallest eigenvalues of S and set

� = diag[�1; :::; �n; 1=�1; :::; 1=�n]. (2.16)

There exists U 2 U(n) such that S = UT�U .

Proof. Since S > 0 its eigenvalues occur in pairs (�; 1=�) of positive numbers
(Proposition 20); if �1 � � � � � �n are n eigenvalues then 1=�1; :::; 1=�n are the
other n eigenvalues. Let now U be an orthogonal matrix such that S = UT�U
with, � being given by (2.16). We claim that U 2 U(n). It su¢ ces to show that
we can write U in the form

U =

�
A �B
B A

�
with

ABT = BTA , AAT +BBT = I. (2.17)

Let e1; :::; en be n orthonormal eigenvectors of U corresponding to the eigenval-
ues �1; :::; �n. Since SJ = JS�1 (because S is both symplectic and symmetric)
we have, for 1 � k � n,

SJek = JS
�1ek =

1

�j
Jek

hence �Je1; :::;�Jen are the orthonormal eigenvectors of U corresponding to
the remaining n eigenvalues 1=�1; :::; 1=�n. Write now the 2n�nmatrix (e1; :::; en)
as

[e1; :::; en] =

�
A
B

�
where A and B are n� n matrices; we have

[�Je1; :::;�Jen] = �J
�
A
B

�
=

�
�B
A

�
hence U is indeed of the type

U = [e1; :::; en;�Je1; :::;�Jen] =
�
A �B
B A

�
.

The symplectic conditions (2.17) are automatically satis�ed since UTU = I.

An immediate consequence of Proposition 22 is that the square root of a
positive-de�nite symmetric symplectic matrix is also symplectic. More gener-
ally:
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Corollary 23 (i) For every � 2 R there exists a unique R 2 Sp(n), R > 0,
R = RT , such that S = R�.
(ii) Conversely, if R 2 Sp(n) is positive de�nite, then R� 2 Sp(n) for every

� 2 R.

Proof. Proof of (i). Set R = UT�1=�U ; then R� = UT�U = S. Proof of (ii).
It su¢ ces to note that we have

R� = (UT�U)� = UT��U 2 Sp(n).

2.4 The Symplectic Lie Algebra

Sp(n) is a Lie group; we will call its Lie algebra the �symplectic algebra�, and
denote it by sp(n). There is one-to-one correspondence between the elements
of sp(n) and the one-parameter groups in Sp(n). this correspondence is the
starting point of linear Hamiltonian mechanics.
Let

� : GL(2n;R) �! R4n
2

be the continuous mapping de�ned by �(M) = MTJM � J . Since S 2 Sp(n)
if and only if STJS = J we have Sp(n) = ��1(0) and Sp(n) is thus a closed
subgroup of GL(2n;R), hence a �classical Lie group�. The set of all real matrices
X such that the exponential exp(tX) is in Sp(n) is the Lie algebra of Sp(n); we
will call it the �symplectic algebra�and denote it by sp(n):

X 2 sp(n)() St = exp(tX) 2 Sp(n) for all t 2 R: (2.18)

The one-parameter family (St) thus de�ned is a group: StSt0 = St+t0 and
S�1t = S�t.
The following result gives an explicit description of the elements of the sym-

plectic algebra:

Proposition 24 Let X be a real 2n� 2n matrix.
(i) We have

X 2 sp(n)() XJ + JXT = 0() XTJ + JX = 0. (2.19)

(ii) Equivalently, sp(n) consists of all block-matrices X such that

X =

�
U V
W �UT

�
with V = V T and W =WT . (2.20)

Proof. Let (St) be a di¤erentiable one-parameter subgroup of Sp(n) and a
2n� 2n real matrix X such that St = exp(tX). Since St is symplectic we have
StJ(St)

T = J that is
exp(tX)J exp(tXT ) = J .
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Di¤erentiating both sides of this equality with respect to t and then setting
t = 0 we get XJ + JXT = 0, and applying the same argument to the transpose
STt we get XTJ + JX = 0 as well. Suppose conversely that X is such that
XJ + JXT = 0 and let us show that X 2 sp(n). For this it su¢ ces to prove
that St = exp(tX) is in Sp(n) for every t. The condition XTJ + JX = 0 is
equivalent to XT = JXJ hence STt = exp(tJXJ); since J2 = �I we have
(JXJ)k = (�1)k+1JXkJ and hence

exp(tJXJ) = �
1X
k=0

(�t)k
k!

(JXJ)k = �Je�tXJ .

It follows that
STt JSt = (�Je�tXJ)JetX = J

so that St 2 Sp(n) as claimed.

Remark 25 The symmetric matrices of order n forming a n(n+1)=2-dimensional
vector space (2.20) implies, by dimension count, that sp(n) has dimension n(2n+
1). Since Sp(n) is connected we consequently have

dimSp(n) = dim sp(n) = n(2n+ 1). (2.21)

One should be careful to note that the exponential mapping

exp : sp(n) �! Sp(n)

is neither surjective nor injective. This is easily seen in the case n = 1. We
claim that

S = expX with X 2 sp(1) =) TrS � �2: (2.22)

In view of (2.20) we have X 2 sp(1) if and only TrX = 0, so that Hamilton-
Cayley�s equation for X is just X2+�I = 0 where � = detX. Expanding expX
in power series it is easy to see that

expX = cos
p
�I +

1p
�
sin
p
�X if � > 0

expX = cosh
p
��I + 1p

��
sinh

p
��X if � < 0.

Since TrX = 0 we see that in the case � > 0 we have

Tr(expX) = 2 cos
p
� � �2

and in the case � < 0

Tr(expX) = 2 cosh
p
� � 1.

However:
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Proposition 26 A symplectic matrix S is symmetric positive de�nite if and
only if S = expX with X 2 sp(n) and X = XT . The mapping exp is a
di¤eomorphism

sp(n) \ Sym(2n;R) �! Sp(n) \ Sym+(2n;R)

(Sym+(2n;R) is the set of positive de�nite symmetric matrices).

Proof. If X 2 sp(n) and X = XT then S is both symplectic and symmetric
positive de�nite. Assume conversely that S symplectic and symmetric positive
de�nite. The exponential mapping is a di¤eomorphism exp : Sym(2n;R) �!
Sym+(2n;R) (the positive de�nite symmetric matrices) hence there exits a
unique X 2 Sym(2n;R) such that S = expX. Let us show that X 2 sp(n).
Since S = ST we have SJS = J and hence S = �JS�1J . Because �J = J�1
it follows that

expX = J�1(exp(�X))J = exp(�J�1XJ)

and J�1XJ being symmetric, we conclude that X = J�1XJ that is JX =
�XJ , showing that X 2 sp(n).
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Chapter 3

Williamson�s Theorem

The message of Williamson�s theorem is that one can diagonalize any positive
de�nite symmetric matrix M using a symplectic matrix, and that the diagonal
matrix has the very simple form

D =

�
�� 0
0 ��

�
where the diagonal elements of �� are the moduli of the eigenvalues of JM . This
is a truly remarkable result which will allow us to construct a precise phase space
quantum mechanics in the ensuing Chapters. One can without exaggeration
say that this theorem carries in germ the recent developments of symplectic
topology; it leads immediately to a proof of Gromov�s famous non-squeezing
theorem in the linear case and has many applications both in mathematics and
physics. Williamson proved this result in 1963 and it has been rediscovered
several times since that �with di¤erent proofs.

3.1 Williamson normal form

Let M be a real m � m symmetric matrix: M = MT . Elementary linear
algebra tells us that all the eigenvalues �1; �2; :::; �m of M are real, and that
M can be diagonalized using an orthogonal transformation: M = RTDR with
R 2 O(m) and D = diag[�1; �2; :::; �nm]. Williamson�s theorem provides us
with the symplectic variant of this result. It says that every symmetric and
positive de�nite matrix M can be diagonalized using symplectic matrices, and
this in a very particular way. Because of its importance in everything that will
follow, let us describe Williamson�s diagonalization procedure in detail.

Theorem 27 Let M be a positive-de�nite symmetric real 2n� 2n matrix.
(i) There exists S 2 Sp(n) such that

STMS =

�
� 0
0 �

�
, � diagonal, (3.1)

23
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the diagonal entries �j of � being de�ned by the condition

�i�j is an eigenvalue of JM: (3.2)

(ii) The sequence �1; :::; �n does not depend, up to a reordering of its terms,
on the choice of S diagonalizing M .

Proof. (i) A quick examination of the simple case M = I shows that the
eigenvalues are �i; so that it is a good idea to work in the space C2n and to
look for complex eigenvalues and vectors for JM . Let us denote by h�; �iM the
scalar product associated withM , that is hz; z0iM = hMz; zi. Since both h�; �iM
and the symplectic form are non-degenerate we can �nd a unique invertible
matrix K of order 2n such that

hz;Kz0iM = �(z; z0)

for all z; z0; that matrix satis�es

KTM = J = �MK:

Since the skew-product is antisymmetric we must have K = �KM where KM =
�M�1KTM is the transpose of K with respect to h�; �iM ; it follows that the
eigenvalues of K = �M�1J are of the type �i�j , �j > 0, and hence those of
JM�1 are �i��1j . The corresponding eigenvectors occurring in conjugate pairs
e0j � if 0j we thus obtain a h�; �iM -orthonormal basis fe0i; f 0jg1�i;j�n of R2nz such
that Ke0i = �if

0
i and Kf 0j = ��je0j . Notice that it follows from these relations

that
K2e0i = ��2i e0i ; K2f 0j = ��2jf 0j

and that the vectors of the basis fe0i; f 0jg1�i;j�n satisfy the relations

�(e0i; e
0
j) = he0i;Ke0jiM = �jhe0i; f 0jiM = 0

�(f 0i ; f
0
j) = hf 0i ;Kf 0jiM = ��jhf 0i ; e0jiM = 0

�(f 0i ; e
0
j) = hf 0i ;Ke0jiM = �ihe0i; f 0jiM = ��i�ij :

Setting ei = �
�1=2
i e0i and fj = �

�1=2
j f 0j , the basis fei; fjg1�i;j�n is symplec-

tic. Let S be the element of Sp(n) mapping the canonical symplectic basis to
fei; fjg1�i;j�n. The h�; �iM -orthogonality of fei; fjg1�i;j�n implies (3.1) with
� = diag[�1; :::; �n]. To prove the uniqueness statement (ii) it su¢ ces to show
that if there exists S 2 Sp(n) such that STLS = L0 with L = diag[�;�],
L0 = diag[�0;�0]; then � = �0. Since S is symplectic we have STJS = J and
hence STLS = L0 is equivalent to S�1JLS = JL0 from which follows that JL
and JL0 have the same eigenvalues. These eigenvalues are precisely the complex
numbers �i=�j .

The diagonalizing matrix S in the Theorem above has no reason to be unique.
However:
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Proposition 28 Assume that S and S0 are two elements of Sp(n) such that

M = (S0)TDS0 = STDS

where D is the Williamson diagonal form of M . Then S(S0)�1 2 U(n).

Proof. Set U = S(S0)�1; we have UTDU = D. We are going to show that
UJ = JU ; the Lemma will follow. Setting R = D1=2UD�1=2 we have

RTR = D�1=2(UTDU)D�1=2 = D�1=2DD�1=2 = I

hence R 2 O(2n). Since J commutes with each power of D we have, since
JU = (UT )�1J ,

JR = D1=2JUD�1=2 = D1=2(UT )�1JD�1=2

= D1=2(UT )�1D�1=2J = (RT )�1J

hence R 2 Sp(n) \ O(2n) so that JR = RJ . Now U = D�1=2RD1=2 and
therefore

JU = JD�1=2RD1=2 = D�1=2JRD1=2

= D�1=2RJD1=2 = D�1=2RD1=2J

= UJ

which was to be proven.
Let M be a positive-de�nite and symmetric real matrix: M > 0. We have

seen above that the eigenvalues of JM are of the type �i��;j with ��;j > 0.
We will always order the positive numbers ��;j as a decreasing sequence:

��;1 � ��;2 � ::: � ��;n > 0. (3.3)

De�nition 29 With the ordering convention above (��;1; :::; ��;n) is called the
�symplectic spectrum of M and is denoted by Spec�(M):

Spec�(M) = (��;1; :::; ��;n)

Here are two important properties of the symplectic spectrum:

Proposition 30 Let Spec�(M) = (��;1; :::; ��;n) be the symplectic spectrum of
M:
(i) Spec�(M) is a symplectic invariant:

Spec�(S
TMS) = Spec�(M) for every S 2 Sp(n); (3.4)

(ii) the sequence (��1�;n; :::; �
�1
�;1) is the symplectic spectrum of M�1:

Spec�(M
�1) = (Spec�(M))

�1 (3.5)
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Proof. (i) is an immediate consequence of the de�nition of Spec�(M). (ii)
The eigenvalues of JM are the same as those of M1=2JM1=2; the eigenvalues of
JM�1 are those of M�1=2JM�1=2. Now

M�1=2JM�1=2 = �(M1=2JM1=2)�1

hence the eigenvalues of JM and JM�1 are obtained from each other by the
transformation t 7�! �1=t. The result follows since the symplectic spectra are
obtained by taking the moduli of these eigenvalues.

Here is a result allowing us to compare the symplectic spectra of two positive
de�nite symmetric matrices. It is important, because it is an algebraic version
of Gromov�s non-squeezing theorem in the linear case.

Theorem 31 Let M and M 0 be two symmetric positive de�nite matrices of
same dimension. We have

M �M 0 =) Spec�(M) � Spec�(M 0). (3.6)

Proof. When two matrices A and B have the same eigenvalues we will write
A ' B. When those of A are smaller than or equal to those of B (for a common
ordering) we will write A � B. Notice that when A or B is invertible we have
AB ' BA. With these notations, the statement of is equivalent to

M �M 0 =) (JM 0)2 � (JM)2

since the eigenvalues of JM and JM 0 occur in pairs �i�, �i�0 with � and �0
real. The relation M �M 0 is equivalent to zTMz � zTM 0z for every z 2 R2nz .
Replacing z by successively (JM1=2)z and (JM 01=2)z in zTMz � zTM 0z we
thus have, taking into account the fact that JT = �J , that is, since JT = �J ,

M1=2JM 0JM1=2 �M1=2JMJM1=2. (3.7)

M 01=2JM 0JM 01=2 �M 01=2JMJM 01=2. (3.8)

Noting that we have

M1=2JM 0JM1=2 'MJM 0J

M 01=2JMJM 01=2 'M 0JMJ 'MJM 0J

we can rewrite the relations (3.7) and (3.8) as

MJM 0 � JM1=2JM 0JM1=2

M 01=2JM 0JM 01=2 �MJM 0J

and hence, by transitivity

M 01=2JM 0JM 01=2 �M1=2JMJM1=2. (3.9)
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Since we have

M1=2JMJM1=2 ' (MJ)2 , M 01=2JM 0JM 01=2 ' (M 0J)2

the relation (3.9) is equivalent to (M 0J)2 � (MJ)2, which was to be proven.

Let M be a positive-de�nite and symmetric real matrix 2n� 2n; we denote
by M the ellipsoid in R2nz de�ned by the condition hMz; zi � 1:

M : hMz; zi � 1.

In view of Williamson�s theorem there exist S 2 Sp(n) such that STMS = D
with D = diag[�;�] and that � = diag[�1;�; :::; �n;�] where (�1;�; :::; �n;�) is the
symplectic spectrum of M . It follows that

S�1(M) :
nX
j=1

�j;�(x
2
j + p

2
j ) � 1.

De�nition 32 The number R�(M) = 1=
p
�1;� is called the symplectic radius

of the phase-space ellipsoid M; c�(M) = �R2� = �=�1;� is its symplectic area.

The properties of the symplectic area are summarized in the following result,
whose �hard�part follows from Theorem 31:

Corollary 33 Let M and M0 be two ellipsoids in (R2nz ; �).
(i) If M �M0 then c�(M) �c�(M0);
(ii) For every S 2 Sp(n) we have c�(S(M)) = c�(M);
(iii) For every � > 0 we have c�(�M) = �2c�(M).

Proof. (i) Assume that M : hMz; zi � 1 and M0 : hM 0z; zi � 1. If M � M0

then M � M 0 and hence Spec�(M) � Spec�(M
0) in view of the implication

(3.6) in Theorem 31; in particular �1;� � �01;�. Let us prove (ii). We have
S(M) : hM 0z; zi � 1 with S0 = (S�1)TMS�1 and M 0 thus have the same
symplectic spectrum as M in view of Proposition 30, (i). Property (iii) is
obvious.

In next subsection we generalize the notion of symplectic radius and area to
arbitrary subsets of phase space.

3.2 The notion of symplectic capacity

Let us now denote B(R) the phase-space ball jzj � R and by Zj(R) the phase-
space cylinder with radius R based on the conjugate coordinate plane xj ; pj :

Zj(R) : x
2
j + p

2
j � R2.

Since we have
Zj(R) : hMz; zi � 1
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where the matrix M is diagonal and only has two entries di¤erent from zero,
we can view Zj(R) as a degenerate ellipsoid with symplectic radius R. This
observation motivates following de�nition; recall that Symp(n) is the group of
all symplectomorphisms of the standard symplectic space (R2nz ; �).

De�nition 34 A �symplectic capacity� on (R2nz ; �) is a mapping c which to
every subset 
 of R2nz associates a number clin(
) � 0, or 1, and having the
following properties:

(i) c(
) � c(
0) if 
 � 
0;

(ii) c(f(
)) = c(
) for every f 2 Symp(n);

(iii) c(�
) = �2c(
) for every � 2 R;

(iv) c(B(R)) = c(Zj(R)) = �R2.

When the properties (i)�(iv) above only hold for a¢ ne symplectomorphisms f 2
ISp(n) we say that c is a �linear symplectic capacity�and we write c = clin.

While the construction of general symplectic capacities is very di¢ cult (the
existence of any symplectic capacity is equivalent to Gromov�s non-squeezing
theorem), it is reasonably easy to exhibit linear symplectic capacities:

Example 35 For 
 � R2nz set

clin(
) = sup
f2ISp(n)

f�R2 : f(B2n(R)) � 
g (3.10)

clin(
) = inf
f2ISp(n)

f�R2 : f(
) � Zj(R)g. (3.11)

Both clin and clin are linear symplectic capacities and we have

clin(
) � clin(
) � clin(
)

for every linear symplectic capacity clin on (R2nz ; �):

We have several times mentioned Gromov�s non-squeezing theorem in this
Chapter. It is time now to state it. Let us �rst give a de�nition:

De�nition 36 Let 
 be an arbitrary subset of R2nz . Let R� be the supremum
of the set

fR : 9f 2 Symp(n) such that f(B(R)) � 
g.

The number cG (
) = �R2� is called �symplectic area� (or �Gromov width�) of

.

For r > 0 let
Zj(r) = fz = (x; p) : x2j + p2j � r2g

be a cylinder with radius R based on the xj ; pj plane.
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Theorem 37 We have cG (
) = �R2�; equivalently: there exists a symplecto-
morphism f of R2nz such that f(B2n(z0; R)) � Zj(r) if and only if R � r.

(The su¢ ciency of the condition R � r is trivial since if R � r then the trans-
lation z 7�! z � z0 sends B2n(z0; R) in any cylinder Zj(r).)
All known proofs of this theorem are notoriously di¢ cult; Gromov used

pseudo-holomorphic tools to establish it.
As pointed out above Gromov�s theorem and the existence of one single

symplectic capacity are equivalent. Let us prove that Gromov�s theorem implies
that the symplectic area cG indeed is a symplectic capacity:

Corollary 38 Let 
 � R2nz and let R� be the supremum of the set

fR : 9f 2 Symp(n) such that f(B(R)) � 
g.

The formulae cG (
) = �R2� if R� < 1, cG (
) = 1 if R� = 1, de�ne a
symplectic capacity on (R2nz ; �).

Proof. Let us show that the axioms (i)�(iv) of De�nition 34 are veri�ed
by cG . Axiom (i) (that is cG (
) � cG (


0) if 
 � 
0) is trivially veri�ed
since a symplectomorphism sending B(R) in 
0 also sends B(R) in any set

0 containing 
. Axiom (ii) requires that cG (f(
)) = cG (
) for every sym-
plectomorphism f ; to prove that this is true, let g 2 Symp(n) be such that
g(B(R)) � 
; then (f � g)(B(R)) � f(
) for every f 2 Symp(n) hence
cG (f(
)) � cG (
). To prove the opposite inequality we note that replacing

 by f�1(
) leads to cG (
)) � cG (f

�1(
)); since f is arbitrary we have in
fact cG (
)) � cG (f(
)) for every f 2 Symp(n). Axiom (iii), which says that
one must have cG (�
) = �

2cG (
) for all � 2 R is trivially satis�ed if f is lin-
ear. To prove it holds true in the general case as well, �rst note that it is no
restriction to assume � 6= 0 and de�ne, for f : R2nz �! R2nz a mapping f� by
f�(z) = �f(��1z). It is clear that f� is a symplectomorphism if and only f
is. The condition f(B(R)) � 
 being equivalent to ��1f�(�B(R)) � 
, that
is to f�(B(�R)) � �
 it follows that cG (�
) = �(�R�)2 = �2cG (
). Let us �-
nally prove that Axiom (iv) is veri�ed by cG (
). The equality cG (B(R)) = �R2

is obvious: every ball B(r) with R0 � R is sent into B(R) by the identity
and if R0 � R there exists no f 2 Symp(n) such that f(B(R0)) � B(R) be-
cause symplectomorphisms are volume-preserving. There remains to show that
cG (Zj(R)) = �R2; it is at this point � and only at this point! �we will use
Gromov�s theorem. If R0 � R then the identity sends B(R0) in Zj(R) hence
cG (Zj(R)) � �R2. Assume that cG (Zj(R)) > �R2; then there exists a ball
B(R0) with R0 > R and a symplectomorphism f such that f(B(R0)) � Zj(R)
and this would violate Gromov�s theorem.

Remark 39 Conversely, the existence of a symplectic capacity implies Gro-
mov�s theorem.
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The number R� de�ned by cG (
) = �R2� is called the symplectic radius
of 
; that this terminology is consistent with that introduced in De�nition 32
above follows from the fact that all symplectic capacities (linear or not) agree
on ellipsoids. Let us prove this important property:

Proposition 40 Let M : hMz; zi � 1 be an ellipsoid in R2nz and c an arbitrary
linear symplectic capacity on (R2nz ; �). Let �1;� � �2;� � � � � � �n;� be the
symplectic spectrum of the symmetric matrix M . We have

c(M) =
�

�n;�
= clin (M) (3.12)

where clin is any linear symplectic capacity.

Proof. Let us choose S 2 Sp(n) such that the matrix STMS = D is in
Williamson normal form; S�1(M) is thus the ellipsoid

nX
j=1

�j;�(x
2
j + p

2
j ) � 1. (3.13)

Since c(S�1(M)) = c(M) it is su¢ cient to assume that the ellipsoid M is repre-
sented by (3.13). In view of the double inequality

�n;�(x
2
n + p

2
n) �

nX
j=1

�j;�(x
2
j + p

2
j ) � �n;�

nX
j=1

(x2j + p
2
j ) (3.14)

we have

B(��1=2n;� ) �M �Z(��1=2n;� )

hence, using the monotonicity axiom (i) for symplectic capacities

c(B(��1=2n;� )) � c(M) � (Z(��1=2n;� )):

The �rst equality in formula (3.12) now follows from Gromov�s theorem; the
second equality is obvious since we have put M in normal form using a linear
symplectomorphism.
The image of an ellipsoid by an invertible linear transformation is still an

ellipsoid. Particularly interesting are the ellipsoids obtained by deforming a ball
in (R2nz ; �) using elements of Sp(n).
We will denote by B2n(z0; R) the closed ball in R2nz with center z0 and radius

R; when the ball is centered at the origin, i.e. when z0 = 0, we will simply write
B2n(R).

De�nition 41 A �symplectic ball�B2n in (R2nz ; �) is the image of a ball B2n(z0; R)
by some S 2 Sp(n); we will say that R is the radius of B2n and Sz0 its center.
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We will drop any reference to the dimension when no confusion can arise,
and drop the superscript 2n and write B(z0; R), B, Q instead of B(z0; R), B2n,
Q2n.
The de�nition of a symplectic ball can evidently be written as

B2n = S(B2n(z0; R)) = T (Sz0)S(B2n(R))

for some S 2 Sp(n) and z0 2 R2nz ; T (Sz0) is the translation z 7�! z+Sz0. That
is:

A symplectic ball with radius R in (R2n; �) is the image of B2n(R)
by an element of the a¢ ne symplectic group ISp(n).

For instance, since the elements of Sp(1) are just the area preserving linear
automorphisms of R2 a symplectic ball in the plane is just any phase plane
ellipse with area �R2 (respectively 1

2h). For arbitrary n we note that since
symplectomorphisms are volume-preserving (they have determinant equal to
one) the volume of a symplectic ball is just

VolB2n(R) =
�n

n!
R2n

Lemma 42 An ellipsoid M : hMz; zi � 1 in R2nz is a symplectic ball with radius
one if and only M 2 Sp(n) and we then have M = S(B(1)) with M = (SST )�1.

Proof. Assume that M = S(B(1). Then M is the set of all z 2 R2nz such
that



S�1z; S�1z

�
� 1 hence M = (S�1)TS�1 is a symmetric de�nite-positive

symplectic matrix. Assume conversely that M 2 Sp(n). Since M > 0 we also
have M�1 > 0 and there exists S 2 Sp(n) such that M�1 = SST . Hence
M :



S�1z; S�1z

�
� 1 is just S(B(1).

Another very useful observation is that we do not need all symplectic ma-
trices to produce all symplectic balls:

Lemma 43 For every centered symplectic ball B2n = S(B2n(R)) there exist
unique real symmetric n � n matrices L (detL 6= 0) and Q such that B2n =
S0(B

2n(R)) and

S0 =

�
L 0
Q L�1

�
2 Sp(n). (3.15)

Proof. We can factorize S 2 Sp(n) as S = S0U where U 2 U(n) and S0 is of the
type (3.15). The claim follows since U(B2n(R)) = B2n(R) (that L and Q are
uniquely de�ned is clear for if S0(B2n(R)) = S00(B

2n(R)) then S0(S00)
�1 2 U(n)

and S00 can only be of the type (3.15) if it is identical to S0).

The proof above shows that every symplectic ball can be obtained from a
ball with same radius by �rst performing a symplectic rotation which takes it
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into another ball, and by thereafter applying two successive symplectic trans-
formations of the simple types

ML�1 =

�
L 0
0 L�1

�
, VP =

�
I 0
�P 0

�
(L = LT , P = PT );

the �rst of these transformations is essentially a symplectic rescaling of the
coordinates, and the second a �symplectic shear�.

Proposition 44 The intersection of B = S(B(R)) with a symplectic plane P is
an ellipse with area �R2.

Proof. We have B \ P = SjP0(B(R) \ P0) where SjP0 is the restriction of S to
the symplectic plane P = S�1(P). The intersection B(R) \ P0 is a circle with
area �R2 and SjP0 is a symplectic isomorphism P0 �! P, and is hence area
preserving. The area of the ellipse B \ P is thus �R2 as claimed.

This property is actually a particular case of a more general result, which
shows that the intersection of a symplectic ball with any symplectic subspace is
a symplectic ball of this subspace. We will prove this in detail below (Theorem
??).
We urge the reader to notice that the assumption that we are cutting

S(B2n(R)) with symplectic planes is essential. The following exercise provides
a counterexample which shows that the conclusion of Proposition 44 is falsi�ed
if we intersect S(B2n(R)) with a plane that is not symplectic.

Example 45 Assume n = 2 and take S = diag[�1; �2; 1=�1; 1=�2] with �1 > 0,
�2 > 0; and �1 6= �2. S is symplectic, but the intersection of S(B4(R)) with the
x2; p1 plane (which is not conjugate) does not have area �R2.

The assumption that S is symplectic is also essential in Proposition 44:

Example 46 Assume that we swap the two last diagonal entries of the matrix
S in the example above so that it becomes S0 = diag[�1; �2; 1=�2; 1=�1]. S0 is
not symplectic and the section S0(B2n(R)) by the symplectic x2; p2 plane does
not have area �R2.
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